A 130−kg block slides towards a stationary 75-kg block at a speed of 8 m/s. If the blocks stick together after the collision, what is their common speed after the collision, in m/s ? Round to the nearest hundredth (0.01). Question 16 0 pts Enter your rationale and equations used for the previous answer here:

Answers

Answer 1

In order to find the common speed after collision of the two blocks, the law of conservation of momentum should be applied.

Conservation of momentum states that the momentum of an isolated system remains constant if no external forces act on it.

The equation for conservation of momentum is given as, m1v1 + m2v2 = (m1 + m2)v For two objects, m1v1 + m2v2 = (m1 + m2)v After the collision, the two blocks stick together and move at a common velocity.

Therefore, the final velocity (v) of the two-block system is the same and can be found using the equation. Initial momentum = Final momentum(mass of first block x velocity of first block) + (mass of second block x velocity of second block) = (mass of first block + mass of second block) x (final velocity)130 × 8 + 75 × 0 = 205 × v

Therefore, v = (130 x 8 + 75 x 0) / 205= 5.02 m/s Hence, the common speed of the two blocks after the collision is 5.02 m/s.

To know more about speed visit:

https://brainly.com/question/17661499

#SPJ11


Related Questions

The International Space Station, which has a mass of 4.26*10^ 5 ^ 5 kg orbits 251 miles above the Earth's surface and completes one orbit every 94.0 minutes. What is the kinetic energy of the International Space Station in units of GJ (10^ 9 Joules)? (Note: don't forget to take into account the radiús of the Earth: f - \ Earth\ =3959 miles)

Answers

The kinetic energy of the International Space Station is approximately 1.08 * 10^12 GJ.

To calculate the kinetic energy of the International Space Station, we need to determine its velocity first. We can find the velocity using the orbital period and the radius of the orbit.

Given:

Mass of the International Space Station (m) = 4.26 * 10^5^5 kgOrbital period (T) = 94.0 minutesRadius of the Earth (r_Earth) = 3959 milesAltitude of the orbit (h) = 251 miles

First, let's convert the given values to the appropriate units:

Orbital period (T) = 94.0 minutes = 94.0 * 60 seconds = 5640 seconds

Radius of the Earth (r_Earth) = 3959 miles = 3959 * 1.60934 km = 6371 km

Altitude of the orbit (h) = 251 miles = 251 * 1.60934 km = 404 km

To calculate the velocity of the International Space Station, we can use the formula:

Velocity (v) = 2πr / T

Where:

π is the mathematical constant pi,r is the sum of the radius of the Earth and the altitude of the orbit,T is the orbital period.

Let's substitute the given values into the formula:

Velocity (v) = 2π(6371 + 404) / 5640

Now we can calculate the velocity:

Velocity (v) ≈ 7.661 km/s

To find the kinetic energy (KE) of the International Space Station, we can use the formula:

Kinetic Energy (KE) = (1/2)mv^2

Let's substitute the mass and velocity values into the formula:

Kinetic Energy (KE) = (1/2) * (4.26 * 10^5^5) * (7.661)^2

Now we can calculate the kinetic energy:

Kinetic Energy (KE) ≈ 1.08 * 10^21 J

Finally, to express the kinetic energy in gigajoules (GJ), we divide by 10^9:

Kinetic Energy (KE) ≈ 1.08 * 10^12 GJ

Therefore, the kinetic energy of the International Space Station is approximately 1.08 * 10^12 GJ.

To learn more about International Space Station, Visit:

https://brainly.com/question/30211597

#SPJ11

What equations explain the energy conservation relationship? How
would you describe conservation of energy using both euqations and
words? Explain how this is related to the work-energy theorem.

Answers

After considering the given data we conclude that the energy conservation relationship can be explained using the work energy theorem and principle of conservation of energy.


The work-energy theorem: This theorem projects that the work done by all forces occurring on a particle is equivalent to the change in the particle's kinetic energy.
Mathematically, it can be expressed as
[tex]W_{net} = \Delta K,[/tex]
Here
[tex]W_{net}[/tex] = net work done on the particle, and [tex]\Delta K[/tex] is the change in its kinetic energy.
The principle of conservation of energy:  Conservation of energy means that the total amount of energy in a system remains constant over time. This means that energy cannot be created or destroyed, only transformed from one form to another.
The work-energy theorem is related to the conservation of energy because it states that the net work done on an object is equal to the change in its kinetic energy. This means that the work done on an object can be used to change its kinetic energy, but the total amount of energy in the system remains constant.

The work-energy theorem is related to the conservation of energy because it is a specific application of the principle of conservation of energy. The work done by all forces acting on a particle can change its kinetic energy, but the total energy in the system remains constant. This is because the work done by one force is always equal and opposite to the work done by another force, so the net work done on the particle is zero.

Therefore, the work done by all forces acting on the particle can only change its kinetic energy, but it cannot create or destroy energy. The conservation of energy and the work-energy theorem are related to the work done on an object. When work is done on an object, energy is transferred to or from the object, which can change its kinetic energy.

The work-energy theorem states that the net work done on an object is equal to the change in its kinetic energy. This means that the work done on an object can be used to change its kinetic energy, but the total amount of energy in the system remains constant.
To learn more about work energy theorem
https://brainly.com/question/30236175
#SPJ4

Let the Entropy of an Ideal Gas is given such that Four moles of Nitrogen and One mole of Oxygen are mixed together to form Air at P = 1 atm and T = 300 K, then determine: a) The Entropy of Mixing per one mole of formed air if the two gases were intially at the Same Temperature and Pressure. b) The Entropy of Mixing per one mole of formed air if the two gases were intially at the Different Temperatures.

Answers

a) The entropy of mixing per one mole of formed air, is approximately 6.11 J/K. b) A specific value for the entropy of mixing per one mole of formed air cannot be determined

We find that the entropy of mixing per one mole of formed air is approximately 6.11 J/K. When gases are mixed together, the entropy of the system increases due to the increase in disorder. To calculate the entropy of mixing, we can use the formula:

ΔS_mix = -R * (x1 * ln(x1) + x2 * ln(x2))

where ΔS_mix is the entropy of mixing, R is the gas constant, x1 and x2 are the mole fractions of the individual gases, and ln is the natural logarithm. Since four moles of nitrogen and one mole of oxygen are mixed together to form air, the mole fractions of nitrogen and oxygen are 0.8 and 0.2, respectively. Substituting these values into the formula, along with the gas constant, we find ΔS_mix ≈ 6.11 J/K.

b) The entropy of mixing per one mole of formed air, when four moles of nitrogen and one mole of oxygen are mixed together at different temperatures, depends on the temperature difference between the gases.

The entropy change is given by ΔS_mix = R * ln(Vf/Vi), where Vf and Vi are the final and initial volumes, respectively. Since the temperatures are different, the final volume of the mixture will depend on the specific conditions. Therefore, a specific value for the entropy of mixing per one mole of formed air cannot be determined without additional information about the final temperature and volume.

Learn more about entropy here:

brainly.com/question/20166134

#SPJ11

A 6.1 g marble is fired vertically upward using a spring gun. The spring must be compressed 8.3 cm if the marble is to just reach a target 26 m above the marble's position on the compressed spring. (a) What is the change AUg in the gravitational potential energy of the marble-Earth system during the 26 m ascent? (b) What is the change AUs in the elastic potential energy of the spring during its
launch of the marble? (c) What is the spring constant of the spring?

Answers

The spring constant of the spring is 6.78 Newtons per meter.

To solve this problem, we'll calculate the change in gravitational potential energy and the change in elastic potential energy, and then determine the spring constant.

Given:

Mass of the marble (m) = 6.1 g = 0.0061 kg

Height of ascent (h) = 26 m

Compression of the spring (x) = 8.3 cm = 0.083 m

(a) Change in gravitational potential energy (ΔUg):

The change in gravitational potential energy is given by the formula:

ΔUg = m * g * h

where m is the mass, g is the acceleration due to gravity, and h is the height of ascent.

Substituting the given values:

ΔUg = 0.0061 kg * 9.8 m/s² * 26 m

Calculating this expression gives:

ΔUg ≈ 1.56 J

Therefore, the change in gravitational potential energy during the ascent is approximately 1.56 Joules.

(b) Change in elastic potential energy (ΔUs):

The change in elastic potential energy is given by the formula:

ΔUs = (1/2) * k * x² where k is the spring constant and x is the compression of the spring.

Substituting the given values:

ΔUs = (1/2) * k * (0.083 m)²

Calculating this expression gives:

ΔUs ≈ 2.72 × 10^(-3) J

Therefore, the change in elastic potential energy during the launch of the marble is approximately 2.72 × 10^(-3) Joules.

