A 0.32μC particle moves with a speed of 20 m/s through a region where the magnetic field has a strength of 0.99 T. You may want to review (Pages 773-777). Part A At what angle to the field is the particle moving if the force exerted on it is 4.8×10 −6 N ? Express your answer using two significant figures. Part B At what angle to the field is the particle moving if the force exerted on it is 3.0×10 −6 N ? Express your answer using two significant figures. At what angle to the field is the particle moving if the force exerted on it is 1.0×10 −7 N ? Express your answer using two significant figures. A proton high above the equator approaches the Earth moving straight downward with a speed of 375 m/s. Part A Find the acceleration of the proton, given that the magnetic field at its altitude is 4.05×10 −5 T. A particle with a charge of 17μC experiences a force of 2.6×10 −4 N when it moves at right angles to a magnetic field with a speed of 27 m/s. Part A What force does this particle experience when it moves with a speed of 6.4 m/s at an angle of 24 ∘ relative to the magnetic field? Express your answer using two significant figures.

Answers

Answer 1

(a) The angle to the field when the force exerted is 4.8 x 10⁻⁶ N is 49⁰.

(b) The angle to the field when the force exerted is 3.0 x 10⁻⁶ N is 28⁰.

(c) The angle to the field when the force exerted is 1 x 10⁻⁷ N is 9⁰.

What is the angle  to the field ?

(a) The angle to the field when the force exerted is 4.8 x 10⁻⁶ N is calculated as follows;

F = qvB sinθ

sinθ = F/qvB

where;

F is the force exertedq is the magnitude of the chargev is the speed of the chargeB is the magnetic field

sinθ = (4.8 x 10⁻⁶) / (0.32 x 10⁻⁶ x 20 x 0.99)

sinθ = 0.7576

θ = sin⁻¹ (0.7576)

θ = 49⁰

(b) The angle to the field when the force exerted is 3.0 x 10⁻⁶ N is calculated as follows;

sinθ = (3.0 x 10⁻⁶) / (0.32 x 10⁻⁶ x 20 x 0.99)

sinθ = 0.4735

θ = sin⁻¹ (0.4735)

θ = 28⁰

(c) The angle to the field when the force exerted is 1 x 10⁻⁷ N is calculated as follows;

sinθ = (1.0 x 10⁻⁶) / (0.32 x 10⁻⁶ x 20 x 0.99)

sinθ = 0.1578

θ = sin⁻¹ (0.1578)

θ = 9⁰

Learn more about angle of a charge on a field here: https://brainly.com/question/30579257

#SPJ4


Related Questions

Question 12 of 12 < > -/1 III : View Policies Current Attempt in Progress = a A student makes a short electromagnet by winding 470 turns of wire around a wooden cylinder of diameter d = 3.2 cm. The coil is connected to a battery producing a current of 3.3 A in the wire. (a) What is the magnitude of the magnetic dipole moment of this device? (b) At what axial distance z >>d will the magnetic field have the magnitude 5.6 uT (approximately one-tenth that of Earth's magnetic field)? (a) Number Units (b) Number Units

Answers

(a) The magnitude of the magnetic dipole moment of the electromagnet can be calculated using the formula μ = NIA. (b) The axial distance at which the magnetic field has a magnitude of 5.6 uT can be determined using the formula B = μ₀/(2πr³).

(a) To calculate the magnitude of the magnetic dipole moment, we need to know the number of turns (N), the current (I), and the area of the coil (A). The number of turns is given as 470. The current is given as 3.3 A. The area of the coil can be calculated using the formula A = πr², where r is the radius of the cylinder. Since the diameter (d) is given as 3.2 cm, the radius (r) is half of the diameter. Once we have the area, we can use the formula μ = NIA to calculate the magnetic dipole moment.

(b) To determine the axial distance at which the magnetic field has a magnitude of 5.6 uT, we need to rearrange the formula B = μ₀/(2πr³) to solve for r. Once we have the value of r, we can substitute it into the formula to find the corresponding axial distance (z) at which the magnetic field is 5.6 uT. The value of μ₀ is a constant representing the permeability of free space.

Learn more about magnetic field here:

https://brainly.com/question/12244454

#SPJ11

how
many joules of energy must be added to an ice cube of mass 45.0 g
at -19 Celsius in order to fully converted to water with a
temperature of 65°C?

Answers

The amount of energy needed to convert an ice cube of mass 45.0 g at -19 Celsius to water with a temperature of 65°C is 30,825.27 joules.

To calculate the amount of energy needed, we can use the following equation:

               Q = m * L + m * c * ΔT

where:

Q is the amount of energy needed in joules

m is the mass of the ice cube in grams

L is the latent heat of fusion for water, which is 333.55 joules per gram

c is the specific heat capacity of water, which is 4.184 joules per gram per degree Celsius

ΔT is the change in temperature, which is 65°C - (-19°C) = 84°C

Plugging in the values, we get:

Q = 45.0 g * 333.55 J/g + 45.0 g * 4.184 J/g/°C * 84°C

= 30,825.27 J

Therefore, 30,825.27 joules of energy must be added to an ice cube of mass 45.0 g at -19 Celsius to fully convert it to water with a temperature of 65°C.

To learn more about specific heat capacity click here; brainly.com/question/29766819

#SPJ11

Explain how we could distinguish a quasar from a star using its
spectra?

Answers

Quasars are different from stars in a variety of ways, and one way to tell the difference between the two is to examine their spectra.

Quasars, unlike stars, have spectra that indicate a large amount of energy, and they emit far more radiation than stars.

Furthermore, quasars have very strong, broad emission lines that indicate the presence of superheated gas surrounding the black hole, whereas stars have more subtle absorption lines produced by their outer layers. This distinction in spectra is thus used to differentiate between quasars and stars.

Learn more about quasar at

https://brainly.com/question/30482971

#SPJ11

As seen from the Earth, the distance from Earth to the Sunis 1.50 x 1011 m. A certain particle travels that distance in only 9.29 min. Answer the three questions below, using three sig figs. Part A - What is the speed of the particle, v, as seen from Earth? Part B - From the perspective of the particle, how much time, tp, does it take to reach the Earth?

Answers

The speed of the particle, as seen from Earth, is 1.61 x 10^9 m/s. From the perspective of the particle, it takes 9.29 min to reach the Earth.

To find the speed of the particle as seen from Earth, we can use the formula speed = distance/time. Given that the distance from Earth to the Sun is 1.50 x 10^11 m and the time taken by the particle is 9.29 min (which is equal to 9.29 x 60 = 557.4 seconds), we can calculate the speed:

speed = [tex](1.50 * 10^11 m) / (557.4 s) = 2.69 * 10^8 m/s.[/tex] Rounded to three significant figures, the speed is [tex]1.61 * 10^9 m/s.[/tex]

B. From the perspective of the particle, its reference frame is moving along with it. Therefore, the particle observes the distance between the Sun and the Earth as stationary. In this reference frame, the time it takes to reach the Earth would simply be the same as the time given, which is 9.29 min.

To learn more about speed click here:

brainly.com/question/17661499

#SPJ11

Learning Goal: The Hydrogen Spectrum Electrons in hydrogen atoms are in the n=4 state (orbit). They can jump up to higher orbits or down to lower orbits. The numerical value of the Rydberg constant (determined from measurements of wavelengths) is R=1.097×107 m−1. Planck's constant is h=6.626×10−34 J⋅s, the speed of light in a vacuum is c=3×108 m/s. What is the LONGEST EMITTED wavelength? Express your answer in nanometers (nm),1 nm=10−9 m. Keep 1 digit after the decimal point. emitted λlongest ​= nm Part B What is the energy of the Emitted photon with the LONGEST wavelength? The photon energy should always be reported as positive. Express your answer in eV,1eV=1.6⋆10−19 J. Keep 4 digits after the decimal point. What is the SHORTEST ABSORBED wavelength? Express your answer in nanometers (nm),1 nm=10−9 m. Keep 1 digit after the decimal point.

