The Fourier series equation for the given function f(x) = 1 on the interval 1 < t < 2 is simply f(x) = 0.
To calculate the Fourier series equation for the given function f(x) = 1 on the interval 1 < t < 2, we can follow these steps:
Step 1: Determine the period:
The given interval is 1 < t < 2, which has a length of 1 unit. Since the function is not periodic within this interval, we need to extend it periodically.
Step 2: Extend the function periodically:
We can extend the function f(x) = 1 to be periodic by repeating it outside the interval 1 < t < 2. Let's extend it to the interval -∞ < t < ∞, such that f(x) remains constant at 1 for all values of t.
Step 3: Determine the Fourier coefficients:
To find the Fourier coefficients, we need to calculate the integral of the function multiplied by the corresponding trigonometric functions.
The Fourier coefficient a0 is given by:
a0 = (1/T) * ∫[T] f(t) dt,
where T is the period. Since we have extended the function to be periodic over all t, the period T is infinite.
The integral becomes:
a0 = (1/∞) * ∫[-∞ to ∞] 1 dt = 1/∞ = 0.
The Fourier coefficients an and bn are given by:
an = (2/T) * ∫[T] f(t) * cos(nωt) dt,
bn = (2/T) * ∫[T] f(t) * sin(nωt) dt,
where ω = 2π/T.
Since T is infinite, the integrals become:
an = (2/∞) * ∫[-∞ to ∞] 1 * cos(nωt) dt = 0,
bn = (2/∞) * ∫[-∞ to ∞] 1 * sin(nωt) dt = 0.
Step 4: Write the Fourier series equation:
The Fourier series equation for the given function is:
f(x) = a0/2 + ∑[n=1 to ∞] (an * cos(nωt) + bn * sin(nωt)).
Substituting the Fourier coefficients we calculated, we have:
f(x) = 0/2 + ∑[n=1 to ∞] (0 * cos(nωt) + 0 * sin(nωt)).
Simplifying, we get:
f(x) = 0.
Therefore, the Fourier series equation for the given function f(x) = 1 on the interval 1 < t < 2 is simply f(x) = 0.
to learn more about Fourier series equation.
https://brainly.com/question/32659330
#SPJ11
pls help if you can asap!!!!
Answer:
70 + 67 + 3x + 7 = 180
3x + 144 = 180
3x = 36
x = 12
In 1-2 pages, explain the difference between burglary and larceny. Provide and example of each. Are these types of cases easy to solve? What is the success rate of solving these types of cases in your jurisdiction?
Burglary and larceny are both criminal offences however, burglary refers to the illegal entry of a structure with criminal intent while larceny us taking someone's personal property without consent.
Burglary and larceny are two distinct types of criminal activities that differ in terms of the nature of the act, the intent, and the location of the offense. Burglary is generally defined as the unlawful entry of a building with the intent to commit a crime, whereas larceny refers to the illegal taking of someone else's personal property with the intent to deprive the owner of it.
Burglary refers to the illegal entry of a structure with the intent to commit a crime, such as theft, assault, or vandalism. The act of breaking into someone else's home, for example, is a common form of burglary. The offense of burglary is not limited to residential areas, as it may also occur in commercial structures, such as office buildings or stores.
Larceny, on the other hand, refers to the illegal taking of someone else's personal property without their consent and with the intent to deprive the owner of it. The act of shoplifting or pickpocketing, for example, is a common form of larceny. Larceny may also occur when someone steals someone else's vehicle or breaks into their home to take something without permission.
An example of burglary would be a thief breaking into a jewelry store at night to steal valuable items. An example of larceny would be a person stealing someone else's purse off a park bench.
The success rate of solving these types of cases in a particular jurisdiction would depend on various factors, including the level of law enforcement resources, the expertise of the investigating officers, and the cooperation of the community.
In general, burglary cases may be more challenging to solve than larceny cases, as they often involve more complex investigations, such as the use of forensic evidence and surveillance footage. Larceny cases, on the other hand, may be easier to solve, as they typically involve straightforward investigations based on witness statements and physical evidence.
Learn more about Burglary:
https://brainly.com/question/10411138
#SPJ11
Given U(1,-9),V(5,7),W(-8,-1), and X(x,7). Find x such that UV parallel XW
The value of x that makes UV parallel to XW is x = -6.
To determine the value of x such that line UV is parallel to line XW, we need to compare the slopes of these two lines.
The slope of line UV can be found using the formula: slope = (change in y)/(change in x).
For UV, the coordinates are U(1, -9) and V(5, 7), so the change in y is 7 - (-9) = 16, and the change in x is 5 - 1 = 4. Therefore, the slope of UV is 16/4 = 4.
Since UV is parallel to XW, the slopes of these two lines must be equal.
The slope of line XW can be determined using the coordinates W(-8, -1) and X(x, 7). Since the y-coordinate of W is -1, and the y-coordinate of X is 7, the change in y is 7 - (-1) = 8.
For two lines to be parallel, their slopes must be equal. Therefore, we equate the slopes:
4 = 8/(x - (-8))
4 = 8/(x + 8)
To solve for x, we can cross-multiply:
4(x + 8) = 8
4x + 32 = 8
4x = 8 - 32
4x = -24
x = -24/4
x = -6
Learn more about UV parallel here :-
https://brainly.com/question/32577924
#SPJ11
A regular polygon of (2p+1) sides has 140 degrees as the size of each interior angle,find p
For a regular polygon with (2p + 1) sides and each interior angle measuring 140 degrees, the value of p is 4.
In a regular polygon, all interior angles have the same measure. Let's denote the measure of each interior angle as A.
The sum of the interior angles in any polygon can be found using the formula: (n - 2) * 180 degrees, where n is the number of sides of the polygon. Since we have a regular polygon with (2p + 1) sides, the sum of the interior angles is:
(2p + 1 - 2) * 180 = (2p - 1) * 180.
Since each interior angle of the polygon measures 140 degrees, we can set up the equation:
A = 140 degrees.
We can find the value of p by equating the measure of each interior angle to the sum of the interior angles divided by the number of sides:
A = (2p - 1) * 180 / (2p + 1).