(c) Spring constant (k):

To find the spring constant, we can rearrange the formula for ΔUs:

k = (2 * ΔUs) / x²

Substituting the calculated value of ΔUs and the given value of x:

k = (2 * 2.72 × 10^(-3) J) / (0.083 m)²

Calculating this expression gives:k ≈ 6.78 N/m

Therefore, the spring constant of the spring is approximately 6.78 Newtons per meter.

Learn more about  spring constant from the given link

https://brainly.com/question/22712638

#SPJ11

Final answer:

The increase in gravitational potential energy is 1549.56 J, the change in elastic potential of the spring is also 1549.56 J, and the spring constant is approximately 449 N/m.

Explanation:

(a) The change ΔUg in the gravitational potential energy of the marble-Earth system during the 26 m ascent can be calculated using the formula ΔUg = m*g*h, where m is mass, g is the gravitational constant, and h is the height. So, ΔUg = 6.1g * 9.8 m/s² * 26m = 1549.56 J.

(b) The change ΔUs in the elastic potential energy of the spring during its launch of the marble is equivalent to the gravitational potential energy at the peak of the marble's ascent. Thus, ΔUs equals 1549.56 J.

(c) The spring constant k can be found using the formula for elastic potential energy ΔUs = 0.5kx², where x is the compression of the spring. Solving for k, we get k = 2*ΔUs/x² = 2*1549.56 J / (8.3cm)² = 449 N/m.

Learn more about Elastic and Gravitational Potential Energy here:

https://brainly.com/question/14687790

#SPJ2

Vertically polarized light of intensity lo is incident on a polarizer whose transmission axis is at an angle of 70° with the vertical. If the intensity of the transmitted light is measured to be 0.34W/m² the intensity lo of the incident light is 0.43 W/m 1.71 W/m 2.91 W/m 0.99 W/m

Answers

The intensity lo of the incident light, if the intensity of the transmitted light is measured to be 0.34W/m² is 1.050 W/m². So none of the options are correct.

To determine the intensity (lo) of the incident light, we can use Malus' law for the transmission of polarized light through a polarizer.

Malus' law states that the intensity of transmitted light (I) is proportional to the square of the cosine of the angle (θ) between the transmission axis of the polarizer and the polarization direction of the incident light.

Mathematically, Malus' law can be expressed as:

I = lo * cos²(θ)

Given that the intensity of the transmitted light (I) is measured to be 0.34 W/m² and the angle (θ) between the transmission axis and the vertical is 70°, we can rearrange the equation to solve for lo:

lo = I / cos²(θ)

Substituting the given values:

lo = 0.34 W/m² / cos²(70°)

The value of cos²(70°) as approximately 0.3236. Plugging this value into the equation:

lo = 0.34 W/m² / 0.3236

lo = 1.050 W/m²

Therefore, the intensity (lo) of the incident light is approximately 1.050 W/m².

To learn more about intensity: https://brainly.com/question/28145811

#SPJ11

A rock is thrown from the top of a cliff from a height of 7.0 m above the ground below. The
initial speed of the rock is 5.0 m/s and is thrown at an angle 30° below horizontal. (a) What is
its speed and direction just before landing? (b) How long is the rock in the air? (12.7 m/s, -
70.1°, 0.966 s)

Answers

The speed and direction just before landing are 12.7 m/s and -70.1° respectively. The time of flight of the rock is 0.966 s.

Height of the cliff, h = 7.0 m, Initial speed of the rock, u = 5.0 m/s, Angle of projection, θ = 30° below horizontal. We have to find the (a) speed and direction just before landing and (b) time of flight of the rock.

Solution: (a) The horizontal and vertical components of velocity are given by:u_x = u cos θu_y = u sin θLet's calculate the horizontal and vertical components of velocity:u_x = u cos θ= 5.0 cos (-30°) = 4.3301 m/su_y = u sin θ= 5.0 sin (-30°) = -2.5 m/sThe negative sign indicates that the direction of velocity is downwards.

Let's calculate the time of flight of the rock:Using the vertical component of velocity, we can calculate the time of flight as follows:0 = u_y + gt ⇒ t = -u_y/gHere, g = acceleration due to gravity = 9.8 m/s²t = -(-2.5) / 9.8 = 0.255 s

We know that the time of flight is double the time taken to reach the maximum height.t = 2t' ⇒ t' = t/2 = 0.255/2 = 0.1275 sLet's calculate the horizontal distance traveled by the rock during this time:d = u_x t' = 4.3301 × 0.1275 = 0.5526 mThe horizontal distance traveled by the rock is 0.5526 m.

Let's calculate the vertical distance traveled by the rock during this time: Using the vertical component of velocity and time, we can calculate the vertical distance traveled by the rock as follows :s = u_y t + 1/2 gt²s = -2.5 × 0.1275 + 1/2 × 9.8 × 0.1275²= -0.1608 m

The negative sign indicates that the displacement is downwards from the point of projection. Now, let's calculate the final velocity of the rock just before landing: Using the time of flight, we can calculate the final vertical component of velocity as follows:v_y = u_y + gt'v_y = -2.5 + 9.8 × 0.1275= -1.179 m/s

We know that the final speed of the rock is given by:v = √(v_x² + v_y²)Let's calculate the final horizontal component of velocity:v_x = u_x = 4.3301 m/sNow, let's calculate the final speed of the rock:v = √(v_x² + v_y²)= √(4.3301² + (-1.179)²)= 4.3679 m/s

Let's calculate the angle of the velocity vector with the horizontal: v = tan θ⇒ θ = tan⁻¹(v_y / v_x)= tan⁻¹(-1.179 / 4.3301)= -15.401°= -70.1° (taking downwards as positive)Therefore, the speed and direction just before landing are 12.7 m/s and -70.1° respectively. The time of flight of the rock is 0.966 s.

To know more about Angle of projection refer here:

https://brainly.com/question/28789119#

#SPJ11

#10 Magnetic Force Among Wires Suppose two wires are parallel, and current in the wires flows in the same direction. If the current in one wire is \( 2.00 \) Amperes and the current in the other wires

Answers

To determine the magnetic force between two parallel wires carrying currents in the same direction. To calculate the magnetic force accurately, we would need to know the values of L and d.

we need additional information such as the separation distance between the wires and the length of the wires. Without these details, we cannot calculate the exact magnetic force. However, I can provide you with the formula to calculate the magnetic force between two parallel wires.The magnetic force (F) between two parallel wires is given by Ampere's law and can be calculated using the equation: F = (μ₀ * I₁ * I₂ * L) / (2π * d)

where:F is the magnetic force

μ₀ is the permeability of free space (approximately 4π × 10^(-7) T·m/A)

I₁ and I₂ are the currents in the two wires

L is the length of the wires

d is the separation distance between the wires

To calculate the magnetic force accurately, we would need to know the values of L and d.

To learn more about magnetic force:

https://brainly.com/question/10353944

#SPJ11

A potential difference of 480 V is established between large, parallel metal plates. The potential of one plate is 480 V, and that of the other is 0 V. The plates are separated by d = 1.70cm. a) Draw a diagram of the equipotential surfaces corresponding to 0, 120, 240, 360, and 480 V. b) On the diagram, indicate the electric field lines. Does the diagram confirm that the field lines and equipotential surfaces are perpendicular to each other?

Answers

The equipotential surfaces are evenly spaced parallel planes, while the electric field lines are perpendicular to the surfaces.

a) The equipotential surfaces corresponding to 0, 120, 240, 360, and 480 V will be evenly spaced parallel planes between the two plates.

The spacing between the planes will be uniform, indicating a constant electric field strength. The equipotential surfaces will be perpendicular to the electric field lines.

b) The electric field lines will be straight lines perpendicular to the equipotential surfaces. They will be evenly spaced and originate from the positive plate, terminating on the negative plate.

The lines will be closer together near the positive plate, indicating a stronger electric field in that region. The diagram will confirm that the electric field lines and equipotential surfaces are perpendicular to each other since the electric field is always perpendicular to the equipotential lines at each point in space.

To learn more about electric field

Click here brainly.com/question/13952209

#SPJ11

A DC power line for a light-rail system carries 850 A at an angle of 27° to the Earth's 5.00x 10³ T magnetic field. Randomized Variables I=850 A 1-110 m 8= 27° What is the magnitude

Answers

In physics, the magnitude of a force refers to the numerical value or size of the force without considering its direction. The magnitude of the force on the 110 m section of the power line is approximately 34,495.88 N.

It represents the strength or intensity of the force acting on an object. Magnitude is a scalar quantity, meaning it only has magnitude and no specific direction.