Answers

Part A: To find the longest emitted wavelength, we will use the formula:1/λ = R [ (1/n12) - (1/n22) ]Where, R = Rydberg constantn1 = 4n2 = ∞ (for longest wavelength) Substituting the values,1/λ = (1.097 × 107 m⁻¹) [ (1/42) - (1/∞2) ]On solving,λ = 820.4 nm.

Therefore, the longest emitted wavelength is 820.4 nm. Part Bathed energy of the emitted photon with the longest wavelength can be found using the formulae = hoc/λ Where, h = Planck's constant = Speed of lightλ = Longest emitted wavelength Substituting the values = (6.626 × 10⁻³⁴ J s) (3 × 10⁸ m/s) / (820.4 × 10⁻⁹ m)E = 2.411 x 10⁻¹⁹ J.

Converting the energy to eV,E = 2.411 x 10⁻¹⁹ J x (1 eV / 1.6 x 10⁻¹⁹ J)E = 1.506 eV (approx.)Therefore, the energy of the emitted photon with the longest wavelength is 1.506 eV.

To know more about energy visit:

https://brainly.com/question/1932868

#SPJ11

A man is pulling a box with a rope attached to it which is making an angle of 60° with the horizontal surface. If the force applied by the man is 3.8 N and the box is displaced by 7.1 m along the horizontal surface while frictional force is 1.1 N, find the net work done on the box. Answer: Choose... Check

Answers

The net work done on the box is 21.225 Joules. Displacement is the magnitude of the displacement along the horizontal surface (7.1 m).

Work = Force * Displacement * cos(theta)

Force is the magnitude of the force applied (3.8 N).

Displacement is the magnitude of the displacement along the horizontal surface (7.1 m).

theta is the angle between the force vector and the displacement vector (60°).

Work_applied = 3.8 N * 7.1 m * cos(60°)

To calculate the work done against friction, we use the formula:

Work_friction = Force_friction * Displacement * cos(180°)

Since the frictional force acts opposite to the direction of motion, we take the cosine of 180°.

Work_friction = 1.1 N * 7.1 m * cos(180°)

Net work = Work_applied - Work_friction

Net work = (3.8 N * 7.1 m * cos(60°)) - (1.1 N * 7.1 m * cos(180°))

cos(60°) = 0.5

cos(180°) = -1

Net work = (3.8 N * 7.1 m * 0.5) - (1.1 N * 7.1 m * -1)

= 13.415 J + 7.81 J

= 21.225 J

Therefore, the net work done on the box is 21.225 Joules.

Learn more about work done here : brainly.com/question/32263955
#SPJ11

An open railroad car of mass 2690 kg is coasting with an initial speed of 15.9 m/s on a frictionless, horizontal track. It is raining and water begins to accumulate in the car. After some time, it is found that the speed of the car is only 10.6 m/s. How much water (in kilograms) has accumulated in the car?

Answers

The amount of water accumulated in the car can be determined by calculating the change in momentum of the car.

Let's assume the mass of the water accumulated in the car is m kg.

The initial momentum of the car is given by:

P_initial = m_car * v_initial,

where m_car is the mass of the car and v_initial is the initial velocity of the car.

The final momentum of the car is given by:

P_final = (m_car + m) * v_final,

where v_final is the final velocity of the car.

Since the system is isolated and there are no external forces acting on the car-water system, the total momentum is conserved:

P_initial = P_final.

Substituting the values:

m_car * v_initial = (m_car + m) * v_final,

2690 kg * 15.9 m/s = (2690 kg + m) * 10.6 m/s.

Simplifying the equation:

42831 kg·m/s = (2690 kg + m) * 10.6 m/s,

42831 kg·m/s = 28514 kg·m/s + 10.6 m/s * m.

Rearranging the equation:

10.6 m/s * m = 42831 kg·m/s - 28514 kg·m/s,

10.6 m = (42831 - 28514) kg,

10.6 m = 14317 kg.

Therefore, the mass of the water accumulated in the car is 14317 kg.

To learn more about momentum click here.

brainly.com/question/24030570

#SPJ11

An alien pilot of an intergalactic spaceship is traveling at 0.87c relative to a certain galaxy, in a direction parallel to its short axis. The alien pilot determines the length of the short axis of the galaxy to be 3.0 × 10^17 km. What would the length of this axis be as measured by an observer living on a planet within the galaxy?

Answers

The length of the short axis of the galaxy as measured by an observer living on a planet within the galaxy would be approximately 4.1 × 10^17 km.

The length of the short axis of the galaxy as measured by an observer living on a planet within the galaxy would be longer than the length measured by the alien pilot due to the effects of length contraction. The formula for calculating the contracted length is,

L = L0 × √(1 - v²/c²)

where:

L = contracted length

L0 =  proper length (the length of the object when at rest)

v = relative speed between the observer and the object

c = speed of light

Given data:

L = 3.0 × 10¹⁷ km

v = 0.87c

Substuting the L and v values in the formula we get:

L = L0 × √(1 - v² / c²)

L0 = L / √(1 - v²/c² )

= (3.0 × 10¹⁷ km) / √(1 - (0.87c)²/c²)

= (3.0 × 10¹⁷km) /√(1 - 0.87²)

= 4.1 × 10¹⁷ km

Therefore, the length of the short axis of the galaxy as measured by an observer living on a planet within the galaxy would be approximately 4.1 × 10^17 km.

To learn more about length contraction:

https://brainly.com/question/17407131

#SPJ4

You are stationary and you observe a frisbee being thrown out of a car. the car is going 50 {\rm m/s} to the right. the frisbee is thrown at a speed of 15 {\rm m/s} (relative to the car) to the left. how fast do you see the frisbee fly by?

Answers

The observer would perceive the frisbee to be moving at a speed of 35 m/s to the left.

To find the speed at which you see the frisbee fly by, we need to consider the relative velocities.

The car is moving to the right at a speed of 50 m/s, and the frisbee is thrown to the left at a speed of 15 m/s relative to the car.

To find the speed at which you see the frisbee, we need to subtract the speed of the car from the speed of the frisbee.

So, the speed of the frisbee as observed by you would be 15 m/s (speed of the frisbee relative to the car) - 50 m/s (speed of the car) = -35 m/s.

The negative sign indicates that the frisbee is moving in the opposite direction to the car.

Therefore, you would see the frisbee fly by at a speed of 35 m/s to the left.

The frisbee would fly by at a speed of 35 m/s to the left.

The relative velocity between the frisbee and the observer is determined by subtracting the velocity of the car from the velocity of the frisbee. In this case, the frisbee is thrown at a speed of 15 m/s to the left relative to the car, and the car is moving at a speed of 50 m/s to the right. By subtracting the speed of the car from the speed of the frisbee, we find that the observer would see the frisbee fly by at a speed of 35 m/s to the left.

The observer would perceive the frisbee to be moving at a speed of 35 m/s to the left.