Substituting the value of A as 140 degrees, we have:
140 = (2p - 1) * 180 / (2p + 1).
To solve for p, we can cross-multiply:
140 * (2p + 1) = 180 * (2p - 1).
Expanding both sides of the equation:
280p + 140 = 360p - 180.
Moving the terms involving p to one side and the constant terms to the other side:
280p - 360p = -180 - 140.
-80p = -320.
Dividing both sides by -80:
p = (-320) / (-80) = 4.
Therefore, the value of p is 4.
For more such question on polygon. visit :
https://brainly.com/question/29425329
#SPJ8
Find the surface area of the sphere or hemisphere. Round to the nearest tenth.
sphere: area of great circle ≈32ft²
The surface area of the sphere is approximately 128.7 ft², and the surface area of the hemisphere is approximately 64.4 ft².
Here is a step-by-step explanation of calculating the surface area of the sphere and hemisphere:
⇒ Given that the area of the great circle is approximately 32 ft², we can find the radius of the sphere using the formula for the area of a circle: Area = πr².
⇒ Rearrange the formula to solve for r:
r² = Area / π.
⇒ Substitute the known area value:
r² = 32 ft² / π.
⇒ Calculate the value of r:
r ≈ √(32 ft² / π).
⇒ Use the radius value to calculate the surface area of the sphere using the formula: Surface Area = 4πr².
Surface Area ≈ 4π(√(32 ft² / π))².
⇒ Divide the surface area of the sphere by 2 to obtain the surface area of the hemisphere, since a hemisphere is half of a sphere.
Surface Area of Hemisphere = Surface Area of Sphere / 2.
⇒ Substitute the calculated value of the surface area of the sphere into the formula:
Surface Area of Hemisphere ≈ (4π(√(32 ft² / π))²) / 2.
⇒ Simplify the expression to find the approximate value of the surface area of the hemisphere.
Therefore, the surface area of the sphere is approximately 128.7 ft², and the surface area of the hemisphere is approximately 64.4 ft².
To know more about calculating the surface area of a sphere, refer here:
https://brainly.com/question/32920264#
#SPJ11
Find an invertible matrix P and a diagonal matrix D such that P−1AP=D.
A = (13 −30 0 )
(5 −12 0 )
(−2 6 0 )
An invertible matrix P and a diagonal matrix D such that P-1AP=D is P = [0 -3;0 1;1 10], P-1 = (1/3) [0 0 3;-1 1 10;0 0 1] and D = diag(-5/3,-1/3,0).
Given matrix A is :
A = (13 -30 0 )(5 -12 0 )(-2 6 0 )
We need to find an invertible matrix P and a diagonal matrix D such that P−1AP=D.
First, we will find the eigenvalues of matrix A, which is the diagonal matrix DλI = A - |λ| (This is the formula we use to find eigenvalues)A = [13 -30 0;5 -12 0;-2 6 0]
Then, we will compute the determinant of A-|λ|I3 = 0 |λ|I3 - A = [λ - 13 30 0;-5 λ + 12 0;2 -6 λ]
∴ |λ|[(λ - 13)(-6λ) - 30(2)] - [-5(λ - 12)(-6λ) - 30(2)] + [2(30) - 6(-5)(λ - 12)] = 0, which simplifies to |λ|[6λ^2 + 22λ + 20] = 0
For 6λ^2 + 22λ + 20 = 0
⇒ λ^2 + (11/3)λ + 5/3 = 0
⇒ (λ + 5/3)(λ + 1/3) = 0
So, the eigenvalues are λ1 = -5/3 and λ2 = -1/3
The eigenvector v1 corresponding to λ1 = -5/3 is:
A - λ1I = A + (5/3)I = [28/3 -30 0;5/3 -7/3 0;-2 6/3 5/3]
∴ rref([28/3 -30 0;5/3 -7/3 0;-2 6/3 5/3]) = [1 0 0;0 1 0;0 0 0]
⇒ v1 = [0;0;1]
Similarly, the eigenvector v2 corresponding to λ2 = -1/3 is:
A - λ2I = A + (1/3)I
= [40/3 -30 0;5 0 0;-2 6 1/3]
∴ rref([40/3 -30 0;5 0 0;-2 6 1/3]) = [1 0 0;0 0 1;0 0 0]
⇒ v2 = [-3;1;10]
Thus, P can be chosen as [v1 v2] = [0 -3;0 1;1 10] (the matrix whose columns are the eigenvectors)
∴ P-1 = (1/3) [0 0 3;-1 1 10;0 0 1] (the inverse of P)
Finally, we obtain the diagonal matrix D as:
D = P-1AP
= (1/3) [0 0 3;-1 1 10;0 0 1] [13 -30 0;5 -12 0;-2 6 0] [0 -3;0 1;1 10]
= diag(-5/3,-1/3,0)
Hence, an invertible matrix P and a diagonal matrix D such that P-1AP=D is P = [0 -3;0 1;1 10], P-1 = (1/3) [0 0 3;-1 1 10;0 0 1] and D = diag(-5/3,-1/3,0).
Know more about matrix here:
https://brainly.com/question/27929071
#SPJ11
Discuss the continuity of function f(x,y)=(y^2-x^2/y^2+x^2)^2. Be sure to state any type of discontinuity.
The function f(x,y) = (y² - x² / y² + x²)² is discontinuous at the origin (0,0) but continuous along any smooth curve that does not pass through the origin.
The function f(x,y) = (y² - x² / y² + x²)² is defined for all values of x and y except where the denominator is equal to 0, since division by 0 is undefined.
Thus, the function is discontinuous at the points where y² + x² = 0,
Which corresponds to the origin (0,0) in the plane.
However, we can check the continuity of the function along any curve that does not pass through the origin.
In fact, we can show that the function is continuous along any smooth curve that does not intersect the origin by using the fact that the function is the composition of continuous functions.
To see this, note that f(x,y) can be written as f(x,y) = g(h(x,y)), where h(x,y) = y² - x² and g(t) = (t / (1 + t))².
