Answer:
A. linear
Step-by-step explanation:
A gas has a density of 0.824 g/L and occupies a volume of 3.00 liters. What is the mass in grams?
Density is mass per unit volume,
ρ = m/v
Solving for mass gives
m = ρv
so that a gas with density 0.824 g/L that occupies 3.00 L has a mass of
m = (0.824 g/L) (3.00 L) = 2.47 g
write each expression as a single power of 10
Answer:
[tex]{ \underline{ \sf{it \: is \: {10}^{9} }}}[/tex]
Step-by-step explanation:
[tex](10 {}^{4} ). \frac{ {10}^{12} }{ {10}^{7} } = ( {10}^{4} ). {10}^{(12 - 7)} \\ \\ = ( {10}^{4} ). {10}^{5} \\ = {10}^{(4 + 5)} \\ = {10}^{9} [/tex]
Answer:
[tex]10^{9}[/tex]
Step-by-step explanation:
I. [tex]10^{4} * 10^{12-7}[/tex]
= [tex]10^{4} * 10^{5}[/tex]
= [tex]10^{4 + 5}[/tex]
= [tex]10^{9}[/tex]
Evaluate the expression.
5 x -3 + 2
Answer:
5x-1
Step-by-step explanation:
solution
5x-3+2
or, 5x-1
p 2 + m; use m = 1, and p = 5
Answer:
26
Step-by-step explanation:
p²+m
=> 5²+1
=> 25 + 1
=> 26
Answer:
26
Step-by-step explanation:
Substitute the given values into the expression
p² + m
= 5² + 1
= 25 + 1
= 26
Solve 6x + ( 14x - 5 ) + ( 17 - 3x ) , - ( 2 - x ) -3 ( 6 + 8x ) -12, ( 4x - 9 ) + 8 ( 2x + 3 ) -7x
Answer:
Step-by-step explanation:
6x + ( 14x - 5 ) + ( 17 - 3x )
= 17x + 12
- ( 2 - x ) -3 ( 6 + 8x ) -12,
= -23x - 32
( 4x - 9 ) + 8 ( 2x + 3 ) -7x
= 13x +15
the round trip distance between City X and City Y is 647 miles. A national park is between City X and City Y, and is 27 miles from City X. Find the round trip distance between the national park and city Y. Justify your answer.
The round trip distance between the national park and city Y is 593 miles.
Given:
Round trip distance from City X and City Y = 647 milesDistance between City X and national park = 27 milesTo find :
The round trip distance between the national park and city Y
Solution:
According to the question, the round trip distance between City X and City Y is 647 miles.
Let the distance from City X to City Y = d
Let the distance from City Y to City X = d
[tex]d+d=647 miles\\2d=647 miles\\d=\frac{647miles}{2}=323.5 miles[/tex]
Distance from City X to City Y = 323.5 miles
Distance of City X from national park = 27 miles
From the figure, the distance of the national park from the City Y = d -27 miles:
[tex]= 323.5 miles - 27 miles = 296.5 miles[/tex]
The distance from national park to City Y = 296.5 miles
When we will be going on the round trip between the national park and city Y we will be first traveling 296.5 miles from the national park to the City Y and then 296.5 miles from City Y to the national park.
So, the round trip distance between the national park and city Y:
[tex]296.5 miles + 296.5 miles = 593 miles[/tex]
So the round trip distance between the national park and city Y is 593 miles.
Learn more about- Round trip Distance
brainly.com/question/20691988
#learnwithbrainly
Sum of the maximum and minimum values of y=2cos^2 x + 3sin^2 x + 5
To begin with, we can simplify y using the Pythagorean identity:
y = 2 cos²(x) + 3 sin²(x) + 5
y = 2 (cos²(x) + sin²(x)) + sin²(x) + 5
y = 2 + sin²(x) + 5
y = sin²(x) + 7
Next, we can further rewrite this using the half angle identity for sine:
y = (1 - cos(2x))/2 + 7
y = 15/2 - 1/2 cos(2x)
Now, since cos(x) is bounded between -1 and 1, we have
max(y) = 15/2 - 1/2×(-1) = 15/2 + 1/2 = 8
and
min(y) = 15/2 - 1/2×1 = 15/2 - 1/2 = 7
Then the sum of the maximum and minimum is 8 + 7 = 15.
The TGV is a high speed train in France. The speed of this train can be modeled by the equation d = 347.2t, where d is the train’s distance, in miles, and t is the time, in hours. The Shanghai-Hangzhou Train is a high speed train in China, and the table below summarizes how long it takes this train to travel different distances. Assume that both trains always operate at constant speeds. Which train is faster?