When calculating the magnitude of a force, you ignore any directional information and focus solely on the numerical value. For example, if a force of 20 Newtons is applied to an object, the magnitude of the force is simply 20 N, regardless of whether the force is acting horizontally, vertically, or at any angle.

To calculate the magnitude of the force on a section of the power line, we can use the formula:

[tex]F = I * L * B * sin(\theta)[/tex]

where:

F is the force (in N),

I is the current in the power line (in A),

L is the length of the section (in m),

B is the magnetic field strength (in T),

theta is the angle between the current and magnetic field (in degrees).

Given:

[tex]I = 850 A,\\L = 110 m,\\B = 5.00 * 10^3 T,\\\theta = 27^0[/tex]

Converting theta to radians:

[tex]\theta_{rad} = 27\degree * (pi/180) = 0.4712 rad[/tex]

Substituting the given values into the formula:

[tex]F = 850 A * 110 m * (5.00 * 10^3 T) * sin(0.4712)[/tex]

Calculating the result:

[tex]F = 850 A * 110 m * (5.00 * 10^3 T) * sin(0.4712)[/tex]

[tex]F = 34,495.88 N[/tex]

Therefore, the magnitude of the force on the 110 m section of the power line is approximately 34,495.88 N.

For more details regarding the magnitude of the force, visit:

https://brainly.com/question/22260425

#SPJ4

The complete question is:

A DC power line for a light-rail system carries 850 A at an angle of 27° to the Earth's 5.00x 10³ T magnetic field. Randomized Variables I=850 A 1-110 m 8= 27° What is the magnitude of the force (in N) on a 110 m section of this line? F= Grade St Deduction

The magnitude of the force is 2.75 × 10⁷ N.

Given that I = 850 Aθ = 27°B = 5.00 × 10³ T

We can use the equation F = BIL sin(θ)Where F is the magnitude of the force, I is the current, L is the length of the wire, B is the magnetic field, and θ is the angle between the direction of the current and the direction of the magnetic field.

Substituting the given values into the equation above, F = (5.00 × 10³ T)(850 A)(110 m) sin(27°)F = 5.00 × 10³ × 850 × 110 × sin(27°)F = 2.75 × 10⁷ N

This rule helps to determine the direction of the magnetic force on a positive moving charge, with respect to a magnetic field. The rule states that, if we extend the fingers of our right hand perpendicular to each other, and point the thumb in the direction of the positive charge's velocity, then the direction of the magnetic force is given by the direction in which the fingers curl.

Learn more about force

https://brainly.com/question/30507236

#SPJ11

A 10 g tumour is irradiated with high energy gamma-rays and absorbs a total of 0.5 J of energy. What is the absorbed dose in gray and rad, and the dose equivalent in sievert and rem? (b) An alternate treatment for the same tumour is to administer a chemical solution containing a radioactive isotope which is preferentially absorbed by the tumour. If the isotope involved is an alpha emitter with an RBE of 20 and the tumour absorbs 0.10 J of energy, what is the absorbed dose in gray and rad, and the dose equivalent in sievert and rem?

Answers

The absorbed dose in Gray and Rad is 10 Gy and 1000 Rad, respectively. The dose equivalent in Sievert and rem is 200 Sv and 20000 Rem, respectively.

Given data:Mass of the tumor = 10 g

Total energy absorbed = 0.5 J

Energy absorbed by tumor, E = 0.5 J

Mass of tumor, m = 10 g

= 0.01 kg

Absorbed Dose = E/m
= 0.5 J / 0.01 kg

= 50 Gy

Dose Equivalent

= Absorbed dose × Quality factor = 50 × 1

= 50 Sievert (Sv)

So, absorbed dose in Gray and Rad is 50 Gy and 5000 Rad, respectively. The dose equivalent in Sievert and rem is 50 Sv and 5000 Rem, respectively.b) Given data:Energy absorbed by the tumor,

E = 0.10 JRBE (Relative Biological Effectiveness) of alpha particle

= 20

Absorbed Dose = E/m

= 0.10 J / 0.01 kg

= 10 Gy

Dose Equivalent = Absorbed dose × Quality factor

= 10 Gy × 20

= 200 Sievert (Sv)

So, the absorbed dose in Gray and Rad is 10 Gy and 1000 Rad, respectively. The dose equivalent in Sievert and rem is 200 Sv and 20000 Rem, respectively.

To know more about absorbed dose visit:

https://brainly.com/question/31840199

#SPJ11

An insulating glass containing 1.8 kg of water is placed on a hot plate; this and the water have initially a temperature of 20oC. Slowly raise the temperature of the plate to 100oC, the point at which water begins to boil. What entropy change does the water undergo? during the process?

Answers

It can be understood that as heat energy is transferred to the water, its entropy increases. This is due to the fact that the water molecules become more disordered as they gain energy.

In order to find the entropy change that water undergoes during the process, we can use the following steps:

Step 1: First, we need to find the amount of heat energy that is required to raise the temperature of the water from 20°C to 100°C using the formula Q = mcΔT, where Q is the amount of heat energy required, m is the mass of water (1.8 kg), c is the specific heat capacity of water (4.18 J/g°C), and ΔT is the change in temperature (100°C - 20°C = 80°C).So, Q = (1.8 kg)(4.18 J/g°C)(80°C) = 603.36 kJ

Step 2: Next, we need to find the amount of heat energy that is required to boil the water at 100°C using the formula Q = mL, where Q is the amount of heat energy required, m is the mass of water (1.8 kg), and L is the specific heat of vaporization of water (2260 J/g).So, Q = (1.8 kg)(2260 J/g) = 4068 kJ

Step 3: The total amount of heat energy required is the sum of the two values we just calculated:Q = 603.36 kJ + 4068 kJ = 4671.36 kJ

Step 4: The entropy change that the water undergoes during this process can be found using the formula ΔS = Q/T, where ΔS is the entropy change, Q is the amount of heat energy required (4671.36 kJ), and T is the temperature (in Kelvin) at which the heat energy is transferred.For this process, the temperature remains constant at 100oC until all the water has been converted to steam. Therefore, we can assume that the heat energy is transferred at a constant temperature of 100°C or 373 K.So, ΔS = (4671.36 kJ)/(373 K) = 12.51 kJ/K

Step 5: Therefore, the entropy change that the water undergoes during the process is 12.51 kJ/K.

It can be understood that as heat energy is transferred to the water, its entropy increases. This is due to the fact that the water molecules become more disordered as they gain energy. When the water boils and turns into steam, the entropy increases even more, since the steam molecules are even more disordered than the liquid water molecules. The overall result is a large increase in entropy, which is consistent with the second law of thermodynamics.

To know more about  heat energy visit:

brainly.com/question/29210982

#SPJ11

The electric field strength in a region is 1900 N/C. What is the force on an object with a charge of 0.0035 C?___N

Answers

The force experienced by an object with a charge in an electric field can be calculated using the equation F = q * E, where F is the force, q is the charge of the object, and E is the electric field strength.

In this case, the electric field strength in the region is 1900 N/C, and the charge of the object is 0.0035 C. By substituting these values into the equation, we can find the force on the object.

The force on the object is given by:

F = 0.0035 C * 1900 N/C

Multiplying the charge of the object (0.0035 C) by the electric field strength (1900 N/C) gives us the force on the object. The resulting force will be in newtons (N), which represents the strength of the force acting on the charged object in the electric field. Therefore, the force on the object is equal to 6.65 N.

Learn more about the charge here:

brainly.com/question/13871705

#SPJ11

#A If the ballistic pendulum (with ball inside) rises to a height, h = 9.74 cm, what was the velocity, v, of the ball and pendulum at the start of the swing?| (Use the formula at 7:20 of the video) Choice #1: Convert h to meters. Choice #2: Use g = 980 cm/s/s Give your answer in cm/s to 3 significant figures (no decimal places in this case). You find the velocity at which the pendulum and ball begin the swing to be 124 cm/ The mass, M, of the pendulum is: 182 grams The mass, m, of the ball is: 65.9 grams. What is the velocity of the ball (after launch but before it hits the pendulum)? Give your answer in cm/s to 3 significant figures (no decimal places in this case).

Answers

The velocity of the ball is calculated to be 466.46 cm/s.

Conservation of momentum implies that, in a particular problem domain, momentum does not change; momentum does not become or lose momentum; momentum only changes due to the action of Newton's forces.

Velocity is the rate at which an object changes direction as measured from a specific frame of reference and measured by a specific standard of time.