To know more about velocity visit:

brainly.com/question/30559316

#SPJ11

A coil consists of 200 turns of wire having a total resistance of 2.0. Each turn is a square of side 18 cm, and a uniform magnetic field directed perpendicular to the plane of the coil is turned on. If the field changes linearly from 0 to 0.50 T in 0.80 s, what is the magnitude of the induced emf in the coil while the field is changing? What is the magnitude of the induced current in the coil
while the field is changing?

Answers

Number of turns in the coil, N = 200, Total resistance of the coil, R = 2.0Side of the coil, a = 18 cm. Change in magnetic field, ΔB = 0.50 T, Time, t = 0.80 s, The induced emf, ε = -N (dΦ/dt). Here, Φ is the magnetic flux through the square turn of the coil.

Consider a square turn of the coil, the area of the turn = a²The magnetic flux, Φ = B A where B is the magnetic field and A is the area of the turn.By Faraday's law of electromagnetic induction,d(Φ)/dt = ε, Where ε is the emf induced in the coil. By substituting the values, we get ε = -N (dΦ/dt).On integrating both sides, we get:∫ d(Φ) = -∫ N(dB/dt) dtdΦ = -N ΔB/t.

By substituting the given values, we getdΦ/dt = -N ΔB/t = -200 × 0.50 / 0.80= -125 V. The negative sign indicates that the direction of the induced emf opposes the change in the magnetic field. Magnitude of the induced emf is 125 V.Using Ohm's law,V = IRI = V/R = 125/2 = 62.5 ATherefore, the magnitude of the induced current is 62.5 A.

Learn more about magnetic field:

brainly.com/question/14411049

#SPJ11

A puck is moving on an air hockey table. Relative to an x, y coordinate system at time t = 0s, the x components of the puck's initial velocity and acceleration are vox = +3.7 m/s and a, = +5.3 m/s2. The y components of the puck's initial velocity and acceleration are voy=+3.0 m/s and ay = -1.5 m/s². Find (a) the magnitude v and (b) the direction of the puck's velocity at a time of t = 0.50 s. Specify the direction relative to the +x axis. (a) v= (b) 8= degrees the +x axis

Answers

We are to find the magnitude v of the puck's velocity at a time of t = 0.50 s.

Given values are

vox = +3.7 m/s,

v o y=+3.0 m/s and

a, = +5.3 m/s²,

ay = -1.5 m/s²

We are to find the magnitude v of the puck's velocity at a time of

t = 0.50 s.

We know the formula to calculate the magnitude of velocity is

v = sqrt(vx^2+vy^2)

Where

v x = vox + a,

x*t

t = 0.50 s

Hence, the value of v x is

v_ x = vox + a,

x*t= 3.7 + 5.3*0.50

v_x = 6.45 m/s

Similarly,

v y = v o y + a, y*t

t = 0.50 s.

Hence, the value of v y is

v_ y = v o y + a,

y*t= 3.0 - 1.5*0.50

Vy = 2.25 m/s.

the magnitude of velocity of the puck at a time of

t = 0.50 s

is

v = sqrt(v_x^2+v_y^2)

v = sqrt (6.45^2+2.25^2)

v = sqrt (44.25) v ≈ 6.65 m/s.

To know more about magnitude visit:

https://brainly.com/question/28714281

#SPJ11

The fact that the natural world obeys some abstract conservation laws discovered by Physicists is still pretty amazing. Take Newtons cradle for example, everyone first exposed to it, is puzzled by its operation. Common sense says that when 1 ball comes flying in that the other 4 should go flying off but it does not work that way. Let's assume that all collisions are elastic for the Cradle. What 2 conservation laws would you expect would hold for the collision involved? 1) & 2) IF ball 1 comes flying in with velocity v and balls 2,3,4, & 5 were to fly away together at what velocity would they fly away as calculated from law 1) as calculated from law 2) ? 1 IF ball 1 comes flying in with velocity v , and balls 3,4 &5 were to fly away together at what velocity would they fly away as calculated from law 1) as calculated from law 2) ? IF ball i comes flying in with velocity v , and balls 4&5 were to fly away together, at what velocity would they fly away as calculated from law 1) as calculated from law 2) ? IF ball i comes flying in with velocity v , and ball 5 alone was to fly away at what velocity would it fly away as calculated from law 1) as calculated from law 2) ? Which is the only applying both laws? situation that produces a consistent result from Now what would you expect would happen if velocity v ? balls 1&2 came in together at How about if balls 1, 2, & 3 came in together with velocity v ? Play Philosopher for a moment and try to explain how it is that the natural world knows to follow these physical laws. What argument would you give to the person who says that the universe is just some random event that happened?

Answers

1) Newton's cradle, two conservation laws that would hold for the collisions involved are the conservation of momentum and the conservation of kinetic energy.

1) If ball 1 comes flying in with velocity v and balls 2, 3, 4, and 5 were to fly away together, the velocities calculated from each conservation law would be:

2) According to the conservation of momentum: The total momentum before the collision is mv, where m is the mass of ball 1. After the collision, the total momentum of balls 2, 3, 4, and 5 would also be mv, so each ball would have a velocity of v.

2) According to the conservation of kinetic energy: The total kinetic energy before the collision is 0.5mv^2. After the collision, the total kinetic energy of balls 2, 3, 4, and 5 would also be 0.5mv^2, so each ball would have a velocity of v.

Learn more about momentum here : brainly.com/question/30677308
#SPJ11

3. Suppose the critical distance for reaction of iodine with CCl4 is 2 x 10-40 m and that the diffusion coefficient of iodine atoms in CCl4 is 3 x 10ºm-/s at 25 °C. What is the maximum rate constant for the recombination of iodine atoms under these conditions and how does this compare with the experimental value of 8.2 x 109 1/(Ms)?

Answers

The maximum rate constant for the recombination of iodine atoms under the given conditions is 6.4 x 10²³ 1/(m³·s). It significantly different from the experimental value of 8.2 x 10⁹ 1/(Ms).

In order to understand the significance of these values, let's break it down step by step. The critical distance for reaction, which is the distance at which the reaction becomes probable, is 2 x [tex]10^{-40}[/tex] m. This indicates that the reaction can occur only when iodine atoms are within this range of each other.

On the other hand, the diffusion coefficient of iodine atoms in CCl4 is 3 x 10⁻⁹  m²/s at 25 °C. This coefficient quantifies the ability of iodine atoms to move and spread through the CCl4 medium.

Now, the maximum rate constant for recombination can be calculated using the formula k_max = 4πDc, where D is the diffusion coefficient and c is the concentration of iodine atoms.

Since we are not given the concentration of iodine atoms, we cannot calculate the exact value of k_max. However, we can infer that it would be on the order of magnitude of 10²³  1/(m³·s) based on the extremely small critical distance and relatively large diffusion coefficient.

Comparing this estimated value with the experimental value of

8.2 x 10⁹ 1/(Ms), we can see a significant discrepancy. The experimental value represents the actual rate constant observed in experiments, whereas the calculated value is an estimation based on the given parameters.

The difference between the two values can be attributed to various factors, such as experimental conditions, potential reaction pathways, and other influencing factors that may not have been considered in the estimation.

In summary, the maximum rate constant for the recombination of iodine atoms under the given conditions is estimated to be 6.4 x 10²³ 1/(m³·s). This value differs considerably from the experimental value of 8.2 x 10⁹ 1/(Ms), highlighting the complexity of accurately predicting reaction rates based solely on the given parameters.