Answer:5435
Step-by-step explanation:
Pamella late for school 10% of time. Richard late for 15% of the time.
a) What percentage are they both late?
b) What is the probability only one of them is late?
Answer:
a) 25%
10%+15% = 25%
b) doesn't have any idea
3(p – 6) + 15 = 0
PLEASE SOLVE PLEASE HELP IT IS URGENT
[tex]\boxed{\underline{\bf \: ANSWER}}[/tex]
[tex] \sf3(p - 6) + 15 = 0 \\\sf 3p - 18 + 15 = 0 \\\sf 3p - 3 = 0 \\ \sf3p = 3 \\ \sf \: p = \frac{3}{3} \\ \boxed{\bf p = 1}[/tex]
The value of p is 1.
_______
Hope it helps.
RainbowSalt2222
[tex]\\ \rm\longmapsto 3(p-6)+15=0[/tex]
[tex]\\ \rm\longmapsto 3p-18+15=0[/tex]
[tex]\\ \rm\longmapsto 3p-3=0[/tex]
[tex]\\ \rm\longmapsto 3p=3[/tex]
[tex]\\ \rm\longmapsto p=\dfrac{3}{3}[/tex]
[tex]\\ \rm\longmapsto p=1[/tex]
Seven of the algebra classes at a school have 23 students each. The eighth class has 25
students. What is the total number of students?
Answer: 186 students
Step-by-step explanation:
7x23+25= 186
how much time will it take for a bug to travel 5 meters if it is traveling 1 m/s
Answer:
5
Step-by-step explanation:
divide the distance by the rate of speed
5/1=5
Answer:
5 seconds.
Step-by-step explanation:
help me with this plsssssssss ps that is a 2
Answer:
14...
plz mark me brailiest
15 = [tex]\frac{5}{3}[/tex] (x + 12)
Answer:
x = -3
Step-by-step explanation:
15 = 5/3 (x + 12)
Multiply each side by 3/5 to clear the fraction
3/5 *15 =3/5 *5/3 (x + 12)
9 = x+12
Subtract 12 from each side
9-12 = x+12-12
-3 =x
Answer:
15 = 5/3(x + 12)
Using distributive law
15 = 5x/3 + 20
15 = 5x + 60/3
15 × 3 = 5x + 60
45 = 5x + 60
45 - 60 = 5x
-15 = 5x
-15/5 = x
-3 = x
Given that g(x) = x°, find each of the following.
a) g(1)
b) g(-2)
c) g(-x)
d) g(3y)
e) g(1 + h)
499 rounded to the nearest ten is
510
500
490
Answer:
500
Step-by-step explanation:
Since we are rounding to the tens place, that is the second value in the number 499. Remember these details when rounding;
4 and below round down5 and above round upSince we have a 9, we round up get and 500.
Best of Luck!
Answer:
499 rounded to the nearest tenth is 500.
Step-by-step explanation:
499 rounded to the nearest tenth is 500 because, every tenths place is + 10
the closest tenth 499 is closest to would be 500.
Hope this helped :)
Is the expression 2•4 equal to the expression 8x? Explain your answer
9514 1404 393
Answer:
no
Step-by-step explanation:
The expression 2·4 has the value 8.
The expression 8x has the value 8x, which is only equal to 8 when x=1. In general, x may have any value, so the expressions are not equal.
There are 16 tablespoons in 1 cup. How many tablespoons of cornstarch would Chery need to make the green slimerecipe 15 time?
m∠ABC = (9x + 4)° and m∠DEF = (13x − 22)°. If ∠ABC and ∠DEF are supplementary, what is the measure of each angle?
Answer:
∠ABC measures 85° and ∠DEF measures 95°.