1) ΔKE = -ΔPE

0 - 1/2 (M +m)vf² = -(M +m) gh

vf = √2gh

= √2× 9.8 × 9.74

= 138.168 cm/s

= 138 cm/s

2) if vf = 124 cm/s

M = 182 g, m= 65.9

Conservation of momentum

mv₀ = (M +m)vf

v₀ = (M +m)vf/m

= (182 + 65.9)124/65.9

= 466.46 cm/s.

So the velocity is 466.46 cm/s.

To learn more about velocity, refer to the link:

https://brainly.com/question/30559316

#SPJ4

An incandescent light bulb is rated at 340 W, to be used in Europe where wall voltages are commonly 220 V. When operating at the specified voltage, what is the current flowing through this bulb? (in A) Your Answer: Answer

Answers

An incandescent light bulb is rated at 340 W: The current flowing through the light bulb is approximately 1.55 A.

To calculate the current flowing through the light bulb, we can use Ohm's Law, which states that the current (I) is equal to the power (P) divided by the voltage (V):

I = P / V

Given that the power rating of the light bulb is 340 W and the voltage is 220 V, we can substitute these values into the equation:

I = 340 W / 220 V

I ≈ 1.55 A

Therefore, when operating at the specified voltage of 220 V, the current flowing through the light bulb is approximately 1.55 A. This current value indicates the rate at which electric charge flows through the bulb, allowing it to emit light and produce the desired illumination.

To know more about incandescent light, refer here:

https://brainly.com/question/29108768#

#SPJ11

A galvanometer has an internal resistance of (RG-59), and a maximum deflection current of IGMax = 15 mA). If the shunt resistance is given by : Max RS (16) mar RG I max - (16) max Then the value of the shunt resistance Rs (in) needed to convert it into an ammeter reading maximum value of 'Max = 500 mA is:

Answers

The value of the shunt resistance Rs is calculated to be approximately (1.02 Ω).To convert a galvanometer into an ammeter with a maximum reading value of 500 mA, a shunt resistance (Rs) needs to be added.

The value of the shunt resistance can be calculated using the formula Rs = (RG * IMax) / (IMax - Max), where RG is the internal resistance of the galvanometer, IMax is the maximum deflection current of the galvanometer (15 mA), and Max is the desired maximum current reading of the ammeter (500 mA).

To convert a galvanometer into an ammeter, a shunt resistance is connected in parallel with the galvanometer.

The shunt resistance diverts a portion of the current, allowing the remaining current to flow through the galvanometer.

By choosing an appropriate value for the shunt resistance, the ammeter can be calibrated to measure higher currents.

In this case, the shunt resistance value (Rs) can be determined using the formula Rs = (RG * IMax) / (IMax - Max), where RG is the internal resistance of the galvanometer, IMax is the maximum deflection current of the galvanometer (15 mA), and Max is the desired maximum current reading of the ammeter (500 mA).

Substituting the given values,

we have Rs = (RG * 15 mA) / (15 mA - 500 mA). Simplifying further, Rs = (RG * 15 mA) / (-485 mA).

Rearranging the equation,

we get Rs = - RG * (15 mA / 485 mA). Since RG is given as (RG-59), we substitute it into the equation to obtain Rs = - (RG-59) * (15 mA / 485 mA).

The result of this calculation gives us the value of the shunt resistance Rs, which is approximately 1.02 Ω. Therefore, a shunt resistance of approximately 1.02 Ω should be added in parallel with the galvanometer to convert it into an ammeter with a maximum reading value of 500 mA.

Learn more about shunt resisitance from the given link:

https://brainly.com/question/31811502

#SPJ11

Q4. A small m = 20g gold bead with a 2cm radius begins at T, = 22°C. The bead is given Q = 1,200 of heat in an oven before it is removed. The specific heat of solid gold is c = 0.121/g°C. The specific heat of liquid water is c = 4.18J/gºC. a. What is the final temperature that the gold bead will be at? (3pts) b. Calculate wavelength of light that the metal bead will emit. (3pts) c. How much power will radiate from the small bead? (3pts) d. After the bead of gold is removed from the oven, it is placed in a cup with m = 100g of water at T = 20°C. What is the final temperature that the water will warm to? (3pts)

Answers

(a) The final temperature of the gold bead will be 495.87 °C. (b) The wavelength of light emitted by the gold bead will be 3.77 × 10^(-6) meters. (c) The power radiated from the small gold bead will be 0.181 Watts. (d) The final temperature of the water will be 46.11 °C.

a. To calculate the final temperature of the gold bead, we can use the heat equation:

Q = mcΔT

Where:

Q = Heat absorbed or released (in Joules)

m = Mass of the gold bead (in grams)

c = Specific heat capacity of gold (in J/g°C)

ΔT = Change in temperature (final temperature - initial temperature) (in °C)

Given:

Q = 1,200 J

m = 20 g

c = 0.121 J/g°C

ΔT = ?

We can rearrange the equation to solve for ΔT:

ΔT = Q / (mc)

ΔT = 1,200 J / (20 g * 0.121 J/g°C)

ΔT ≈ 495.87 °C

The final temperature of the gold bead will be approximately 495.87 °C.

b. To calculate the wavelength of light emitted by the gold bead, we can use Wien's displacement law:

λmax = (b / T)

Where:

λmax = Wavelength of light emitted at maximum intensity (in meters)

b = Wien's displacement constant (approximately 2.898 × 10^(-3) m·K)

T = Temperature (in Kelvin)

Given:

T = final temperature of the gold bead (495.87 °C)

First, we need to convert the temperature from Celsius to Kelvin:

T(K) = T(°C) + 273.15

T(K) = 495.87 °C + 273.15

T(K) ≈ 769.02 K

Now we can calculate the wavelength:

λmax = (2.898 × 10^(-3) m·K) / 769.02 K

λmax ≈ 3.77 × 10^(-6) meters

The wavelength of light emitted by the gold bead will be approximately 3.77 × 10^(-6) meters.

c. The power radiated by the gold bead can be calculated using the Stefan-Boltzmann law:

P = σ * A * ε * T^4

Where:

P = Power radiated (in Watts)

σ = Stefan-Boltzmann constant (approximately 5.67 × 10^(-8) W/(m^2·K^4))

A = Surface area of the gold bead (in square meters)

ε = Emissivity of the gold bead (assumed to be 1 for a perfect radiator)

T = Temperature (in Kelvin)

Given:

A = 4πr^2 (for a sphere, where r = radius of the gold bead)

T = final temperature of the gold bead (495.87 °C)

First, we need to convert the temperature from Celsius to Kelvin:

T(K) = T(°C) + 273.15

T(K) = 495.87 °C + 273.15

T(K) ≈ 769.02 K

The surface area of the gold bead can be calculated as:

A = 4πr^2

A = 4π(0.02 m)^2

A ≈ 0.00502 m^2

Now we can calculate the power radiated:

P = (5.67 × 10^(-8) W/(m^2·K^4)) * 0.00502 m^2 * 1 * (769.02 K)^4

P ≈ 0.181 W

The power radiated from the small gold bead will be approximately 0.181 Watts.

d. To calculate the final temperature of the water after the gold bead is placed in it, we can use

the principle of energy conservation:

Q_lost_by_gold_bead = Q_gained_by_water

The heat lost by the gold bead can be calculated using the heat equation:

Q_lost_by_gold_bead = mcΔT

Where:

m = Mass of the gold bead (in grams)

c = Specific heat capacity of gold (in J/g°C)

ΔT = Change in temperature (final temperature of gold - initial temperature of gold) (in °C)

Given:

m = 20 g

c = 0.121 J/g°C

ΔT = final temperature of gold - initial temperature of gold (495.87 °C - 22 °C)

We can calculate Q_lost_by_gold_bead:

Q_lost_by_gold_bead = (20 g) * (0.121 J/g°C) * (495.87 °C - 22 °C)

Q_lost_by_gold_bead ≈ 10,902 J

Now we can calculate the heat gained by the water using the heat equation:

Q_gained_by_water = mcΔT

Where:

m = Mass of the water (in grams)

c = Specific heat capacity of water (in J/g°C)

ΔT = Change in temperature (final temperature of water - initial temperature of water) (in °C)

Given:

m = 100 g

c = 4.18 J/g°C

ΔT = final temperature of water - initial temperature of water (final temperature of water - 20 °C)

We can calculate Q_gained_by_water:

Q_gained_by_water = (100 g) * (4.18 J/g°C) * (final temperature of water - 20 °C)

Since the heat lost by the gold bead is equal to the heat gained by the water, we can equate the two equations:

Q_lost_by_gold_bead = Q_gained_by_water

10,902 J = (100 g) * (4.18 J/g°C) * (final temperature of water - 20 °C)

Now we can solve for the final temperature of the water:

final temperature of water - 20 °C = 10,902 J / (100 g * 4.18 J/g°C)

final temperature of water - 20 °C ≈ 26.11 °C

final temperature of water ≈ 46.11 °C

The final temperature of the water will be approximately 46.11 °C.