Learn more about  rate constant

brainly.com/question/31742254

#SPJ11

By considering the horizontal motion in Galileo’s inclined plane experiment, why was mass, a new concept at the time, needed to be introduced, even though weight (or heaviness) had already been used and understood by people very well because ______

Answers

By considering the horizontal motion in Galileo's inclined plane experiment, the introduction of mass as a new concept was necessary, even though weight (or heaviness) was already understood by people at the time. The reason for this lies in the fundamental difference between mass and weight.

Weight is the measure of the force exerted on an object due to gravity. It depends on the gravitational field strength and the mass of the object. Weight can vary depending on the location in the universe, where the strength of gravity differs. For example, an object will weigh less on the moon compared to Earth due to the moon's weaker gravitational pull.

On the other hand, mass is a fundamental property of matter that quantifies the amount of substance or material within an object. It represents the inertia of an object, or its resistance to changes in motion. Mass remains constant regardless of the location in the universe. It is an inherent property of an object and does not change with gravitational field strength.

In Galileo's inclined plane experiment, the focus was on studying the relationship between the distance traveled and the time taken by a rolling object. By using an inclined plane, Galileo was able to separate the effect of gravity on the object from its horizontal motion. The object's weight, determined by the gravitational force, influenced its acceleration along the inclined plane.

However, in order to understand the relationship between distance and time accurately, Galileo needed a measure that remained constant throughout the experiment and was independent of gravitational field strength. This led to the introduction of mass as a new concept. Mass allowed Galileo to quantify the amount of material in the object and establish a consistent measure for studying its motion, regardless of the gravitational field in which the experiment was conducted.

Therefore, even though weight (or heaviness) was already familiar to people at the time, the introduction of mass was necessary to accurately describe and analyze the horizontal motion in Galileo's inclined plane experiment, as it provided a constant measure of the object's inertia and ensured consistent results across different gravitational environments.

To learn more about Weight visit: https://brainly.com/question/86444

#SPJ11

A pair of point charges are separated by a known distance. Suddenly a wind came through that doubled both charges, and the wind brought them twice as close together as they were previously. If the force at the start was some value F, then what is the firce after all of the changes have occured?

Answers

The force after all the changes have occurred is 16 times the initial force (F).

To determine the force after the changes have occurred, we can analyze the situation using Coulomb's law, which states that the force between two point charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

Let's denote the initial charges as q1 and q2, separated by a distance d. The initial force between them is F.

After the wind doubles both charges, their new values become 2q1 and 2q2. Additionally, the wind brings them twice as close together, so their new distance is d/2.

Using Coulomb's law, the new force, F', can be calculated as:

F' = k * (2q1) * (2q2) / [tex](d/2)^2[/tex]

Simplifying, we get:

F' = 4 * (k * q1 * q2) / [tex](d^2 / 4)[/tex]

F' = 16 * (k * q1 * q2) / [tex]d^2[/tex]

To know more about force refer to-

https://brainly.com/question/13191643

#SPJ11

The mass of a sample is 1.26 u. What is its mass in
MeV/c2?

Answers

The mass of the sample, given as 1.26 u, can be converted to its equivalent mass in MeV/c² units. One atomic mass unit (u) is equal to 931.5 MeV/c². Therefore, the mass of the sample is approximately 1174.89 MeV/c².

To convert the mass from atomic mass units (u) to MeV/c², we can use the conversion factor of 931.5 MeV/c² per atomic mass unit (u). Multiplying the given mass of 1.26 u by the conversion factor, we obtain:

1.26 u * 931.5 MeV/c² per u = 1174.89 MeV/c².

Therefore, the mass of the sample is approximately 1174.89 MeV/c². This conversion is commonly used in nuclear physics and particle physics to express masses in units that are more convenient for those fields of study.

Learn more about atomic here:

brainly.com/question/30898688

#SPJ11

In a Young’s double slit experiment the two slits are 0.042 mm apart and the screen is 2.48 m away from the slits. If the wavelength of the light used is 712 nm, then how far away from the central bright fringe will the second order bright fringe be located (in cm)?

Answers

The second-order bright fringe will be located approximately 4.13 cm away from the central bright fringe.

To determine the distance of the second-order bright fringe from the central bright fringe in a Young's double-slit experiment, we can use the formula:

y = (m * λ * L) / d

Where:

y is the distance of the bright fringe from the central fringe,

m is the order of the bright fringe (in this case, m = 2 for the second-order bright fringe),

λ is the wavelength of the light used,

L is the distance between the slits and the screen,

and d is the distance between the two slits.

Given the values:

λ = 712 nm = 712 * 10^(-9) m

L = 2.48 m

d = 0.042 mm = 0.042 * 10^(-3) m

m = 2

Substituting the values into the formula:

y = (2 * 712 * 10^(-9) * 2.48) / (0.042 * 10^(-3))

Simplifying the expression:

y = 4.13 cm

Therefore, the second-order bright fringe will be located approximately 4.13 cm away from the central bright fringe.

Learn more about Young's double-slit experiment from the given link!

https://brainly.com/question/16269360

#SPJ11

1.)Calculate the Centripetal Force for the mass of 352.5 grams
rotating at radius of 14.0cm, and at angular velocity of 4.11
rad/s/

Answers

The centripetal force for the mass of 352.5 grams rotating at a radius of 14.0 cm and an angular velocity of 4.11 rad/s is approximately 0.08244 N.

To calculate the centripetal force, we can use the formula:

F = m * r * ω²

Where:

F is the centripetal force,

m is the mass of the object,

r is the radius of the circular path,

ω is the angular velocity.

Given:

m = 352.5 grams = 0.3525 kg,

r = 14.0 cm = 0.14 m,

ω = 4.11 rad/s.

Plugging in these values into the formula:

F = 0.3525 kg * 0.14 m * (4.11 rad/s)²

Calculating the expression:

F = 0.3525 kg * 0.14 m * 16.8921 rad²/s²

F ≈ 0.08244 N

Therefore, the centripetal force for the mass of 352.5 grams rotating at a radius of 14.0 cm and an angular velocity of 4.11 rad/s is approximately 0.08244 N.

Learn more about centripetal force from this link:

https://brainly.com/question/31512710

#SPJ11

S A sample consisting of n moles of an ideal gas undergoes a reversible isobaric expansion from volume Vi to volume 3 Vi . Find the change in entropy of the gas by calculating i^ dQ / T , where dQ=nC_PdT.

Answers

The change in entropy of the gas during the reversible isobaric expansion from volume Vi to volume 3Vi is given by [tex]ΔS = n * C_P * ln(1/3).[/tex]

The change in entropy of an ideal gas during a reversible isobaric expansion can be calculated using the equation i^ dQ / T, where dQ is the heat transferred and T is the temperature. In this case, the heat transferred can be expressed as dQ = n * C_P * dT, where n is the number of moles of gas and C_P is the molar heat capacity at constant pressure.

Since the process is isobaric, the pressure remains constant throughout the expansion. The change in volume can be expressed as ΔV = 3Vi - Vi = 2Vi.

Since the process is reversible, we can assume that C_P is constant. Therefore, we have:

[tex]ΔS = ∫ (i^ dQ / T) = ∫ (n * C_P * dT / T)[/tex]

Integrating this equation gives:

[tex]ΔS = n * C_P * ln(T2/T1)[/tex]

where T1 and T2 are the initial and final temperatures, respectively.

Since we are given the initial and final volumes, we can use the ideal gas law to relate the temperatures:

T1 * Vi = T2 * (3Vi)

Simplifying this equation gives:

T2 = (1/3) * T1

Substituting this into the equation for ΔS gives:

[tex]ΔS = n * C_P * ln((1/3) * T1 / T1)[/tex]

ΔS = n * C_P * ln(1/3)

ln(1/3) is a negative value, so the change in entropy will be negative.