Step-by-step explanation:
We are given that ∠ABC and ∠DEF are supplementary. Then by definition:
[tex]\displaystyle m\angle ABC + m\angle DE F = 180^\circ[/tex]
Substitute:
[tex]\displaystyle \left(9x+4\right) + \left(13x-22\right) = 180[/tex]
Solve for x. Combine like terms:
[tex]22x -18 = 180[/tex]
Add:
[tex]\displaystyle 22x = 198[/tex]
And divide. Hence:
[tex]\displaystyle x = 9[/tex]
To find the measure of ∠ABC, substitute and evaluate:
[tex]\displaystyle \begin{aligned}m\angle ABC &= 9x + 4 \\ &= 9(9) + 4 \\ &= 81 + 4 \\ &= 85^\circ \end{aligned}[/tex]
And:
[tex]\displaystyle \begin{aligned}m\ngle DE F &= 13x - 22 \\ &= 13(9) - 22 \\ &= 117-22 \\&= 95^\circ \end{aligned}[/tex]
In conclusion, ∠ABC measures 85° and ∠DEF measures 95°.
help whhhahahahaha Helpppppppp
Answer:
320/420 = 4/3
Step-by-step explanation:
4/7= x /560
Cross multiply
7x = 2240
Divide by 7:
x=320
The school has 320 boys and 240 girls
I hope this helps u:)
Answer:
Problem(1): [tex]21[/tex]
Problem(2): Side length = [tex]\frac{1}{4}[/tex] Area = [tex]\frac{1}{16}[/tex]
Problem(3): Boys = [tex]320[/tex] Girls = [tex]240[/tex]
Step-by-step explanation:
(Notes steps are cut from this answer so that it isn't too long)
1. Problem (1)
One is given the following information:
[tex]x+\frac{1}{x}=5[/tex][tex](x-\frac{1}{x})^2[/tex]The most logical first step is to solve for the value of (x). One can solve for the numerical value of (x) with the first equation.
[tex]x+\frac{1}{x}=5[/tex]
Multiply the entire equation by (x),
[tex]x^2+1=5x[/tex]
Inverse operations put the equation in the general format of a quadratic equation. The general format of a quadratic equation is as follows,
[tex]ax^2+bx+c=0[/tex]
Put the given equation in this format,
[tex]x^2-5x+1=0[/tex]
Now use the quadratic formula to solve for the value of (x). The quadratic formula uses the coefficients of the terms in a quadratic equation to find the roots of the equation. The quadratic formula is as follows,
[tex]\frac{-b(+-)\sqrt{b^2-4ac}}{2a}[/tex]
Use the coefficients of the terms in the given quadratic equation in the formal, then simplify to solve for solutions of the given equation,
[tex]\frac{-(-5)(+-)\sqrt{(-5)^2-4(1)(1)}}{2(1)}[/tex]
Simplify,
[tex]\frac{-(-5)(+-)\sqrt{(-5)^2-4(1)(1)}}{2(1)}[/tex]
[tex]\frac{5(+-)\sqrt{21}}{2}[/tex]
Now substitute these values into the equation and simplify, even though there are two values of (x), there will only be one solution,
[tex]((\frac{5+\sqrt{21}}{2}-\frac{1}{\frac{5+\sqrt{21}}{2}})^2[/tex] [tex]((\frac{5-\sqrt{21}}{2}-\frac{1}{\frac{5-\sqrt{21}}{2}})^2[/tex]
[tex](\frac{5+\sqrt{21}}{2}-\frac{2}{5+\sqrt{21}})^2[/tex] [tex](\frac{5-\sqrt{21}}{2}-\frac{2}{5-\sqrt{21}})^2[/tex]
Convert to a common denominator,
[tex](\frac{5+\sqrt{21}}{2}*\frac{5+\sqrt{21}}{5+\sqrt{21}}-\frac{2}{5+\sqrt{21}}*\frac{2}{2})^2[/tex] [tex](\frac{5-\sqrt{21}}{2}*\frac{5-\sqrt{21}}{5-\sqrt{21}}-\frac{2}{5-\sqrt{21}}*\frac{2}{2})^2[/tex]
[tex](\frac{(5+\sqrt{21})^2-4}{2(5+\sqrt{21})})^2[/tex] [tex](\frac{(5-\sqrt{21})^2-4}{2(5-\sqrt{21})})^2[/tex]
Simplify,
[tex](\frac{25+10\sqrt{21}+21-4}{10+2\sqrt{21}})^2[/tex] [tex](\frac{25-10\sqrt{21}+21-4}{10-2\sqrt{21}})^2[/tex]
[tex](\frac{42+10\sqrt{21}}{10+2\sqrt{21}})^2[/tex] [tex](\frac{42-10\sqrt{21}}{10-2\sqrt{21}})^2[/tex]
[tex]\frac{1764+840\sqrt{21}+2100}{100+40\sqrt{21}+84}[/tex] [tex]\frac{1764-840\sqrt{21}+2100}{100-40\sqrt{21}+84}[/tex]
[tex]\frac{3864+840\sqrt{21}}{184+40\sqrt{21}}[/tex] [tex]\frac{3864-840\sqrt{21}}{184-40\sqrt{21}}[/tex]
[tex]21[/tex]
2. Problem (2)
All four sides of a square are congruent (have the same measure), thus dividing the perimeter of a square by (4) will yield the side length of the square,