Learn more about Specific heat here:

brainly.com/question/31608647

#SPJ11

Question A4 A 100 g copper bowl contains 200 g of water, both at 25°C. A 300 g aluminium cylinder is dropped into the water, causing the water to boil with 40 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. Given the specific heats of copper, water, and aluminium are 386 J/kg:K, 4190 J/kg:K, and 900 J/kg:K respectively. Given also the heat of fusion and heat of vaporisation of water are 333 kJ/kg and 2260 kJ/kg respectively. (a) Calculate the original temperature of the cylinder. (6 marks) (b) Calculate the entropy change in the bowl-water-cylinder system. (9 marks)

Answers

To solve this problem, we'll use the principle of conservation of energy and the equation:

Q = mcΔT

where Q is the heat transferred, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature.

(a) Calculate the original temperature of the cylinder:

Heat transferred from water = Heat gained by cylinder

m_water * c_water * (T_final - T_initial) = m_cylinder * c_cylinder * (T_final - T_initial)

200g * 4190 J/kg:K * (100°C - 25°C) = 300g * c_cylinder * (100°C - T_initial)

835000 J = 300g * c_cylinder * 75°C

T_initial ≈ 100°C - 14.75°C

T_initial ≈ 85.25°C

Therefore, the original temperature of the cylinder was approximately 85.25°C.

(b) Calculate the entropy change in the bowl-water-cylinder system:

Entropy change can be calculated using the formula:

ΔS = Q / T

where ΔS is the entropy change, Q is the heat transferred, and T is the temperature.

1) Heating the water:

ΔS_water_heating = Q_water_heating / T_final

ΔS_water_heating = 671,200 J / (25°C + 273.15) K

2) Melting the water:

ΔS_water_melting = m_water * ΔH_fusion / T_fusion

ΔS_water_melting = 40g * 333,000 J/kg / (0°C + 273.15) K

3) Boiling the water:

ΔS_water_boiling = m_water * ΔH_vaporisation / T_boiling

Learn more about  conservation of energy here : brainly.com/question/13949051
#SPJ11

State the physical interpretation of the gradient of a scalar function
State the physical interpretation of the divergence of a vector
State the physical interpretation of the curl of vector
State the three cases of the results of the divergence of a vector and its implication
Sate the three cases of the results of the curl of a vector and its implication
PLEASE HELP TO ANSWER ALL I BEG OF YOU PLEASE!!!!!!

Answers

The physical interpretation of the gradient of a scalar function: The gradient of a scalar function represents the rate of change or the spatial variation of the scalar quantity in a given direction.

It provides information about the direction and magnitude of the steepest ascent or descent of the scalar field. For example, in the context of temperature distribution, the gradient of the temperature field indicates the direction of maximum increase in temperature and its magnitude at a specific point.The physical interpretation of the divergence of a vector:The divergence of a vector field represents the behavior of the vector field with respect to its sources or sinks. It measures the net outward flux or convergence of the vector field at a given point. Positive divergence indicates a source, where the vector field appears to be spreading out, while negative divergence indicates a sink, where the vector field appears to be converging. Positive curl indicates a counterclockwise rotation, while negative curl indicates a clockwise rotation. In electromagnetism, the curl of the magnetic field represents the presence of circulating currents or magnetic vortices.Three cases of the results of the divergence of a vector and its implications: a) Positive divergence: The vector field has a net outward flux, indicating a source. This implies a region where the vector field is spreading out, such as a region of fluid expansion or a source of fluid or electric charge.b) Negative divergence: The vector field has a net inward flux, indicating a sink. This implies a region where the vector field is converging, such as a region of fluid compression or a sink of fluid or electric charge.c) Zero divergence: The vector field has no net flux, indicating a region where there is no source or sink. This implies a region of steady flow or equilibrium in terms of fluid or charge distribution.Three cases of the results of the curl of a vector and its implications:a) Non-zero curl: The vector field has a non-zero curl, indicating the presence of local rotation or circulation. This implies the formation of vortices or swirls in the vector field, such as in fluid flow or magnetic fields.b) Zero curl: The vector field has a zero curl, indicating no local rotation or circulation. This implies a region of irrotational flow or a uniform magnetic field without vortices.c) Irrotational and conservative field: If the vector field has zero curl and can be expressed as the gradient of a scalar function, it is called an irrotational field or a conservative field. In such cases, the vector field can be associated with conservative forces, such as gravitational or electrostatic forces,

To learn more about scalar function:

https://brainly.com/question/32616203

#SPJ11

A mass m = 197 kg is located at the origin; an identical second mass m is at x = 33 cm. A third mass m is above the first two so the three masses form an equilateral triangle. What is the net gravitational force on the third mass? All masses are same. Answer:

Answers

The net gravitational force on the third mass, located above the first two masses in an equilateral triangle formation, is zero. This means that the gravitational forces exerted by the first two masses cancel each other out.

The gravitational force between two masses can be calculated using Newton's law of universal gravitation: F = G * (m1 * m2) / r², where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses, and r is the distance between the masses.

In this case, the first and second masses are located at the origin and x = 33 cm, respectively. Since the masses are identical and the triangle formed is equilateral, the distance between the first and second masses is also 33 cm.

The gravitational force between the first and second masses is given by F1 = G * (m * m) / (0.33)^2, and it acts along the line joining these masses. Since the triangle is equilateral, the third mass is located directly above the midpoint between the first two masses.

As a result, the gravitational force exerted by the first mass on the third mass is equal in magnitude but opposite in direction to the gravitational force exerted by the second mass on the third mass. Therefore, these two forces cancel each other out, resulting in a net gravitational force of zero on the third mass.

To learn more about force click here brainly.com/question/30507236

#SPJ11

Next set the source velocity to 0.00 ms and the observer velocity to 5.00 m/s.
Set the source frequency to 650 Hz.
Set the speed of sound to 750 m/s.
a. What is the frequency of the sound perceived by the observer?
b. What is the wavelength of the sound perceived by the observer?
c. What is the wavelength of the sound source?

Answers

(a)The frequency of the sound perceived by the observer in this scenario is 628.13 Hz. (b)The wavelength of the sound perceived by the observer is 1.20 meters. (c) the wavelength of the sound source remains at its original value, which is 1.15 meters.

When the source velocity is set to 0.00 m/s and the observer velocity is 5.00 m/s, the observed frequency of the sound changes due to the Doppler effect. The formula to calculate the observed frequency is given by:

observed frequency = source frequency (speed of sound + observer velocity) / (speed of sound + source velocity)

Plugging in the given values, we get:

observed frequency = 650 Hz  (750 m/s + 5.00 m/s) / (750 m/s + 0.00 m/s) = 628.13 Hz

This means that the observer perceives a sound with a frequency of approximately 628.13 Hz.

The wavelength of the sound perceived by the observer can be calculated using the formula:

wavelength = (speed of sound + source velocity) / observed frequency

Plugging in the values, we get:

wavelength = (750 m/s + 0.00 m/s) / 628.13 Hz = 1.20 meters

So, the observer perceives a sound with a wavelength of approximately 1.20 meters.

The wavelength of the sound source remains unchanged and can be calculated using the formula:

wavelength = (speed of sound + observer velocity) / source frequency

Plugging in the values, we get:

wavelength = (750 m/s + 5.00 m/s) / 650 Hz ≈ 1.15 meters

Hence, the wavelength of the sound source remains approximately 1.15 meters.

Learn more about wavelength click here:

brainly.com/question/31143857

#SPJ11

A long cylindrical wire of radius 4 cm has a current of 8 amps flowing through it. a) Calculate the magnetic field at r = 2, r = 4, and r = 6 cm away from the center of the wire if the current density is uniform. b) Calculate the same things if the current density is non-uniform and equal to J = kr2 c) Calculate the same things at t = 0 seconds, if the current is changing as a function of time and equal to I= .8sin(200t). Assume the wire is made of copper and current density as a function of r is uniform. =

Answers

At the respective distances, the magnetic field is approximate:

At r = 2 cm: 2 ×  10⁻⁵ T

At r = 4 cm: 1 ×  10⁻⁵ T

At r = 6 cm: 6.67 × 10⁻⁶ T

a) When the current density is uniform, the magnetic field at a distance r from the centre of a long cylindrical wire can be calculated using Ampere's law. For a wire with current I and radius R, the magnetic field at a distance r from the centre is given by:

B = (μ₀ × I) / (2πr),

where μ₀ is the permeability of free space (μ₀ ≈ 4π × 10⁻⁷ T m/A).