To know more about pressure visit:

https://brainly.com/question/30673967

#SPJ11

A 11 kg object is attached to a spring with spring constant 7 kg/s². It is also attached to a dashpot with damping constant c = 7 N-sec/m. The object is initially displaced 4 m above equilibrium and released. Find its displacement and time-varying amplitude for t > 0. y(t) = The motion in this example is O underdamped O critically damped O overdamped Consider the same setup above, but now suppose the object is under the influence of an outside force given by F(t) 15 cos(wt). = What value for w will produce the maximum possible amplitude for the steady state component of the solution? What is the maximum possible amplitude? An object with 8 kg mass is attached to a spring with constant k = 72 kg/m and subjected to an external force F(t) = 224 sin(4t). The object is initially displaced 1 meters above equilibrium and given an upward velocity of 5 m/s. Find its displacement for t > 0, with y(t) measured positive upwards. = y(t) =

Answers

The displacement equation for t > 0 without the external force is:

x(t) = 2.8 * e^(-1.5 * t) + 1.2 * e^(-0.5714 * t)

The motion in this example is overdamped.

The value of w that produces the maximum possible amplitude for the steady-state component of the 1095 solution is 28.

The maximum possible amplitude is approximately 0.00126

To analyze the system, we can use the equation of motion for a damped harmonic oscillator:

m * x''(t) + c * x'(t) + k * x(t) = F(t)

Where:

m is the mass of the object (14 kg)

x(t) is the displacement of the object from the equilibrium position at time t

c is the damping constant (5 N-sec/m)

k is the spring constant (20 kg/s²)

F(t) is the external force acting on the object

First, let's find the displacement and time-varying amplitude for t > 0 without the external force (F(t) = 0).

The characteristic equation for the damped harmonic oscillator is given by:

m * s² + c * s + k = 0

Substituting the given values, we have:

14 * s² + 5 * s + 20 = 0

Solving this quadratic equation, we find two roots for s:

s₁ = -1.5

s₂ = -0.5714

Since both roots are negative, the motion in this example is overdamped.

The general solution for the overdamped case is:

x(t) = C₁ * e^(s₁ * t) + C₂ * e^(s₂ * t)

To find the constants C₁ and C₂, we can use the initial conditions: x(0) = 4 and x'(0) = 0.

x(0) = C₁ + C₂ = 4 ... (1)

x'(0) = s₁ * C₁ + s₂ * C₂ = 0 ... (2)

Solving equations (1) and (2), we find:

C₁ = 2.8

C₂ = 1.2

Therefore, the displacement equation for t > 0 is:

x(t) = 2.8 * e^(-1.5 * t) + 1.2 * e^(-0.5714 * t)

Now, let's consider the case where the object is under the influence of an outside force given by F(t) = 3 * cos(wt).

To find the value of w that produces the maximum possible amplitude for the steady-state component of the 1095 solution, we need to find the resonant frequency.

The resonant frequency occurs when the external force frequency matches the natural frequency of the system. In this case, the natural frequency is given by:

ωn = √(k / m)

Substituting the values, we have:

ωn = √(20 / 14) ≈ 1.1832 rad/s

To find the maximum possible amplitude, we need to find the steady-state component of the 1095 solution. We can write the particular solution as:

xₚ(t) = A * cos(1095t - Φ)

Substituting this into the equation of motion, we get:

(-1095² * A * cos(1095t - Φ)) + (5 * 1095 * A * sin(1095t - Φ)) + (20 * A * cos(1095t - Φ)) = 3 * cos(wt)

To maximize the amplitude, the left side should have a maximum value of 3. This occurs when the cosine term has a phase shift of 0 or π. Since we have the equation in the form "cosine + sine," the maximum amplitude occurs when the cosine term has a phase shift of 0.

Thus, we have:

-1095² * A + 20 * A = 3

Simplifying:

-1095² * A + 20 * A - 3 = 0

Solving this quadratic equation for A, we find:

A ≈ 0.00126

Therefore, the maximum possible amplitude is approximately 0.00126.

The completed question is given as,

A 14 kg object is attached to a spring with spring constant 20 kg/s2. It is also attached to a dashpot with damping constant c = 5 N-sec/m. The object is initially displaced 4 m above equilibrium and released. Find its displacement and time-varying amplitude for t > 0. 475 sin 1095 t 28 y(t) 4 cos 1095 t 28 + 219 The motion in this example is O overdamped underdamped O critically damped Consider the same setup above, but now suppose the object is under the influence of an outside force given by F(t) = 3 cos(wt). What value for w will produce the maximum possible amplitude for the steady state component of the 1095 solution? Х 28 What is the maximum possible amplitude?

Learn more about amplitude from the link given below.

https://brainly.com/question/9525052

#SPJ4

Block 1 and Block 2 with equal mass m are connected by a massless spring with a relaxedstate length and spring constant . The blocks are initially at relaxed state and then, a constant force is applied to Block 1 in the direction from Block 1 to Block 2. Find the positions x1() and x2() as functions of the time .

Answers

The initial conditions are given, you can use numerical methods or techniques such as the Runge-Kutta method to solve the system and obtain the positions x1(t) and x2(t) as functions of time.

To find the positions x1(t) and x2(t) of Block 1 and Block 2 as functions of time, we need to solve the equations of motion for the system.

Let's denote the displacement of Block 1 from its equilibrium position as x1(t) and the displacement of Block 2 from its equilibrium position as x2(t). The positive direction is taken from Block 1 to Block 2.

Using Newton's second law, we can write the equations of motion for the two blocks:

For Block 1:

m * x1''(t) = -k * (x1(t) - x2(t))

For Block 2:

m * x2''(t) = k * (x1(t) - x2(t))

where m is the mass of each block and k is the spring constant.

These second-order ordinary differential equations can be rewritten as a system of first-order differential equations by introducing new variables:

Let v1(t) = x1'(t) be the velocity of Block 1,

and v2(t) = x2'(t) be the velocity of Block 2.

Now, the system of differential equations becomes:

For Block 1:

x1'(t) = v1(t)

m * v1'(t) = -k * (x1(t) - x2(t))

For Block 2:

x2'(t) = v2(t)

m * v2'(t) = k * (x1(t) - x2(t))

These are four first-order differential equations.

To solve this system of equations, we need to specify the initial conditions, i.e., the initial positions x1(0) and x2(0), and the initial velocities v1(0) and v2(0).

Once the initial conditions are given, you can use numerical methods or techniques such as the Runge-Kutta method to solve the system and obtain the positions x1(t) and x2(t) as functions of time.

Please note that the solution will depend on the specific values of the mass m, spring constant k, and initial conditions provided.

To know more about techniques refer here:

https://brainly.com/question/31591173#

#SPJ11

What is the change in entropy of 2.50 m 3 of water at 0 ∘ C when it is frozen to ice at 0 ∘ C?

Answers

The change in entropy of 2.50 m³ of water at 0°C when it is frozen to ice at 0°C is zero.

1. Entropy is a thermodynamic property that measures the degree of disorder or randomness in a system.

2. When water freezes to ice at 0°C, it undergoes a phase transition from a liquid state to a solid state.

3. During this phase transition, the arrangement of water molecules changes from a more disordered state (liquid) to a more ordered state (solid).

4. In general, the entropy of a substance decreases when it undergoes a phase transition from a higher entropy state to a lower entropy state.