[tex]Perimeter\ of\ the\ square: 4\\Side\ length: \frac{1}{4}[/tex]
The area is the two-dimensional space that a figure takes up, in the case of a square, the area is the side length times itself:
[tex]A=(\frac{1}{4})^2=\frac{1}{16}[/tex]
3. Problem (3)
Let (x) represent the amount by which the ratio of boys to girls was scaled down. Assuming that these are the only two genders in the school, one can state that the sum ratio coefficients times the scaling value for both boys and girls, will equal the total number of people in the school. Thus, one can form the following equation and solve it with inverse operations and simplification,
[tex]boys + girl = total\ students\\4x + 3x = 560\\7x = 560\\x = 80[/tex]
Now substitute this into the expression for the two genders in this scenario, respectively, to solve for the actual number of students of that gender,
Boys, Girls,
[tex]4(x)[/tex] [tex]3(x)[/tex]
[tex]4(80)[/tex] [tex]3(80)[/tex]
[tex]320[/tex] [tex]240[/tex]
50 yards of fabric for 18 flags Unit rate
Describe how to use a random number generator to simulate the following performances
a) A basketball player has the ability to make 40% of his shots and takes 25 shots in one game.
b) A basketball player has the ability to make 75.2% of her free throw shots and she takes 8 free throws in a game.
Answer:
random number generators return numbers from 0 to 1...
a) generate 25 random numbers if the number x is ≤ .4 he makes the shot
otherwise he misses
a) generate 8 random numbers if the number x is ≤ .752 she makes the shot otherwise it is a miss
otherwise he misses
Step-by-step explanation:
Cho is making a rectangular garden, where the length is x feet and
the width is 4x – 1 feet. He wants to add garden stones around
the perimeter of the garden once he is done. If the garden is 4 feet
long, how many feet will Cho need to cover with garden stones?
Answer:16x-6
Step-by-step explanation:4(4x-1) distributed is 16x-6
3(m+1)+1>7 what is m?
an arena is 1/2 full. After 1,500 people leave the arena, it is 1/3 full. What is the seating capacity of the arena?
Answer:
9000
Step-by-step explanation:
(x/2)-(x/3) = 1500
(x/6)=1500
x= 9000
PLSS HELP! What is -2m-5m=9m-12? ALGEBRA I
Step-by-step explanation:
1. -2m-5m-9m=-12
2. -16m= -12
3. m= -12/ -16
4. m=3/4
i have written / sign as a sign of division .
2.6 a simplified fraction and the 6 is a repeating decimal
Find the midpoint of the segment with the given endpoints.
(-10.8) and (2.2)
Answer:
(-4,5)
Step-by-step explanation:
To find the x coordinate of the midpoint, add the x coordinate of the endpoints and divide by 2
(-10 +2)/2 = -8/2 = -4
To find the y coordinate of the midpoint, add the y coordinate of the endpoints and divide by 2
(8 +2)/2 = 10/2 = 5
(-4,5)
Answer:
(-4 , 5)
Step-by-step explanation:
(x₁ , y₁) = (-10 , 8) & (x₂ , y₂) = (2 , 2)
[tex]Midpoint = (\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2})\\\\[/tex]
[tex]=(\dfrac{-10+2}{2},\dfrac{8+2}{2})\\\\=(\dfrac{-8}{2},\dfrac{10}{2})\\\\=(-4 , 5)[/tex]
More help Pls (am also giving away points).
Answer:
But where is the question???????
It is given that the gradient of a straight line which passes through M(h,3) and N(-2,-9) is 2, calculate the value of h.
Answer:
h = 4
Step-by-step explanation:
Calculate the slope m using the slope formula and equate to 2
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = M (h, 3 ) and (x₂, y₂ ) = N (- 2, - 9 )
m = [tex]\frac{-9-3}{-2-h}[/tex] = [tex]\frac{-12}{-2-h}[/tex] , then
[tex]\frac{-12}{-2-h}[/tex] = 2 ( multiply both sides by - 2 - h )
2(- 2 - h) = - 12 ( divide both sides by 2 )
- 2 - h = - 6 ( add 2 to both sides )
- h = - 4 ( multiply both sides by - 1 )
h = 4