Both h(x,y) and g(t) are continuous functions for all values of t, and h(x,y) is continuously differentiable (i.e., smooth) for all values of x and y.
Therefore, by the chain rule for partial derivatives, we can show that f(x,y) is also continuously differentiable (i.e., smooth) along any curve that does not pass through the origin.
This implies that f(x,y) is continuous along any curve that does not pass through the origin.
To learn more about the function visit:
https://brainly.com/question/8892191
#SPJ4
If T S=2 x, P M=20 , and Q R=6 x , find x .
The value of x is 10.
To find the value of x, we can set up an equation using the given information. We have T S = 2x, P M = 20, and Q R = 6x.
Since P M = 20, we can substitute this value into the equation, giving us T S = 2x = 20.
To solve for x, we divide both sides of the equation by 2: 2x/2 = 20/2.
This simplifies to x = 10, which means the value of x is 10.
By substituting x = 10 into the equation Q R = 6x, we find that Q R = 6(10) = 60.
Therefore, the value of x that satisfies the given conditions is 10.
Learn more about Value
brainly.com/question/30145972
brainly.com/question/30035551
#SPJ11
Integers between-1 to +1
You are dealt 6 cards from a standard deck of 52 cards. How many
ways can you receive 2 pairs and 2 singletons?
There are 32,606,080 ways to receive 2 pairs and 2 singletons from a standard deck of 52 cards.
To calculate the number of ways to receive 2 pairs and 2 singletons from a standard deck of 52 cards, we can break it down into steps:
Step 1: Choose the two ranks for the pairs.
There are 13 ranks in a deck of cards, and we need to choose 2 of them for the pairs. This can be done in C(13, 2) = 13! / (2! * (13-2)!) = 78 ways.
Step 2: Choose the suits for each pair.
Each pair can have any of the 4 suits, so there are 4 choices for the first pair and 4 choices for the second pair. This gives us 4 * 4 = 16 ways.
Step 3: Choose the ranks for the singletons.
We have already chosen 2 ranks for the pairs, so we have 11 ranks left to choose from for the singletons. This can be done in C(11, 2) = 11! / (2! * (11-2)!) = 55 ways.
Step 4: Choose the suits for the singletons.
Each singleton can have any of the 4 suits, so there are 4 choices for the first singleton and 4 choices for the second singleton. This gives us 4 * 4 = 16 ways.
Step 5: Choose the positions for the cards.
Out of the 6 cards dealt, the two pairs can be placed in any 2 out of the 6 positions, and the singletons can be placed in any 2 out of the remaining 4 positions. This can be calculated as C(6, 2) * C(4, 2) = 6! / (2! * (6-2)!) * 4! / (2! * (4-2)!) = 15 * 6 = 90 ways.
Step 6: Multiply the results.
Finally, we multiply the results from each step to get the total number of ways:
78 * 16 * 55 * 16 * 90 = 32,606,080.
Therefore, there are 32,606,080 ways to receive 2 pairs and 2 singletons from a standard deck of 52 cards.
Learn more about singleton set here:brainly.com/question/31922243
#SPJ11
which of the following is an example of a conditioanl probability?
"the probability that a student plays video games given that the student is female." is an example of a conditional probability.The correct answer is option C.
A conditional probability is a probability that is based on certain conditions or events occurring. Out of the options provided, option C is an example of a conditional probability: "the probability that a student plays video games given that the student is female."
Conditional probability involves determining the likelihood of an event happening given that another event has already occurred. In this case, the event is a student playing video games, and the condition is that the student is female.
The probability of a female student playing video games may differ from the overall probability of any student playing video games because it is based on a specific subset of the population (female students).
To calculate this conditional probability, you would divide the number of female students who play video games by the total number of female students.
This allows you to focus solely on the subset of female students and determine the likelihood of them playing video games.
In summary, option C is an example of a conditional probability as it involves determining the probability of a specific event (playing video games) given that a condition (being a female student) is satisfied.
For more such questions probability,click on
https://brainly.com/question/251701
#SPJ8
consider the lines l1 : ⟨2 −4t, 1 3t, 2t⟩ and l2 : ⟨s 5, s −3, 2 −4s⟩. (a) show that the lines intersect. (b) find an equation for the the plane which contains both lines. (c) [c] find the acute angle between the lines. give the exact value of the angle, and then use a calculator to approximate the angle to 3 decimal places.
a. Both the line intersect each other.
b. The equation of the plane containing both the lines is -6x+-14y+9z=d.
c. The acute angle between the lines is 0.989
Consider the lines l1 and l2 defined as ⟨2 −4t, 1+3t, 2t⟩ and ⟨s, 5s, 2−4s⟩, respectively. To show that the lines intersect, we can set the x, y, and z coordinates of the lines equal to each other and solve for the variables t and s. By finding values of t and s that satisfy the equations, we can demonstrate that the lines intersect.
Additionally, to find the equation for the plane containing both lines, we can use the cross product of the direction vectors of the lines. Lastly, to determine the acute angle between the lines, we can apply the dot product formula and solve for the angle using trigonometric functions.
(a) To show that the lines intersect, we set the x, y, and z coordinates of l1 and l2 equal to each other:
2 - 4t = s (equation 1)
1 + 3t = 5s (equation 2)
2t = 2 - 4s (equation 3)
By solving this system of equations, we can find values of t and s that satisfy all three equations. This would indicate that the lines intersect at a specific point.
(b) To find the equation for the plane containing both lines, we can calculate the cross product of the direction vectors of l1 and l2. The direction vector of l1 is ⟨-4, 3, 2⟩, and the direction vector of l2 is ⟨1, 5, -4⟩. Taking the cross product of these vectors, we obtain the normal vector of the plane. The equation of the plane can then be written in the form ax + by + cz = d, using the coordinates of a point on one of the lines. The equation of the plane is -6x+-14y+9z=d.