5. However, at the freezing point of a substance, such as water at 0°C, the change in entropy is zero.

6. This is because the entropy change during the phase transition from liquid water to solid ice at 0°C is exactly offset by the decrease in entropy associated with the formation of the ordered ice crystal structure.

7. Therefore, the change in entropy of 2.50 m³ of water at 0°C when it is frozen to ice at 0°C is zero.

To know more about entropy click here:

https://brainly.com/question/20166134

#SPJ11

Consider the vectors A=(-11.5, 7.6) and B=(9.6, -9.9), such that A - B + 5.3C=0. What is the x component of C?

Answers

Therefore, the x-component of C is approximately 3.98.

What is the relationship between velocity and acceleration in uniform circular motion?

To solve the equation A - B + 5.3C = 0, we need to equate the x-components and y-components separately.

The x-component equation is:

A_x - B_x + 5.3C_x = 0

Substituting the given values of A and B:

(-11.5) - (9.6) + 5.3C_x = 0

Simplifying the equation:

-21.1 + 5.3C_x = 0

To find the value of C_x, we can isolate it:

5.3C_x = 21.1

Dividing both sides by 5.3:

C_x = 21.1 / 5.3

Calculating the value:

C_x ≈ 3.98

Learn more about x-component

brainly.com/question/29030586

#SPJ11

A force F = 50N is pushing horizontally to the right on block A. Block A and B are touching and arranged left to right on a flat table. The same friction force f acts back on both blocks and stops things from accelerating.

Answers

(a) The friction force f has a magnitude of 50 N.

(b) The force acting on block B from block A also has a magnitude of 50 N.

(c) Force on block B from block A is equal to pushing force F = 50 N due to equal masses and inertia.

To solve this problem, we need to consider the forces acting on each block and apply Newton's second law of motion.

(a) To determine the magnitude of the friction force f, we need to consider the equilibrium condition where the blocks do not accelerate. Since the force F = 50 N is pushing horizontally to the right on block A, the friction force f acts in the opposite direction.

Therefore, the magnitude of the friction force f is also 50 N.

(b) The force acting on block B from block A can be determined by considering the interaction between the two blocks. Since the blocks are touching and there is a friction force f acting between them, the force exerted by block A on block B is equal in magnitude but opposite in direction to the friction force f.

Hence, the magnitude of the force acting on block B from block A is also 50 N.

(c) The force on block B from block A being equal to the pushing force F = 50 N is consistent with the concept of inertia. Inertia refers to an object's resistance to changes in its motion. In this case, since block B is in contact with block A and they are both at rest, the force required to keep block B stationary (the friction force f) is equal to the force applied to block A (the pushing force F). This is because the force needed to move or stop an object is proportional to its mass.

Therefore, since the two blocks have the same mass and are at rest, the force required to stop block B (friction force f) is equal to the applied force on block A (pushing force F).

The complete question should be:

A force F = 50 N is pushing horizontally to the right on block A. Block A and B are touching and arranged left to right on a flat table. The same friction force f acts back on both blocks and stops things from accelerating.

(a) What is the magnitude of this friction force f in Newtons?

(b) What is the magnitude of the force (in Newtons) that acts on block B from block A?

(c) Does this make sense that the force on block B from block A is greater than, less than, or equal to the pushing force F = 50 N? Relate your answer to the concept of inertia: that is that heavy things are hard to move; heavy things are hard to stop; inertia is now measured by what we call mass.

To learn more about Inertia, Visit:

https://brainly.com/question/1140505

#SPJ11

Comet C/1995 O1 (Hale-Bopp) has a gas production rate for
H2O of Q = 8.35 x 1030 molecules per second
at 1.5 AU. Estimate the radius of its nucleus in km. (Use 3 sig.
figs.)

Answers

The estimated radius of the nucleus of Comet C/1995 O1 (Hale-Bopp) is approximately 12.58 kilometers.

First, let's convert the gas production rate from molecules per second to moles per second. The Avogadro's number states that 1 mole of any substance contains approximately 6.022 x 10^23 molecules. Therefore, the gas production rate can be calculated as follows:

Q = (8.35 x 10^30 molecules/second) / (6.022 x 10^23 molecules/mole)

 ≈ 1.384 x 10^7 moles/second

Next, we can use the ideal gas law to estimate the volume of gas produced per second. The ideal gas law states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. Assuming a constant temperature and pressure, we can simplify the equation to V = nRT/P.

Assuming the temperature is around 200 Kelvin and a pressure of approximately 10^-10 pascal, the equation becomes:

V = (1.384 x 10^7 moles/second) * (8.314 J/(mol*K) * 200 K) / (10^-10 Pa)

 ≈ 2.788 x 10^6 m^3/second

Now, we need to assume a density for the nucleus. Assuming a density of approximately 500 kg/m^3 (typical for cometary nuclei), we can calculate the mass of the gas produced per second:

Mass = Volume * Density

    = (2.788 x 10^6 m^3/second) * (500 kg/m^3)

    ≈ 1.394 x 10^9 kg/second

Finally, we can estimate the radius of the nucleus using the mass of the gas produced per second. Assuming the nucleus is spherical, we can use the formula for the volume of a sphere:

V = (4/3) * π * r^3

Rearranging the equation to solve for the radius (r), we get:

r = [(3V) / (4π)]^(1/3)

  = [(3 * (1.394 x 10^9 kg/second)) / (4 * π)]^(1/3)

  ≈ 1.258 x 10^4 meters

Converting this to kilometers, the estimated radius of the nucleus of Comet C/1995 O1 (Hale-Bopp) is approximately 12.58 kilometers.

To learn more about gas production rate refer here:

https://brainly.com/question/26373803

#SPJ11

Conducting an experiment with a 534-nm wavelength green laser, a researcher notices a slight shift in the image generated and suspects the laser is unstable and switching between two closely spaced wavelengths, a phenomenon known as mode-hopping. To determine if this is true, she decides to shine the laser on a double-slit apparatus and look for changes in the pattern. Measuring to the first bright fringe on a screen 0.500 m away and using a slit separation of 80.0 um, she measures a distance of 3.34 mm from the central maximum. When the laser shifts, so does the pattern, and she then measures the same fringe spacing to be 3.44 mm. What wavelength 1 is the laser "hopping" to? is nm

Answers

The laser is "hopping" to a wavelength of approximately 16.1 nm.

To determine the wavelength the laser is "hopping" to, we can use the formula for the fringe spacing in a double-slit interference pattern:

Δy = (λL) / d

where Δy is the fringe spacing, λ is the wavelength, L is the distance from the double-slit apparatus to the screen, and d is the slit separation.

Δy₁ = 3.34 mm = 3.34 x [tex]10^(-3)[/tex] m

Δy₂ = 3.44 mm = 3.44 x [tex]10^(-3)[/tex]m

L = 0.500 m

d = 80.0 μm = 80.0 x [tex]10^(-6)[/tex] m

Let's calculate the wavelength for the first measurement:

λ₁ = (Δy₁ * d) / L

λ₁ =[tex](3.34 x 10^(-3) m * 80.0 x 10^(-6) m)[/tex] / 0.500 m

λ₁ ≈ [tex]5.343 x 10^(-7)[/tex] m = 534.3 nm

Now, let's calculate the wavelength for the second measurement:

λ₂ = (Δy₂ * d) / L

[tex]λ₂ = (3.44 x 10^(-3) m * 80.0 x 10^(-6) m) / 0.500 m\\λ₂ ≈ 5.504 x 10^(-7) m = 550.4 nm[/tex]

The difference in wavelength between the two measurements is:

Δλ = |λ₂ - λ₁|

Δλ ≈ |550.4 nm - 534.3 nm| ≈ 16.1 nm

To know more about wavelength refer to-

https://brainly.com/question/31143857

#SPJ11

In a proton accelerator used in elementary particle physics experiments, the trajectories of protons are controlled by bending magnets that produce a
magnetic field of 2.50 I
What is the magnetic-field energy in a 12.0 cm^ volume of space where B = 2.50 T ?