Substituting the values, we have:

1) At r = 2 cm:

B = (4π × 10⁻⁷  T m/A * 8 A) / (2π × 0.02 m)

B = (8 × 10⁻⁷ T m) / (0.04 m)

B ≈ 2 × 10⁻⁵ T

2) At r = 4 cm:

B = (4π × 10⁻⁷  T m/A * 8 A) / (2π × 0.04 m)

B = (8 × 10⁻⁷  T m) / (0.08 m)

B ≈ 1 × 10⁻⁵ T

3) At r = 6 cm:

B = (4π × 10⁻⁷  T m/A * 8 A) / (2π × 0.06 m)

B = (8 × 10⁻⁷  T m) / (0.12 m)

B ≈ 6.67 × 10⁻⁶ T

Therefore, at the respective distances, the magnetic field is approximately:

At r = 2 cm: 2 ×  10⁻⁵ T

At r = 4 cm: 1 ×  10⁻⁵ T

At r = 6 cm: 6.67 × 10⁻⁶ T

b) When the current density is non-uniform and equal to J = kr², we need to integrate the current density over the cross-sectional area of the wire to find the total current flowing through the wire. The magnetic field at a distance r from the centre of the wire can then be calculated using the same formula as in part a).

The total current (I_total) flowing through the wire can be calculated by integrating the current density over the cross-sectional area of the wire:

I_total = ∫(J × dA),

where dA is an element of the cross-sectional area.

Since the current density is given by J = kr², we can rewrite the equation as:

I_total = ∫(kr² × dA).

The magnetic field at a distance r from the centre can then be calculated using the formula:

B = (μ₀ × I_total) / (2πr),

1) At r = 2 cm:

B = (4π × 10⁻⁷ T m/A) × [(8.988 × 10⁹ N m²/C²) × (0.0016π m²)] / (2π × 0.02 m)

B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.02 m)

B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.02)

B = (0.2296 * 10² × T) / (0.04)

B = 5.74 T

2) At r = 4 cm:

B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.04 m)

B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.04)

B = (0.2296 * 10² × T) / (0.08)

B = 2.87 T

3) At r=6cm

B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.06 m)

B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.06)

B = (0.2296 * 10² × T) / (0.012)

B = 1.91 T

c) To calculate the magnetic field at t = 0 seconds when the current is changing as a function of time (I = 0.8sin(200t)), we need to use the Biot-Savart law. The law relates the magnetic field at a point to the current element and the distance between them.

The Biot-Savart law is given by:

B = (μ₀ / 4π) × ∫(I (dl x r) / r³),

where

μ₀ is the permeability of free space,

I is the current, dl is an element of the current-carrying wire,

r is the distance between the element and the point where the magnetic field is calculated, and

the integral is taken over the entire length of the wire.

The specific form of the wire and the limits of integration are needed to perform the integral and calculate the magnetic field at the desired points.

Learn more about Magnetic Field from the given link:

https://brainly.com/question/16387830

#SPJ11

Dragsters can achieve average accelerations of 23.4ms223.4ms2.
Suppose such a dragster accelerates from rest at this rate for 5.33
s. How far does it travel in this time?
x= units =

Answers

The dragster travels approximately 330.46 meters in 5.33 seconds.

To calculate the distance traveled by the dragster, we can use the kinematic equation:

d = v0 * t + (1/2) * a * t^2

d is the distance traveled,

v0 is the initial velocity (which is 0 m/s as the dragster starts from rest),

a is the acceleration (23.4 m/s^2),

t is the time (5.33 seconds).

Plugging in the values:

d = 0 * 5.33 + (1/2) * 23.4 * (5.33)^2

Simplifying:

d = 0 + (1/2) * 23.4 * 28.4089

d = 0 + 330.4563

d ≈ 330.46 meters

Learn more about acceleration at https://brainly.com/question/460763

#SPJ11

Question 21 () a) wider fringes will be formed by decreasing the width of the slits. increasing the distance between the slits. increasing the width of the slits. decreasing the distance between the slits. Question 22 () b) changing the color of the light from red to violet will make the pattern smaller and the fringes thinner. make the pattern larger and the fringes thicker. make the pattern larger and the fringes thinner. make the pattern smaller and the fringes thicker.

Answers

1) Wider fringes can be achieved by decreasing the width of the slits and increasing the distance between them, while narrower fringes are obtained by increasing the slit width and decreasing the slit distance.

2) Changing the color of the light from red to violet leads to smaller pattern size and thinner fringes, while switching from violet to red creates a larger pattern with thicker fringes.

1) When observing interference fringes produced by a double-slit setup, the width of the fringes can be affected by adjusting the parameters. The width of the fringes will increase by decreasing the width of the slits and increasing the distance between the slits. Conversely, the width of the fringes will decrease by increasing the width of the slits and decreasing the distance between the slits.

2) Changing the color of the light from red to violet in an interference pattern will influence the size and thickness of the fringes. Switching from red to violet light will make the pattern smaller and the fringes thinner. Conversely, changing the color from violet to red will result in a larger pattern with thicker fringes.

Learn more about fringes from the given link!

https://brainly.com/question/29487127

#SPJ11

A plate carries a charge of \( -3 \mu C \), while a rod carries a charge of \( +2 \mu C \). How many electrons must be transferred from the plate to the rod, so that both objects have the same charge?

Answers

The plate must transfer 6.25 x 10^12 electrons and the rod must gain 6.25 x 10^12 electrons to have the same charge on them.

Given that a plate carries a charge of -3μC, and a rod carries a charge of +2μC. We need to find out how many electrons must be transferred from the plate to the rod, so that both objects have the same charge.

Charge on plate = -3 μC, Charge on rod = +2 μC, Charge on an electron = 1.6 x 10^-19 Coulombs.

Total number of electrons on the plate can be calculated as:-Total charge on plate/ Charge on an electron= -3 x 10^-6 C/ -1.6 x 10^-19 C = 1.875 x 10^13 electrons. Total number of electrons on the rod can be calculated as:-Total charge on rod/ Charge on an electron= 2 x 10^-6 C/ 1.6 x 10^-19 C = 1.25 x 10^13 electrons. Total charge should be the same on both objects. Therefore, the transfer of electrons from the plate to the rod is given as:-Total electrons transferred= (1.25 x 10^13 - 1.875 x 10^13)= -6.25 x 10^12.

The plate must lose 6.25 x 10^12 electrons and the rod must gain 6.25 x 10^12 electrons.

Let's learn more about electrons :

https://brainly.com/question/860094

#SPJ11

What is the distance between lines on a diffraction grating that produces a second-order maximum for 760-nm red light at an angle of 60°? d = μm

Answers

Answer: The distance between lines on the diffraction grating that produces a second-order maximum for 760-nm red light at an angle of 60° is 2.01 µm.

A diffraction grating consists of a large number of equally spaced parallel slits or lines. When a beam of light is incident on a grating, it is diffracted and results in constructive and destructive interference. The intensity of the light is greatest when the waves are in phase and least when they are out of phase.

The relationship between the angle of diffraction θ, the wavelength of light λ, and the distance between the lines on the diffraction grating d is given by the equation:

nλ = d(sinθ)

where n is the order of the diffraction maximum. In this case, we are given that the red light has a wavelength of λ = 760 nm and that the second-order maximum occurs at an angle of θ = 60°.

We can rearrange the equation above to solve for d:d = nλ / sinθ

Plugging in the values given, we get: d = 2(760 nm) / sin(60°)≈ 2.01 µm.

Thus, the distance between lines on the diffraction grating that produces a second-order maximum for 760-nm red light at an angle of 60° is 2.01 µm.

Learn more about diffraction: https://brainly.com/question/29451443

#SPJ11

Two football players, Ted and Jeff, with the same weight are climbing steps during practice. Ted completes one set of steps in 30 seconds, Jeff completes two sets of steps in 60 seconds. How does the power used by each player compare? Ted uses less power because his total time is less that Jeff's total time. Jeff and Ted use the same amount of power. Jeff uses more power because he does more work. Ted uses more power because he only climbs one set of steps while Jeff climbs two sets of steps.

Answers

The number of sets completed or the total time taken does not directly determine power .

The power used by each player cannot be determined solely based on the information provided.

Power is defined as the rate at which work is done or energy is transferred, and it depends on both the amount of work done and the time taken to do that work.

In this scenario, we have the time taken for each player to complete their respective sets of steps. Ted completes one set in 30 seconds, while Jeff completes two sets in 60 seconds.

However, without knowing the distance or height of the steps, we cannot determine the amount of work done by each player.