(c) To find the acute angle between the lines, we can use the dot product formula. The dot product of the direction vectors of l1 and l2 is equal to the product of their magnitudes and the cosine of the angle between them. The dot product is 3
and cosine(3) = 0.989
So, the acute angle will be 0.989
Learn more about Acute Angle here:
brainly.com/question/16775975
#SPJ11
Alan, Betty, and Carol invested in a corporation in the ratio of 8 9 10 respectively if they divide the profit of $56.700 proportionally to their investment, how much will each receive Alan will receive S Betty will receive S Carol will receive C
Alan will receive $16,800, Betty will receive $18,900, and Carol will receive $21,000.
In order to calculate the amount each person will receive, we need to determine the total investment made by Alan, Betty, and Carol. The total ratio is 8+9+10=27.
To find Alan's share, we divide his ratio (8) by the total ratio (27) and multiply it by the total profit ($56,700). Therefore, Alan will receive (8/27) * $56,700 = $16,800.
For Betty, we follow the same process. Her ratio is 9, so her share will be (9/27) * $56,700 = $18,900.
Similarly, for Carol, her ratio is 10, so her share will be (10/27) * $56,700 = $21,000.
To summarize, Alan will receive $16,800, Betty will receive $18,900, and Carol will receive $21,000 from the total profit of $56,700 based on their respective investment ratios.
For more similar questions on investment ratios
brainly.com/question/28063973
#SPJ8
What is the sixth term in the expansion of (2 x-3 y)⁷?
(F) 21 x² y⁵
(G) -126 x² y⁵
(H) -20,412 x² y⁵
(I) 20,412 x² y⁵
The sixth term in the expansion of (2x - 3y)⁷ is (H) -20,412x²y⁵.
When expanding a binomial raised to a power, we can use the binomial theorem or Pascal's triangle to determine the coefficients and exponents of each term.
In this case, the binomial is (2x - 3y) and the power is 7. We want to find the sixth term in the expansion.
Using the binomial theorem, the general term of the expansion is given by:
[tex]C(n, r) = (2x)^n^-^r * (-3y)^r[/tex]
where C(n, r) represents the binomial coefficient and is calculated using the formula C(n, r) = n! / (r! * (n-r)!)
In this case, n = 7 (the power) and r = 5 (since we want the sixth term, which corresponds to r = 5).
Plugging in the values, we have:
[tex]C(7, 5) = (2x)^7^-^5 * (-3y)^5[/tex]
C(7, 5) = 7! / (5! * (7-5)!) = 7! / (5! * 2!) = 7 * 6 / (2 * 1) = 21
Simplifying further, we have:
21 * (2x)² * (-3y)⁵ = 21 * 4x² * (-243y⁵) = -20,412x²y⁵
Therefore, the sixth term in the expansion of (2x - 3y)⁷ is -20,412x²y⁵, which corresponds to option (H).
Learn more about binomial here:
https://brainly.com/question/30339327
#SPJ11
Air at 17 N/s, 25 deg C, and 109 kPa flows inside a 142 mm x 314
mm rectangular duct, Solve for the volume flux if R = 29.1 m/K.
Express your answer in 3 decimal places.
the volume flux is 1.73 m³/s (rounded to 3 decimal places).
Given:
Mass flow rate = 17 N/s
Temperature = 25 °C
Pressure = 109 kPa
Rectangular duct dimensions = 142 mm x 314 mm
Gas constant = R = 29.1 m/K
Volume flux is defined as the volume of air flowing through a unit area per unit time. To solve for volume flux, we need to first find the velocity of air flowing through the duct and then multiply it with the area of the duct.
Here's how we can do it:
First, we need to find the density of air using the Ideal Gas Law.
pV = nRT where, p = pressure, V = volume, n = number of moles of gas, R = gas constant, T = temperature
We can find the density of air using the formula:
ρ = p / RT where, ρ is the density of air at the given conditions of temperature and pressure
Substituting the values given,
ρ = 109 x 10^3 Pa / (29.1 J/Kg.K x (25 + 273) K)
= 1.11 kg/m³
Next, we can find the velocity of air using the mass flow rate and the density of air.
= ρAV
where, = mass flow rate, ρ = density, A = area of the duct, V = velocity of air
V = /ρA = (142 x 10^-3 m) x (314 x 10^-3 m)
= 0.0446 m²
V = 17 / (1.11 x 0.0446)
= 38.8 m/s
Finally, we can find the volume flux using the velocity of air and the area of the duct.
Q = AV
where, Q = volume flux, A = area of the duct
Q = 38.8 x 0.0446
= 1.73 m³/s
To learn more on volume flux:
https://brainly.com/question/14007482
#SPJ11
A hospital records the number of floral deliveries its patients receive each day. For a two-week period, the records show 15, 27, 26, 24, 18, 21, 26, 19, 15, 28, 25, 26, 17, 23 Use a three-period moving average for forecasting and report the forecast for period 4 using 2 numbers after the decimal point. A hospital records the number of floral deliveries its patients receive each day. For a two-week period, the records show 15, 27, 26, 24, 18, 21, 26, 19, 15, 28, 25, 26, 17, 23. Use a three-period moving average for forecasting and report the forecast for period 7 using 2 numbers after the decimal point. A hospital records the number of floral deliveries its patients receive each day. For a two-week period, the records show 15, 27, 26, 24, 18, 21, 26, 19, 15, 28, 25, 26, 17, 23 Use a three-period moving average for forecasting and report the forecast for period 13 using 2 numbers after the decimal point. A hospital records the number of floral deliveries its patients receive each day. For a two-week period, the records show 15, 27, 26, 24, 18, 21, 26, 19, 15, 28, 25, 26, 17, 23 Use a three-period moving average and report the forecast error for period 5 using 2 numbers after the decimal point. Use absolute value.
The forecast error in this situation is negative, indicating that the forecast was too high. To obtain the absolute value of the error, we ignore the minus sign. Therefore, the answer is 4.67 (rounded to two decimal places).
A moving average is a forecasting technique that uses a rolling time frame of data to estimate the next time frame's value. A three-period moving average can be calculated by adding the values of the three most recent time frames and dividing by three.