Answers

Magnetic-field energy in a 12.0 cm³ volume of space where B = 2.50 T is 1.47 × 10⁻¹⁰ J.

In a proton accelerator used in elementary particle physics experiments, the trajectories of protons are controlled by bending magnets that produce a magnetic field of 2.50 T. We have to find the magnetic-field energy in a 12.0 cm³ volume of space where B = 2.50 T.

We know that the energy density, u is given as u = (1/2) μ B², where μ is the magnetic permeability of free space. The magnetic-field energy, U is given as U = u × V.

The magnetic permeability of free space is μ = 4π × 10⁻⁷ T·m/A.

Thus, U = (1/2) μ B² × V = (1/2) × 4π × 10⁻⁷ × (2.50)² × 12.0 × 10⁻⁶ = 1.47 × 10⁻¹⁰ J.

Therefore, the magnetic-field energy in a 12.0 cm³ volume of space where B = 2.50 T is 1.47 × 10⁻¹⁰ J.

Learn more about magnetic field here:

https://brainly.com/question/30331791

#SPJ11

A circular coil of diameter 14.0 cm, with 43 turns is in a magnetic field of 0.600 Tesla. Initially the field is perpendicular to the plane of the coil. If the coil is rotated in 17.0 ms so its plane is parallel to the field, find the magnitude of the average induced emf in volts.
A 110-turn coil of resistance 3.60 ohms and cross sectional area 17.5 cm² lies in the plane of the page. An external magnetic field of 0.900 T is directed out of the plane of the page. The external I decreases to 0.300 T in 11.7 milliseconds. What is the magnitude of the induced current (in Amperes) in the coil?

Answers

The magnitude of the average induced emf in volts is 0.54V and the magnitude of the induced current (in Amperes) in the coil is 2.49 A

Diameter (d) = 14.0 cm, No of turns (N) = 43, Magnetic field (B) = 0.600 TeslaTime (t) = 17.0 ms

Firstly, calculate the area of the circular coil using the given diameter.

Area of the coil (A) = πr²where r = d/2= 7 cm

Therefore, A = π(7 cm)²= 153.94 cm², Number of turns per unit area isN/A = 43/153.94 = 0.279 turns/cm²

When the coil is perpendicular to the magnetic field, the flux linked with the coil is zero. When it is parallel, the flux is maximum.

The magnetic flux linkage change is given byΔΦ = BAN ΔΦ = B(43/A)

ΔΦ = (0.6 Tesla)(43/153.94 cm²)

ΔΦ = 0.0945 Wb

Therefore, the average induced emf (ε) is ε = ΔΦ/Δt

ε = 0.0945 Wb/ (17.0 × 10-3 s)

ε = 5.56 V

Therefore, the magnitude of the average induced emf in volts is 0.54V.

The solution to the second part of the question is as follows:

Given:

Number of turns (N) = 110, Resistance (R) = 3.60 ohms, Cross-sectional area (A) = 17.5 cm,

²Initial magnetic field (B1) = 0.900 T

Final magnetic field (B2) = 0.300 T

Time (t) = 11.7 ms

The induced emf (ε) can be given by

ε = -N dΦ/dt, where dΦ/dt is the rate of change of flux linkage Φ = BA

Φ = (0.9 T)(17.5 × 10-4 m²)

Φ = 1.575 × 10-4 Wb

For the final magnetic field, Φ = BA

Φ = (0.3 T)(17.5 × 10-4 m²)

Φ = 5.25 × 10-5 Wb

Therefore, ΔΦ = 1.05 × 10-4 Wb

Δt = 11.7 × 10-3 s

ε = ΔΦ/Δt

ε = (1.05 × 10-4 Wb)/(11.7 × 10-3 s)

ε = - 8.97 V

Therefore, the magnitude of the induced current (in Amperes) in the coil is 2.49 A (approx).

To learn about magnetic fields here:

https://brainly.com/question/14411049

#SPJ11

Calculate the number of photons emitted per second from one square meter of the sun's surface (assume that it radiates like a black-body) in the wavelength range from 1038 nm to 1038.01 nm. Assume the surface temperature is 5500 K Your answer _______________ photons/m²/s

Answers

The number of photons emitted per second from one square meter of the Sun's surface in the specified wavelength range is approximately 4.59 x 10^13 photons/m²/s.

To calculate the number of photons emitted per second from one sq meter of the Sun's surface in the given wavelength range, we can use Planck's law and integrate the spectral radiance over the specified range.

Assuming the Sun radiates like a black body with a surface temperature of 5500 K, the number of photons emitted per second from one square meter of the Sun's surface in the wavelength range from 1038 nm to 1038.01 nm is approximately 4.59 x 10^13 photons/m²/s.

Planck's law describes the spectral radiance (Bλ) of a black body at a given wavelength (λ) and temperature (T). It can be expressed as Bλ = (2hc²/λ⁵) / (e^(hc/λkT) - 1), where h is Planck's constant, c is the speed of light, and k is Boltzmann's constant.

To calculate the number of photons emitted per second (N) from one square meter of the Sun's surface in the given wavelength range, we can integrate the spectral radiance over the range and divide by the energy of each photon (E = hc/λ).

First, we calculate the spectral radiance at the given temperature and wavelength range. Using the provided values, we find Bλ(λ = 1038 nm) = 6.37 x 10^13 W·m⁻²·sr⁻¹·nm⁻¹ and Bλ(λ = 1038.01 nm) = 6.31 x 10^13 W·m⁻²·sr⁻¹·nm⁻¹. Next, we integrate the spectral radiance over the range by taking the average of the two values and multiplying it by the wavelength difference (∆λ = 0.01 nm).

The average spectral radiance = (Bλ(λ = 1038 nm) + Bλ(λ = 1038.01 nm))/2 = 6.34 x 10^13 W·m⁻²·sr⁻¹·nm⁻¹.

Finally, we calculate the number of photons emitted per second:

N = (average spectral radiance) * (∆λ) / E = (6.34 x 10^13 W·m⁻²·sr⁻¹·nm⁻¹) * (0.01 nm) / (hc/λ) = 4.59 x 10^13 photons/m²/s.

Therefore, the number of photons emitted per second from one square meter of the Sun's surface in the specified wavelength range is approximately 4.59 x 10^13 photons/m²/s.

Learn more about Planck's law here:

brainly.com/question/31832964

#SPJ11

i need hepl 5min please Two parallel plates have equal charges of opposite sign. When the space between the plates is evacuated, the electric field is E = 32 MicroV/m. When the space is filled with a dielectric, the electric field is E= 25 MicroV/m. a) What is the charge density on each surface of the dielectric? b) What is the dielectric constant?

Answers

The charge density on each surface of the dielectric and the dielectric constant is [tex]2.215\times10^{-16} C/m^2[/tex] and 1.28 respectively.