To calculate power, we need to know both the work done and the time taken. The work done is determined by the force exerted (weight) and the distance over which it is applied.

Since the weight of Ted and Jeff is given as the same, we still lack the necessary information to calculate the work done.

Therefore, it is not possible to make a definitive comparison of the power used by Ted and Jeff based solely on the provided information.

The number of sets completed or the total time taken does not directly determine power unless we have additional details about the work done or the distance covered.

Learn more about  power from the given link

https://brainly.com/question/2248465

#SPJ11

Give two definitions of the half-life and find its relation with
decay constant or disintegration constant λ (in time-1 unit).

Answers

Definition 1: The half-life of a radioactive substance is the time it takes for half of the radioactive nuclei in a sample to undergo radioactive decay.

Definition 2: The half-life is the time it takes for the activity (rate of decay) of a radioactive substance to decrease by half.

The relation between half-life and decay constant (λ) is given by:

t(1/2) = ln(2) / λ

In radioactive decay, the decay constant (λ) represents the probability of decay per unit time. It is a measure of how quickly the radioactive substance decays.

The half-life (t(1/2)) represents the time it takes for half of the radioactive nuclei to decay. It is a characteristic property of the radioactive substance.

The relationship between half-life and decay constant is derived from the exponential decay equation:

N(t) = N(0) * e^(-λt)

where N(t) is the number of radioactive nuclei remaining at time t, N(0) is the initial number of radioactive nuclei, e is the base of the natural logarithm, λ is the decay constant, and t is the time.

To find the relation between half-life and decay constant, we can set N(t) equal to N(0)/2 (since it represents half of the initial number of nuclei) and solve for t:

N(0)/2 = N(0) * e^(-λt)

Dividing both sides by N(0) and taking the natural logarithm of both sides:

1/2 = e^(-λt)

Taking the natural logarithm of both sides again:

ln(1/2) = -λt

Using the property of logarithms (ln(a^b) = b * ln(a)):

ln(1/2) = ln(e^(-λt))

ln(1/2) = -λt * ln(e)

Since ln(e) = 1:

ln(1/2) = -λt

Solving for t:

t = ln(2) / λ

This equation shows the relation between the half-life (t(1/2)) and the decay constant (λ). The half-life is inversely proportional to the decay constant.

The half-life of a radioactive substance is the time it takes for half of the radioactive nuclei to decay. It can be defined as the time it takes for the activity to decrease by half. The relationship between half-life and decay constant is given by t(1/2) = ln(2) / λ, where t(1/2) is the half-life and λ is the decay constant. The half-life is inversely proportional to the decay constant.

To know more about radioactive substance visit

https://brainly.com/question/1160651

#SPJ11

(16 points) A 125 cm³ cube of ice at -40 °C is immediately dropped into an insulated beaker containing 1000 mL of 20 °C water. (Here are some constants that you may find helpful: Cice 2.09 J/g°C, Cwater = 4.186 J/g°C, Lice-333 J/g, acu 1.67×10.5 °C-¹) A) What is the final temperature of the ice cube? B) How much water (originally at 20 °C) could have been frozen with the original cube? C) What would the initial temperature of the ice cube need to be in order to freeze all 1000 mL of the 20 °C water? D) If a copper cube of the same dimensions as the ice cube is cooled down by 40 °C, what is the change in length of the side of the copper cube?

Answers

A 125 cm³ cube of ice at -40 °C is immediately dropped into an insulated beaker containing 1000 mL of 20 °C water.

A) The final temperature of the ice cube is 34.6°C.

B) 1241.42 grams (or 1241.42 mL) of water could have been frozen with the original ice cube.

C) The initial temperature of the ice cube need to be in order to freeze all 1000 mL of the 20 °C water is -42.46°C.

D) If a copper cube of the same dimensions as the ice cube is cooled down by 40 °C, the change in length of the side of the copper cube is -6.68 × 10⁻⁴ times the initial length.

A) To find the final temperature of the ice cube, we can use the principle of energy conservation. The energy lost by the water must be gained by the ice cube when they reach thermal equilibrium.

The energy lost by the water can be calculated using the formula:

[tex]Q_w = m_w * C_w *[/tex] Δ[tex]T_w[/tex]

where [tex]m_w[/tex] is the mass of water, [tex]C_w[/tex] is the specific heat capacity of water, and Δ[tex]T_w[/tex] is the change in temperature of the water.

The energy gained by the ice cube can be calculated using the formula:

[tex]Q_i = m_i * C_i *[/tex] Δ[tex]T_i+ m_i * L_i[/tex]

where [tex]m_i[/tex] is the mass of the ice cube, [tex]C_i[/tex] is the specific heat capacity of ice, Δ[tex]T_i[/tex] is the change in temperature of the ice, and [tex]L_i[/tex] is the latent heat of fusion of ice.

Since the system is isolated, the energy lost by the water is equal to the energy gained by the ice cube:

[tex]Q_w = Q_i[/tex]

Let's calculate the values:

[tex]m_w[/tex] = 1000 g = 1000 mL

[tex]C_w[/tex] = 4.186 J/g°C

Δ[tex]T_w[/tex] = [tex]T_f[/tex] - 20°C

[tex]m_i[/tex] = 125 g = 125 cm³

[tex]C_i[/tex] = 2.09 J/g°C

Δ[tex]T_i = T_f[/tex]- (-40)°C (change in temperature from -40°C to[tex]T_f[/tex])

[tex]L_i[/tex] = 333 J/g

Setting up the equation:

[tex]m_w * C_w * (T_f - 20) = m_i * C_i * (T_f - (-40)) + m_i * L_i[/tex]

Simplifying and solving for [tex]T_f[/tex]:

[tex]1000 * 4.186 * (T_f - 20) = 125 * 2.09 * (T_f - (-40)) + 125 * 333\\4186 * (T_f - 20) = 261.25 * (T_f + 40) + 41625\\4186T_f - 83720 = 261.25T_f + 10450 + 41625\\4186T_f - 261.25T_f = 83720 + 10450 + 41625\\3924.75T_f = 135795\\T_f = 34.6°C[/tex]

Therefore, the final temperature of the ice cube is approximately 34.6°C.

B) To calculate the amount of water that could have been frozen with the original cube, we need to find the mass of the water that would have the same amount of energy as the ice cube when it reaches its final temperature.

[tex]Q_w = Q_i[/tex]

[tex]m_w * C_w *[/tex] Δ[tex]T_w = m_i * C_i *[/tex] Δ[tex]T_i + m_i * L_i[/tex]

Solving for [tex]m_w[/tex]:

[tex]m_w = (m_i * C_i *[/tex] Δ[tex]T_i+ m_i * L_i) / (C_w[/tex] * Δ[tex]T_w)[/tex]

Substituting the given values:

[tex]m_w[/tex]= (125 * 2.09 * (34.6 - (-40)) + 125 * 333) / (4.186 * (34.6 - 20))

[tex]m_w[/tex] = 1241.42 g

Therefore, approximately 1241.42 grams (or 1241.42 mL) of water could have been frozen with the original ice cube.

C) To find the initial temperature of the ice cube needed to freeze all 1000 mL of the 20°C water, we can use the same energy conservation principle:

[tex]Q_w = Q_i[/tex]

[tex]m_w * C_w *[/tex] Δ[tex]T_w = m_i * C_i *[/tex] Δ[tex]T_i + m_i * L_i[/tex]

Setting [tex]m_w[/tex] = 1000 g, [tex]C_w[/tex] = 4.186 J/g°C, Δ[tex]T_w[/tex] = ([tex]T_f[/tex]- 20)°C, and solving for Δ[tex]T_i[/tex]:

Δ[tex]T_i[/tex] = [tex](m_w * C_w *[/tex] Δ[tex]T_w - m_i * L_i) / (m_i * C_i)[/tex]

Substituting the values:

Δ[tex]T_i[/tex] = (1000 * 4.186 * (0 - 20) - 125 * 333) / (125 * 2.09)

Δ[tex]T_i[/tex] = -11102.99 / 261.25

Δ[tex]T_i[/tex] = -42.46°C

The initial temperature of the ice cube would need to be approximately -42.46°C to freeze all 1000 mL of the 20°C water.

D) To find the change in length of the side of the copper cube when it is cooled down by 40°C, we need to consider the coefficient of linear expansion of copper.

The change in length (ΔL) can be calculated using the formula:

ΔL = α * [tex]L_0[/tex] * ΔT

where α is the coefficient of linear expansion, [tex]L_0[/tex] is the initial length, and ΔT is the change in temperature.

Given that α for copper is approximately 1.67 × 10⁻⁵ °C⁻¹ and ΔT = -40°C, we can calculate the change in length.