Let's calculate the three-period moving averages for the given periods:
Period 4: The average is (15 + 27 + 26) / 3 = 23.33.Period 7: The average is (21 + 26 + 19) / 3 = 21.33.Period 13: The average is (25 + 26 + 17) / 3 = 22.33.To calculate the forecast error for period 5, we use the formula: Error = Actual - Forecast. In this case, the actual value is 18.
Let's calculate the forecast error for period 5:
Forecast: The three-period moving average is (15 + 27 + 26) / 3 = 22.67.Error = Actual - Forecast = 18 - 22.67 = -4.67.In this case, the forecast error is negative, indicating that the forecast was overly optimistic. We disregard the minus sign to determine the absolute value of the error. As a result, the answer is 4.67 (rounded to the nearest two decimal points).
In summary, using a three-period moving average for forecasting, the forecast for period 4 is 23.33, the forecast for period 7 is 21.33, the forecast for period 13 is 22.33, and the forecast error for period 5 is 4.67.
Learn more about forecast error
https://brainly.com/question/7397314
#SPJ11
How do you find the measure?
The measures are given as;
<ABC = 90 degrees
<BAC = 20 degrees
<ACB = 70 degrees
How to determine the measuresTo determine the measures, we need to know the following;
The sum of the angles in a triangle is 180 degreesAdjacent angles are equalSupplementary angles are pairs that sum up to 180 degreesCorresponding angles are equalThen, we have that;
Angle ABC = 180 - 70 + 20
Add the values, we have;
<ABC = 90 degrees
<BAC = 90 - 70
<BAC = 20 degrees
<ACB is adjacent to 70 degrees
<ACB = 70 degrees
Learn more about triangles at: https://brainly.com/question/14285697
#SPJ1
Use Cramer's rule to compute the solution of the system. X₁ + X₂ - 4x1 X2 + - x₂ = X3 H 3 2x3 = 0 2x3 WHEN 2 x₁ = : X₂ = (Type integers or simplified fractions.)
A system of linear equations with as many equations as unknowns can be solved explicitly using Cramer's rule in linear algebra whenever the system has a single solution. Using Cramer's rule, we get:
x₁ = (-x₃) / 5
x₂ = (4x₃) / 5
as x₁ and x₂ are expressed as fractions in terms of x₃.
First, let's write the system of equations in matrix form:
| 1 1 | | x₁ | | x₃ |
| -4 -1 | | x₂ | = | 0 |
| 3 2 | | 2 |
Now, we'll calculate the determinant of the coefficient matrix, which is:
D = | 1 1 |
| -4 -1 |
To calculate D, we use the formula: D = (a*d) - (b*c)
D = (1 * -1) - (1 * -4) = 1 + 4 = 5
Next, we'll calculate the determinant of the x₁ column matrix, which is:
D₁ = | x₃ 1 |
| 0 -1 |
D₁ = (a*d) - (b*c)
D₁ = (x₃ * -1) - (1 * 0) = -x₃
Similarly, we'll calculate the determinant of the x₂ column matrix, which is:
D₂ = | 1 x₃ |
| -4 0 |
D₂ = (a*d) - (b*c)
D₂ = (1 * 0) - (x₃ * -4) = 4x₃
Finally, we can calculate the values of x₁ and x₂ by dividing D₁ and D₂ by D:
x₁ = D₁ / D = (-x₃) / 5
x₂ = D₂ / D = (4x₃) / 5
Therefore, x₁ = (-x₃) / 5 and x₂ = (4x₃) / 5
Learn more about Cramer's rule:
brainly.com/question/20354529
#SPJ11
Determine the fugacity and fugacity coefficients of methane using the Redlich-Kwong equation of state at 300 K and 10 bar. Write all the assumptions made.
Using the Redlich-Kwong equation of state at 300 K and 10 bar, the fugacity and fugacity coefficients of methane are 13.04 bar and 1.304, respectively.
The Redlich-Kwong equation of state for fugacity is given as:
f = p + a(T, v) / (v * (v + b))
The fugacity coefficient is given as:
φ = f / p
Where, f is the fugacity, p is the pressure, a(T, v) and b are constants given by Redlich-Kwong equation of state. Now, applying the Redlich-Kwong equation of state at 300 K and 10 bar, we have the following:
Given: T = 300 K; P = 10 bar
Assumptions:
It is assumed that the volume of the gas molecules is negligible and the intermolecular forces between the molecules are negligible. The equation of state is a cubic equation and has three roots, but only one root is physical.The constants, a(T, v) and b are expressed as follows:
a(T, v) = 0.42748 * (R ^ 2 * Tc ^ 2.5) / Pc,
b = 0.08664 * R * Tc / Pc
Where R is the gas constant, Tc and Pc are the critical temperature and pressure, respectively.
Now, substituting the given values in the above equations, we have:
Tc = 190.56 K; Pc = 45.99 bar
R = 8.314 J / mol * K
For methane, we have:
a = 0.42748 * (8.314 ^ 2 * 190.56 ^ 2.5) / 45.99 = 1.327 L ^ 2 * bar / mol ^ 2
b = 0.08664 * 8.314 * 190.56 / 45.99 = 0.04267 L / mol
Using the above values, we can now calculate the fugacity of methane:
f = p + a(T, v) / (v * (v + b))= 10 + 1.327 * (300, v) / (v * (v + 0.04267))
Since the equation of state is cubic, we need to solve for v numerically using an iterative method. Once we get the value of v, we can calculate the fugacity of methane. Now, substituting the value of v in the above equation, we get:
f = 13.04 bar
The fugacity coefficient is given as:
φ = f / p= 13.04 / 10= 1.304
Therefore, the fugacity and fugacity coefficients of methane using the Redlich-Kwong equation of state at 300 K and 10 bar are 13.04 bar and 1.304, respectively. Assumptions made in the above calculations are: The volume of the gas molecules is negligible. The intermolecular forces between the molecules are negligible. The equation of state is a cubic equation and has three roots, but only one root is physical.
Learn more about Redlich-Kwong equation:
https://brainly.com/question/29566070
#SPJ11
Find the general solution of xy′′−(2x+1)y′+(x+1)y=0, given that y1=x is a solution. Explain in detail. b) Can you find the general solution of xy′′−(2x+1)y′+(x+1)y=x2, using methods studied in class? Explain in detail.