In this problem, we are given the electric field values between parallel plates with and without a dielectric material. We need to calculate the charge density on each surface of the dielectric and determine the dielectric constant.

a) To find the charge density on each surface of the dielectric, we can use the equation:

[tex]E = \frac{\sigma}{\epsilon_0}[/tex]

where E is the electric field, σ is the charge density, and ε₀ is the permittivity of free space. Rearranging the equation, we have:

[tex]\sigma = E \times \epsilon_0[/tex]

Substituting the given values, we get:

[tex]\sigma = 25 \mu V/m \times 8.85 \times 10^{-12} C^2/(Nm^2)\\\sigma=2.2125\times10^{-16} C/m^2[/tex]

b) To find the dielectric constant, we can use the relation:

[tex]E = \frac{E_0 }{\kappa}[/tex]

where E₀ is the electric field without the dielectric.

We are given E = 25 μV/m and E₀ = 32 μV/m. Substituting these values into the equation and solving for [tex]\kappa[/tex], we can find the dielectric constant.

[tex]\kappa=\frac{32\mu V/m}{25\mu V/m}\\\kappa=1.28[/tex]

Therefore, the charge density on each surface of the dielectric and the dielectric constant is [tex]2.215\times10^{-16} C/m^2[/tex] and 1.28 respectively.

Learn more about dielectric here: brainly.com/question/16447786

#SPJ11

Other Questions
Problem 13.52 The 50.000 kg space shuttle used to fly in a 250-km-high circular orbit. It needed to reach a 610-km-high circular orbit to service the Hubble Space Telescope Part A How much energy was required to boost it to the new orbit? Express your answer to two significant figures and include the appropriate units. HA 4 0 ? w Rafael is the CEO of a medum-sized organization. He and his direct reports make up the for______________ his organtzation. The average CEO reaches his or her top level of performance ______years after being hired. Drew is a wild turkey-he constantly challenges his CeO's ideas and offers ideas that are different from the CEO's during team_________ discussions. Drew's presence is Ulkely to make his CEO's team effective. PART C: Short essay questions 1. Define recruitment and briefly explain the potential costs of bad recruitment decision. A physician orders ampicillin 0.2 g/kg/d IV to be delivered in divided doses q6h. The patient weighs 110 lb. How many mg are needed per dose? How many grams of ampicillin would the patient receive" Nonconstant Dividend Growth Valuation A company currenty pays a dividend of $3 pec share (00=53). th is estimated that the compary's dividend will grow at a rate of 25% per year for the next 2 years and then at a constant rate of 0% theceafter. The company's stock has a beta of 1.3, the risk-free rate is 6.5%, and the market risk, premium is 1.5%. What is your estimate of the stock's current price? De not round intermediate calculations. Round your answor to the neacest cent. Solve the following Higher order Differential Equation y^(4) y +2y=0 Wage Determination Main Idea: Most occupations have a wage rate, a standard amount of pay given for work performed. Wage rates usually differ from one occupation to the next, and sometimes even within the same occupation. 1. What are the four broad categories of labor described, in order from lowest to highest paying? 2. What is the market theory of wage determination? 3. How can one union worker recelve higher wages than another union worker with simillar skills who performs the same services? 4. According to signaling theory, what types of qualifications indicate superior knowledge or abllity? The output period of a frequency division circuit that contains 4 flip-flops with an input clock frequency of 80 MHz is: a) 25 ns b) 50 ns c) 125 ns d) 200 ns e) None what is the history of dental assistant by summarizingthe chapter one of Modern Dental Assistant text. As an object falls freely downward with negligible air resistance, its (b) acceleration increases (a) velocity increases neither a nor b both \( a \) and \( b \) Government policy, whether National, Provincial or Local, has important implications. The South African Government will have to introduce legislation to provide policy guidelines on how they intend addressing developmental problems. Policies may result as government attempt to deal with identified problems. Normally, such problems are often indicated by/through certain sources (entities), often referred to as the origins of policy.By using appropriate examples to illustrate your understanding, and critically discuss the role of the-Political-executive and-Commissions/committees of enquiry. (Including the advantages and disadvantages) as origins of policy. And Reference the answers A 6.0-m uniform board is supported by two sawhorses 4.0 m aprat as shown. A 32 kg child walks on the board to 1.4 m beyond the right support when the board starts to tip, that is, the board is off the left support. Find the mass of the board. (Hint: the weight of the board can be considered to be applied at its center of gravity.) Describe a time when you used distributive or integrativenegotiation effectively. What worked well? Part A- Answer in one sentence or word where appropriate. Marks (10x1=10)1. Which of the two provinces were proposed in the partition of Bengal plan in 1905?2. Who was the Governor General of India during the Partition of Bengal 1905?3. From Dhaka who was the member of Nawab Family in Dhaka proposed the formation of Muslim League?4. What is the meaning of Diarchy in Indian Act 1919?5. Who led the Sepoi Mutiny?6. What is the meaning separate electorate proposed by Muslim League and endorsed by the Indian Act 1919?7. How was the voting rights for the Indian people included in the Indian Act-1919.8. What was the proposal in the Lahore Resolution in 1940?9. What was the main objective of the British Divide and Rule Policy in Indian Sub-continent?10. Who was the Mughal last King in Indian subcontinent. X gym brand extension in the Korean marketThis is just an article mentioning all nike's products and services and what they focus on. After reading about it, I think X brand extension into health centers (gyms) is more justifiable since it directly relates to what they are already working on. Therefore their new business can be supported and benefit from the previous technology ( smart devices, sports types of equipment, professionals, AI, and machine learning)Plus all of their existing products and services can be used in new health centers ( gym ) so it actually boosts their original business as well. Discuss prospective threats and challenges what will she face with new X gyms ) Discuss poor EMR/HER implementations in healthcare organizations (5marks)B) Discuss potential barriers that might hinder the adoption of EHR/EMRs in ahealthcare organization C) Problems with the actual EHR/EMRs D) What are some factors that might affect EHR/EMRs E) With some of the problems provided in the previous questions youanswered, give examples of how those problems can be changed intosolutions and how you would implement that change within healthcare (5marks) Which of the following have been corrupted by the Food Industry?a. Medical professionals (ex: doctors, registered dietitians)b. Governmental guidelines (ex: have three servings of dairy a day, eat the rainbow, etc)c. Policiesd. All of the above 1. What makes a spaceship orbit the earth?a. The velocity makes a spaceship orbit the earth.b. The gravitational force makes the spaceship to travel in a circular orbit.c. The thrust makes a spaceship rotates around the earth.d. Spaceship cannot orbit the earth because of the gravity.2. What is the difference between evaporating and boiling?a. Boiling is not evaporating because the temperature of boiling is higher than that of evaporating.b. Evaporating happens only on the top surface of liquid while boiling happens both on top surface of liquid and within the liquid.c. Boiling is one kind of evaporating, so they are the same for water.d. Evaporating is fast than boiling.3. Why do some clothes cling while others repel?a. Like charges attract and opposite charges repel.b. Like charges repel and opposite charges attract.c. Charges attach at larger distance and reply when they are close.d. none of the above Development costs of a new product are estimated to be $100,000 per year for five years. Annual profits from the sale of the product, estimated to be $75,000, will begin in the fourth year and each year they will increase by ($10,000 + $40,000) through year 15. Compute the present value using an interest rate of 10%. Draw a cashflow diagram. The electric field of an electromagnetic wave traveling in vacuum is described by thefollowing wave function:E = 5 cos[kx - (6.00 10^9)t]jwhere k is the wavenumber in rad/m, x is in m, r is in s. Find the following quantities:a. amplitudeb. frequencyc. wavelengthd. the direction of the travel of the wavee. the associated magnetic field wave