ΔL = (1.67 × 10⁻⁵) * [tex]L_0[/tex] * (-40)

ΔL = -6.68 × 10⁻⁴ * [tex]L_0[/tex]

Therefore, the change in length of the side of the copper cube is -6.68 × 10⁻⁴ times the initial length.

To know more about  insulated here

https://brainly.com/question/14363642

#SPJ4

Find the angle for the third-order maximum for 556 nm wavelength light falling on a diffraction grating having 1470 lines per centimeter.

Answers

To find the angle for the third-order maximum for 556 nm wavelength light incident on a diffraction grating with a given line density, we can use the formula for a diffraction grating. By considering the relationship between the wavelength of light, the line density of the grating, and the order of the maximum, we can calculate the angle at which the third-order maximum occurs.

The formula for diffraction grating is given by the equation:

d * sin(θ) = m * λ

Where:

d is the spacing between adjacent lines of the grating (inverse of the line density)

θ is the angle at which the maximum occurs

m is the order of the maximum

λ is the wavelength of light

In this case, we are looking for the angle for the third-order maximum. Given the wavelength of light (556 nm) and the line density (1470 lines/cm), we can calculate the spacing between adjacent lines (d = 1 / line density) and substitute these values into the equation. Solving for θ will give us the angle at which the third-order maximum occurs for the given diffraction grating and wavelength of light.

Learn more about wavelength here: brainly.com/question/16051869

#SPJ11

Sphere A, with a charge of
+64 MC, is positioned at the origin. A second sphere, B, with a charge of -16 C is placed at
+1.00 m on the x-axis. a. Where must a third sphere, C, of charge 112 C
be placed so there is no net force on it? b. If the third sphere had a charge of 16 C, where
should it be placed?

Answers

A) To find the position where the third sphere, C, experiences no net force, we can use the concept of electric forces and Coulomb's law. The net force on sphere C will be zero when the electric forces from sphere A and sphere B cancel each other out.

The formula for the electric force between two charges is given by [tex]F = \frac{{k \cdot |q_1 \cdot q_2|}}{{r^2}}[/tex],

where F is the force, k is the Coulomb's constant, q1 and q2 are the charges, and r is the distance between the charges.

Since sphere A has a positive charge and sphere B has a negative charge, the forces from both spheres will have opposite directions. To cancel out the forces, sphere C should be placed at a position where the distance and the magnitudes of the forces are balanced.

B) If the third sphere, C, had a charge of 16 C, the position where it should be placed to experience no net force will be different. The forces from sphere A and sphere B will now be different due to the change in charge. To determine the position, we can use the same approach as in part A, considering the new charge on sphere C.

Note: The specific calculations and coordinates for the positions of sphere C cannot be determined without additional information such as the values of the charges, the distances, and the Coulomb's constant.

To know more about Sphere here: https://brainly.com/question/9617243

#SPJ11

Other Questions
You have now read about, heard and thought about logical fallacies. Answer these Part One and Two prompts.Part One:How can we avoid falling for logical fallacies?How can we avoid committing logical fallacies in our lives?Part Two:Laura Shultz, in her TEDTalk "The Surprisingly Logical Minds of Babies" says: "Folks, human minds do not only learn from small amounts of data. Human minds think of altogether new ideas. Human minds generate research and discovery, and human minds generate art and literature and poetry and theater, and human minds take care of other humans: our old, our young, our sick. We even heal them. In the years to come, we're going to see technological innovations beyond anything I can even envision, but we are very unlikely to see anything even approximating the computational power of a human child in my lifetime or in yours. If we invest in these most powerful learners and their development, in babies and children and mothers and fathers and caregivers and teachers the ways we invest in our other most powerful and elegant forms of technology, engineering and design, we will not just be dreaming of a better future, we will be planning for one. "What are some logical conclusions from this evidence? How should we be investing as she suggests, based on these concepts? A 52-year-old man travels to Honduras and returns with severe dysentery.Symptoms: fever, abdominal pain, cramps and diarrhea with mucous, bloody and frequent.Feces: Many WCBs are observedStool culture: gram negative bacilli, lactose positive, indole positive, urease negative, lysine decarboxylation negative, motility negative.What is the organism most likely to cause the condition? Explain and justify your answer. Assume that demand for a commodity is represented by the equationP = -2Q-2Q_dSupply is represented by the equationP = -5+3Q_1where Q_d and Q_s are quantity demanded and quantity supplied, respectively, and Pis priceInstructions: Round your answer for price to 2 decimal places and enter your answer for quantity as a whole number Using the equilibrium condition Q_s = Q_d solve the equations to determine equilibrium price and equilibrium quantityEquilibrium price = $[Equilibrium quantity = units A horizontal demand curve is perfectly price inelastic True False Reset Selection QUESTION 5 Which of the following is NOT true? The sum of two vectors of the same magnitude cannot be zero The location of a vector on a grid has no impact on its meaning The magnitude of a vector quantity is considered a scalar quantity Any vector can be expressed as the sum of two or more vectors QUESTION 6 What would be the distance from your starting position if you were to follow the directions: "Go North 10 miles, then East 4 miles and then South 7 miles" 7 miles 5 miles 21 miles 14 miles Select one of the below that has the highest standard deviation of returns. Common stocks Long-term Treasury bonds Treasury bills Corporate bonds Analytically dete 5. A thin film of kerosene (index of refraction 1.20) floats on water (index of refraction 1.33). White light is incident near normal on the film. What wavelengths of visible light will yield maximum intensity upon after normal reflection. why sequential cournot has a first mover advantage in gametheorywhy sequential Bertrand has a second-mover advantage Find mR such that the equation 2z^2 (33i)z(m9i)=0 has a real root. Show your work. 3. What features are shared by both classical and operant conditioning?a. extinction, emotional trauma and rational thinkingb. stimulus generalization, rational thinking, and stimulus discriminationc. rational thinking, memory, and emotional traumad. extinction, stimulus generalization, and stimulus discrimination b) Rhinoviruses and enteroviruses are all members of the Picornoviridae family. However, their tissue tropism is different. Where do each of these viruses replicate, and why??? Problem 5.2 Repeat problem 5.1 for the case when the degeneracies of the energy levels of energy 0, , 2 and 3e are 1, 2, 4 and 4 respectively. Problem 5.1 A thermodynamic system consists of N spatially separated subsystems. Each subsystem has non-degenerate energy levels of energy 0,, 2c and 3. The system is in thermal cquilibrium with a heat reservoir of absolute temperature T equal to e/k. Calculate the partition function, the mean energy and the entropy of the thermodynamic system. NO LINKS!The question is in the attachment Team Group Meetings and Individual Submission for Analysis of Leadership Styles 30% Students will be asked to produce a 1500 words individual report considering the potential leadership styles suggested for their group meetings (2-3 students per group) as business executives of an innovative organisation. Please note that each of them must produce a separate report based on the meeting's findings. Detailed guidelines will be provided so that students can work together to consider their own leadership style and potential and provide guided feedback to others in their group meetings on their potential leadership style. They will be required to consider the role of leadership and leadership styles in an innovative organisational change process. This assessment will require students to meet couple of times to discuss and develop their analysis. Records of these meetings will need to be submitted as part of this assessment where they must provide the name and ID of the students with whom they communicated in each submission. Enumerate the different enzymes involved in the following lipid metabolic pathways. Show schematically the role of each using relevant reactions that they catalyze. Do not forget to label your substrates and products properly. You may illustrate and/or explain elaborately if necessary.1. beta-oxidation2. lipogenesis (towards 1 molecule of triacylglycerol) Your Company decides to clean up its books at the end of the year. You collect $5,000 in receivables and use all of it to pay down $5,000 in payables due to your vendors. What is the effect on the current ratio and on working capital?A) Current Ratio increases, working capital decreases by $5000.B) Current Ratio decreases, working capital increases by $5000.C) Current Ratio remains the same, working capital increases by $5000.D) Current Ratio remains the same, working capital decreases by $5000 An object moves in an elliptical orbit in an inverse square centripetal force field. The ratio of the object's maximum angular speed to its minimum angular speed is given as n. Show that the eccentricity of the object's orbit is A cargo truck traveled 261 miles in 4 hours. About what speed was the truck averaging on this trip?a.65 mphc.55 mphb.1044 mph S For each of the following systems and time intervals, write the appropriate expanded version of Equation 8.2, the conservation of energy equation.(a) the heating coils in your toaster during the first five seconds after you turn the toaster on use the given minimum and maximum data entries, and the number of classes, to find the class width, the lower class limits, and the upper class limits. minimum, maximum, classes