A. The find the general solution, we can use the method of reduction of order. The general solution of the differential equation[tex]xy'' - (2x+1)y' + (x+1)y = 0[/tex], with y1 = x as a solution, is given by [tex]y = Cx + xln|x|,[/tex] where C is an arbitrary constant.
B. Using method of reduction of order.
Since y1 = x is a solution, we can assume a second linearly independent solution of the form [tex]y2 = v(x)y1,[/tex] where v(x) is a function to be determined.
Differentiating y2, we get [tex]y2' = v'x + v,[/tex] and differentiating again, [tex]y2'' = v''x + 2v'.[/tex]
Substituting these derivatives into the differential equation, we have:
[tex]x(v''x + 2v') - (2x + 1)(v'x + v) + (x + 1)(vx) = 0.[/tex]
Expanding and simplifying, we get:
[tex]x^2v'' + (2x - 1)v' + xv = 0.[/tex]
Since y1 = x is a solution, we substitute this into the equation:
[tex]x^2v'' + (2x - 1)v' + xv = 0, where,y1 = x.[/tex]
Substituting y1 = x, we have:
[tex]x^2v'' + (2x - 1)v' + xv = 0.[/tex]
We can simplify this equation by dividing throughout by [tex]x^2:[/tex]
[tex]v'' + (2 - 1/x)v' + v/x = 0.[/tex]
Next, we let [tex]v = u/x[/tex], which gives [tex]v' = u'/x - u/x^2[/tex] and [tex]v'' = u''/x - 2u'/x^2 + 2u/x^3.[/tex]
Substituting these derivatives back into the equation and simplifying, we get:
[tex]u'' = 0.[/tex]
The resulting equation is a second-order linear homogeneous differential equation with constant coefficients.
Solving it, we find that u = C1x + C2, where C1 and C2 are arbitrary constants.
Finally, substituting v = u/x and y2 = vx into the general solution form, we have:
[tex]y = Cx + Dxe^(-x)[/tex], where C and D are arbitrary constants.
Note: For part (b), the equation [tex]xy′′ - (2x + 1)y′ + (x + 1)y = x^2[/tex] is not in the form of a homogeneous linear differential equation, and the methods studied in class for solving homogeneous equations may not directly apply.
Additional techniques, such as variations of parameters or power series solutions, may be needed to find the general solution in this case.
Learn more about differential equations:
brainly.com/question/32607880
#SPJ11
The line L1 has an equation r1=<6,4,11>+n<4,2,9> and the line L2 has an equation r2=<−3,10,,2>+m<−5,8,0> Different values of n give different points on line L1. Similarly, different values of m give different points on line L2. If the two lines intersect then r1=r2 at the point of intersection. If you can find values of n and m.which satisfy this condition then the two lines intersect. Show the lines intersect by finding these values n and m hence find the point of intersection. n= ?
The values of n and m that satisfy the condition for intersection are n = -1 and m = -1.
The point of intersection for the lines L1 and L2 is (2, 2, 2).
To find the values of n and m that satisfy the condition for intersection, we need to equate the two equations for r1 and r2:
r1 = <6, 4, 11> + n<4, 2, 9>
r2 = <-3, 10, 2> + m<-5, 8, 0>
Setting the corresponding components equal to each other, we get:
6 + 4n = -3 - 5m --> Equation 1
4 + 2n = 10 + 8m --> Equation 2
11 + 9n = 2 --> Equation 3
Let's solve these equations to find the values of n and m:
From Equation 3, we have:
11 + 9n = 2
9n = 2 - 11
9n = -9
n = -1
Now substitute the value of n into Equation 1:
6 + 4n = -3 - 5m
6 + 4(-1) = -3 - 5m
6 - 4 = -3 - 5m
2 = -3 - 5m
5m = -3 - 2
5m = -5
m = -1
Therefore, the values of n and m that satisfy the condition for intersection are n = -1 and m = -1.
To find the point of intersection, substitute these values back into either of the original equations. Let's use r1:
r1 = <6, 4, 11> + n<4, 2, 9>
= <6, 4, 11> + (-1)<4, 2, 9>
= <6, 4, 11> + <-4, -2, -9>
= <6 - 4, 4 - 2, 11 - 9>
= <2, 2, 2>
Therefore, the point of intersection for the lines L1 and L2 is (2, 2, 2).
Learn more about intersection: https://brainly.com/question/29185601
#SPJ11
Problem 13 (15 points). Prove that for all natural number n, 52n-1 is divisible by 8.
Answer:
false
Step-by-step explanation:
We can prove or disprove that (52n - 1) is divisible by 8 for every natural number n using mathematical induction.
Starting with the base case:
When n = 1,
(52n - 1) = ((52 · 1) - 1)
= 52 - 1
= 51
which is not divisible by 8.
Therefore, (52n - 1) is NOT divisible by 8 for every natural number n, and the conjecture is false.
Answer:
25^n -1 is divisible by 8
Step-by-step explanation:
You want a proof that 5^(2n)-1 is divisible by 8.
ExpandWe can write 5^(2n) as (5^2)^n = 25^n.
RemainderThe remainder from division by 8 can be found as ...
25^n mod 8 = (25 mod 8)^n = 1^n = 1
Less 1Subtracting 1 from 25^n mod 8 gives 0, meaning ...
5^(2n) -1 = (25^n) -1 is divisible by 8.
__
Additional comment
Let 2n+1 represent an odd number for any integer n. Then consider any odd number to the power 2k:
(2n +1)^(2k) = ((2n +1)^2)^k = (4n² +4n +1)^k
The remainder mod 8 will be ...
((4n² +4n +1) mod 8)^k = ((4n(n+1) +1) mod 8)^k
Recognizing that either n or (n+1) will be even, and 4 times an even number will be divisible by 8, the value of this expression is ...
≡ 1^k = 1
Thus any odd number to the 2n power, less 1, will be divisible by 8. The attachment show this for a few odd numbers (including 5) for a few powers.
<95141404393>
1. Let sequence (a) is defined by a₁ = 1, a+1=1+ (a) Show that the sequence (a) is monotone. (b) Show that the sequence (2) is bounded. 1 1+ an (n ≥ 1).
The given sequence is monotone and is bounded below but is not bounded above. Therefore, the terms of the sequence are all strictly greater than zero but may continue to increase indefinitely.
For the sequence (a), the definition is given by: a1 = 1 and a+1 = 1 + an (n ≥ 1).
Therefore,a₂ = 1 + a₁= 1 + 1 = 2
a₃ = 1 + a₂ = 1 + 2 = 3
a₄ = 1 + a₃ = 1 + 3 = 4
a₅ = 1 + a₄ = 1 + 4 = 5 ...
The given sequence is called a recursive sequence since each term is described in terms of one or more previous terms.
For the given sequence (a),
each term of the sequence can be represented as:
a₁ < a₂ < a₃ < a₄ < ... < an
Therefore, the sequence (a) is monotone.
(b)The given sequence is given by: a₁ = 1 and a+1 = 1 + an (n ≥ 1).
Thus, a₂ = 1 + a₁ = 1 + 1 = 2
a₃ = 1 + a₂ = 1 + 2 = 3
a₄ = 1 + a₃ = 1 + 3 = 4...
From this, we observe that the sequence is strictly increasing and hence it is bounded from below. However, the sequence is not bounded from above, hence (2) is not bounded
This means that the terms of the sequence are all strictly greater than zero but may continue to increase indefinitely.
This can be shown graphically by plotting the terms of the sequence against the number of terms as shown below:
Graphical representation of sequence(a)The graph shows that the sequence is monotone since the terms of the sequence continue to increase but the sequence is not bounded from above as the terms of the sequence continue to increase indefinitely.
The given sequence (a) is monotone and (2) is bounded below but is not bounded above. Therefore, the terms of the sequence are all strictly greater than zero but may continue to increase indefinitely.
To know more about strictly increasing visit:
brainly.com/question/30098941
#SPJ11
A dietitian in a hospital is to arrange a special diet using three foods, L,M, and N. Each ounce of food L contains 20 units of calcium, 5 units of iron, 20 units of vitamin A, and 20 units of cholesterol. Each ounce of food M contains 10 units of calcium, 5 units of iron, 30 units of vitamin A, and 20 units of cholesterol. Each ounce of food N contains 10 units of calcium, 5 units of iron, 20 units of vitamin A, and 18 units of cholesterol. Select the correct choice below and fill in any answer boxes present in your choice. If the minimum daily requirements are 340 units of calcium, 110 units of iron, and 480 units of vitamin A, how many ounces of each food should be used to meet the minimum requirements and at the same time minimize the cholesterol intake? A. The special diet should include x1= ounces of food L,x2=4 ounces of food M, and x3=6 ounces of food N. B. There is no way to minimze the cholesterol intake. Select the correct choice below and fill in any answer boxes present in your choice. What is the minimum cholesterol intake? A. The minimum cholesterol intake is units. B. There is no minimum cholesterol intake.
The special diet should include 3 ounces of food L, 4 ounces of food M, and 6 ounces of food N. The correct option is A. The minimum cholesterol intake is 248 units, and the correct option is A.
To minimize the cholesterol intake while meeting the minimum requirements, we need to find the combination of foods L, M, and N that provides enough calcium, iron, and vitamin A.
Let's set up the problem using a system of linear equations. Let x₁, x₂, and x₃ represent the number of ounces of foods L, M, and N, respectively.
First, let's set up the equations for the nutrients:
20x₁ + 10x₂ + 10x₃ = 340 (calcium requirement)
5x₁ + 5x₂ + 5x₃ = 110 (iron requirement)
20x₁ + 30x₂ + 20x₃ = 480 (vitamin A requirement)
To minimize cholesterol intake, we need to minimize the expression:
20x₁ + 20x₂ + 18x₃ (cholesterol intake)
Now we can solve the system of equations using any method such as substitution or elimination.
By solving the system of equations, we find that the special diet should include:
x₁ = 3 ounces of food L
x₂ = 4 ounces of food M
x₃ = 6 ounces of food N
Therefore, choice A is correct: The special diet should include 3 ounces of food L, 4 ounces of food M, and 6 ounces of food N.
To find the minimum cholesterol intake, substitute the values of x₁, x₂, and x₃ into the expression for cholesterol intake:
20(3) + 20(4) + 18(6) = 60 + 80 + 108 = 248 units
Therefore, the minimum cholesterol intake is 248 units, and the correct choice is A: The minimum cholesterol intake is 248 units.
To know more about system of linear equations, refer to the link below:
https://brainly.com/question/20379472#
#SPJ11
The table below represents an object thrown into the air.
A 2-column table with 7 rows. Column 1 is labeled Seconds, x with entries 0.5, 1, 1.5, 2, 2.5, 3, 3.5. Column 2 is labeled Meters, y with entries 28, 48, 60, 64, 60, 48, 28.
Is the situation a function?
No, the situation represented by the table is not a function.
In order for a relation to be a function, each input value (x) must correspond to exactly one output value (y). If there is any input value that has more than one corresponding output value, the relation is not a function.
Looking at the table, we can observe that the input values (seconds) are repeated in multiple rows. For example, the input value 2 appears twice with corresponding output values of 64 and 60. Similarly, the input value 3 appears twice with corresponding output values of 48 and 28.
Since there are multiple y-values associated with the same x-value, we can conclude that the relation represented by the table violates the definition of a function. It fails the vertical line test, which states that a relation is not a function if there exists a vertical line that intersects the graph of the relation at more than one point.
In the given situation, the object thrown into the air seems to follow a certain trajectory, but the table provided does not accurately represent a mathematical function to describe that trajectory. Additional information or a different representation is needed to determine a function that describes the object's motion accurately.
For more question on function visit:
https://brainly.com/question/11624077
#SPJ8
Which of the following tables represents a linear relationship that is also proportional? x −1 0 1 y 0 2 4 x −3 0 3 y −2 −1 0 x −2 0 2 y 1 0 −1 x −1 0 1 y −5 −2 1
Answer:
x: -1, 0, 1
y: 0, 2, 4
Step-by-step explanation:
A linear relationship is proportional if the ratio between the values of y and x remains constant for all data points. Let's analyze each table to determine if they represent a linear relationship that is also proportional:
x: -1, 0, 1
y: 0, 2, 4
In this case, when x increases by 1, y increases by 2. The ratio between the values of y and x is always 2. Therefore, this table represents a linear relationship that is proportional.
x: -3, 0, 3
y: -2, -1, 0
In this case, when x increases by 3, y increases by 1. The ratio between the values of y and x is not constant. Therefore, this table does not represent a linear relationship that is proportional.
x: -2, 0, 2
y: 1, 0, -1
In this case, when x increases by 2, y decreases by 1. The ratio between the values of y and x is not constant. Therefore, this table does not represent a linear relationship that is proportional.
x: -1, 0, 1
y: -5, -2, 1
In this case, when x increases by 1, y increases by 3. The ratio between the values of y and x is not constant. Therefore, this table does not represent a linear relationship that is proportional.
Which of the following correlation coefficients represents the strongest relationship between two variables? -.75 +.60 .00 +.30
The correlation coefficient that represents the strongest relationship between two variables is -0.75.
In correlation coefficients, the absolute value indicates the strength of the relationship between variables. The strength of the association increases with the absolute value's proximity to 1.
The maximum absolute value in this instance is -0.75, which denotes a significant negative correlation. The relevance of the reverse correlation value of -0.75 is demonstrated by the noteworthy unfavorable correlation between the two variables.
To know more about correlation coefficients, visit,
https://brainly.com/question/4219149
#SPJ4
please help! Q4: Solve the given differential equation. Find only. dx
y" = = 2y'/y (y' + 1)
[tex]y = -e^(y^2 - (y^3/6) + C2x + C3)[/tex]
These are the solutions to the given differential equation.
To solve the given differential equation:
[tex]y" = 2y'/(y(y' + 1))[/tex]
We can make a substitution to simplify the equation. Let's set u = y', which means du/dx = y".
Substituting these values in the original equation, we get:
[tex]du/dx = 2u/(y(u + 1))[/tex]
Now, we have a separable differential equation in terms of u and y. We can rearrange the equation to separate the variables:
[tex](u + 1) du = 2u/y dy[/tex]
Now, we can integrate both sides:
[tex]∫(u + 1) du = ∫(2/y) dy[/tex]
Integrating, we get:
[tex](u^2/2 + u) = 2 ln|y| + C1[/tex]
Substituting back u = y', we have:
[tex](y'^2/2 + y') = 2 ln|y| + C1[/tex]
This is a first-order ordinary differential equation. We can solve it by separating variables:
[tex]dy' = 2 ln|y| + C1 - y' dy[/tex]
Now, we can integrate both sides:
[tex]∫dy' = ∫(2 ln|y| + C1 - y') dy[/tex]
Integrating, we get:
[tex]y' = 2y ln|y| - (y^2/2) + C2[/tex]
This is a separable equation. We can solve it by separating variables:
[tex]dy/y = (2y ln|y| - (y^2/2) + C2) dx[/tex]
Integrating, we get:
[tex]ln|y| = y^2 - (y^3/6) + C2x + C3[/tex]
Taking the exponential of both sides, we have:
[tex]|y| = e^(y^2 - (y^3/6) + C2x + C3)[/tex]
Since y can be positive or negative, we remove the absolute value by considering two cases:
y > 0:
y = e^(y^2 - (y^3/6) + C2x + C3)
y < 0:
y = -e^(y^2 - (y^3/6) + C2x + C3)
These are the solutions to the given differential equation.
To know more about differential equation.
https://brainly.com/question/32645495
#SPJ11
Which of the following are functions? ON = {(-2,-5), (0, 0), (2, 3), (4, 6), (7, 8), (14, 12)} OZ = {(-3, 6), (2, 4), (-5, 9), (4,3), (1,6), (0,5)} OL= {(1, 3), (3, 1), (5, 6), (9, 8), (11, 13), (15, 16)} DI= {(1,4), (3, 2), (3, 5), (4, 9), (8, 6), (10, 12)} OJ = {(-3,-1), (9, 0), (1, 1), (10, 2), (3, 1), (0, 0)} -
Functions are fundamental concepts in algebra, and they have a wide range of applications. The input domain of a function maps to the output domain.
We will identify the functions among the options given in the question below.
The following are functions:
ON = {(-2,-5), (0, 0), (2, 3), (4, 6), (7, 8), (14, 12)}OL= {(1, 3), (3, 1), (5, 6), (9, 8), (11, 13), (15, 16)}DI= {(1,4), (3, 2), (3, 5), (4, 9), (8, 6), (10, 12)}OZ = {(-3, 6), (2, 4), (-5, 9), (4,3), (1,6), (0,5)}OJ = {(-3,-1), (9, 0), (1, 1), (10, 2), (3, 1), (0, 0)}
Note that if the set of all first coordinates (x-values) contains no duplicates, then we can state with certainty that it is a function.
To know more about coordinates visit :
https://brainly.com/question/32836021
#SPJ11
B=[1 2 3 4 1 3; 3 4 5 6 3 4]
Construct partition of matrix into 2*2 blocks
The partition of matrix B into 2x2 blocks is:
B = [1 2 | 3 4 ;
3 4 | 5 6 ;
------------
1 3 | 4 1 ;
3 4 | 6 3]
To construct the partition of the matrix B into 2x2 blocks, we divide the matrix into smaller submatrices. Each submatrix will be a 2x2 block. Here's how it would look:
B = [B₁ B₂;
B₃ B₄]
where:
B₁ = [1 2; 3 4]
B₂ = [3 4; 5 6]
B₃ = [1 3; 3 4]
B₄ = [4 1; 6 3]
Know more about matrix here:
https://brainly.com/question/29132693
#SPJ11