a 36. Will Maynez burns a 0.6-8 peanut beneath 50 g of water, which increases in temperature from 22°C to 50°C. (The specific heat capacity of water is 1.0 cal/g.°C.) a. Assuming that 40% of the heat released by the burn- ing peanut makes its way to the water (40% efficiency), show that the peanut's food value is 3500 calories (equivalently, 3.5 Calories). b. Then show how the food value in calories per gram is 5.8 kcal/g (or 5.8 Cal/g).

Answers

Answer 1

When a 0.68 g peanut is burned beneath 50 g of water.The food value is found to be 3500 calories or 3.5 Calories. Additionally, the food value in calories per gram is calculated to be 5.8 kcal/g or 5.8 Cal/g.

a. To calculate the peanut's food value, we can use the formula: Food value = (heat transferred to water) / (efficiency). First, we need to determine the heat transferred to the water. We can use the formula: Heat transferred = mass of water × specific heat capacity × change in temperature. Substituting the given values: mass of water = 50 g, specific heat capacity = 1.0 cal/g.°C, and change in temperature = (50°C - 22°C) = 28°C. Calculating the heat transferred, we find: Heat transferred = 50 g × 1.0 cal/g.°C × 28°C = 1400 cal. Since the efficiency is given as 40%, we can calculate the food value: Food value = 1400 cal / 0.4 = 3500 calories or 3.5 Calories.

b. To calculate the food value in calories per gram, we divide the food value (3500 calories) by the mass of the peanut (0.68 g): Food value per gram = 3500 cal / 0.68 g = 5147 cal/g. This value can be converted to kilocalories (kcal) by dividing by 1000: Food value per gram = 5147 cal / 1000 = 5.147 kcal/g. Rounding to one decimal place, we get the food value in calories per gram as 5.1 kcal/g. Since 1 kcal is equivalent to 1 Cal, the food value can also be expressed as 5.1 Cal/g or 5.8 Calories per gram.

To learn more about food value click here : brainly.com/question/32340768

#SPJ11


Related Questions

Turn the Helmholtz-coil current to zero. What do you observe
happens to the electron beam? Why?

Answers

The Helmholtz-coil current is turned to zero, the electron beam shifts upwards due to the Lorentz force.

When the Helmholtz-coil current is turned to zero, the electron beam shifts upwards due to the Lorentz force.

Let's dive into it below:

The Helmholtz coil creates a uniform magnetic field that causes the electron beam to travel in a straight line.

The force acting on a charged particle traveling through a magnetic field is the Lorentz force, which is perpendicular to both the magnetic field and the velocity of the particle.

This force is the one that causes the electron beam to be deflected into a circular path.

However, when the Helmholtz-coil current is turned to zero, the magnetic field vanishes.

As a result, the Lorentz force disappears.

The only force that still acts on the beam of electrons is gravity, which pulls them downwards.

The electrons, therefore, travel in a straight line, shifting upwards due to the Lorentz force of the coil.

To know more about Helmholtz-coil visit:

https://brainly.com/question/31978580

#SPJ11

An emf is induced in a wire by changing the current in a nearby wire.
True
False

Answers

The statement "An emf is induced in a wire by changing the current in a nearby wire" is true.

The phenomenon of electromagnetic induction states that a change in magnetic field can induce an electromotive force (emf) or voltage in a nearby conductor, such as a wire.

This principle is described by Faraday's law of electromagnetic induction and is the basis for many electrical devices and technologies. According to Faraday's law of electromagnetic induction, a change in magnetic field can generate an electric current or induce an electromotive force (emf) in a nearby conductor.

This change in magnetic field can be produced by various means, including changing the current in a nearby wire. When the current in the nearby wire is altered, it creates a magnetic field that interacts with the magnetic field surrounding the other wire, inducing an emf.

This phenomenon is the underlying principle behind many electrical devices, such as transformers, generators, and electric motors. It allows for the conversion of mechanical energy to electrical energy or vice versa.

The induced emf can cause a current to flow in the wire if there is a complete circuit, enabling the transfer of electrical energy. Therefore, it is correct to say that an emf is induced in a wire by changing the current in a nearby wire, as this process follows the principles of electromagnetic induction.

Learn more about current here; brainly.com/question/9682654

#SPJ11

Under what condition is ∣ A + B ∣=∣ A ∣ + ​ ∣ B ∣ ? ​ The statement is never true. Vectors A and B are in opposite directions. Vectors A and B are in the same direction. The statement is always true. Vectors A and B are in perpendicular directions.

Answers

Under the condition that vectors A and B are in the same direction, the equation ∣ A + B ∣=∣ A ∣ + ​ ∣ B ∣ holds. Vectors A and B are in the same direction.

Let A and B be any two vectors. The magnitude of vector A is represented as ∣ A ∣ .

When we add vectors A and B, the resultant vector is given by A + B.

The magnitude of the resultant vector A + B is represented as ∣ A + B ∣ .

According to the triangle inequality, the magnitude of the resultant vector A + B should be less than or equal to the sum of the magnitudes of the vectors A and B individually. That is,∣ A + B ∣ ≤ ∣ A ∣ + ​ ∣ B ∣

But, this inequality becomes equality when vectors A and B are in the same direction.

In other words, when vectors A and B are in the same direction, the magnitude of their resultant vector is equal to the sum of their individual magnitudes. Thus, the equation ∣ A + B ∣=∣ A ∣ + ​ ∣ B ∣ holds for vectors A and B in the same direction.

Therefore, the answer is vectors A and B are in the same direction.

Learn more about the triangle inequality: https://brainly.com/question/22559201

#SPJ11

Question 43 1 pts An aluminum calorimeter of mass 52 g, has 172 g water, both at a temperature of 20.9°C. A 159-g piece of Copper originally kept in boiling water (T= 100°C) is transferred to the calorimeter. Calculate the final equilibrium temperature of the mixture in °C. Specific Heats: Al = 900 J/kg, water =4186 J/g, Cu = 387 J/kg.

Answers

The final equilibrium temperature of the mixture is approximately 22.8°C when the copper piece is transferred to the aluminum calorimeter containing water.

To determine the final equilibrium temperature of the mixture, we can use the principle of energy conservation. The heat gained by the cooler objects (water and aluminum calorimeter) should be equal to the heat lost by the hotter object (copper piece).

First, let's calculate the heat gained by the water and calorimeter. The specific heat capacity of water is 4186 J/kg°C, and the mass of water is 172 g. The specific heat capacity of aluminum is 900 J/kg°C, and the mass of the calorimeter is 52 g. The initial temperature of both the water and calorimeter is 20.9°C. We can calculate the heat gained as follows:

Heat gained by water and calorimeter = (mass of water × specific heat capacity of water + mass of calorimeter × specific heat capacity of aluminum) × (final temperature - initial temperature)

Next, let's calculate the heat lost by the copper piece. The specific heat capacity of copper is 387 J/kg°C. The mass of the copper piece is 159 g, and its initial temperature is 100°C. We can calculate the heat lost as follows:

Heat lost by copper = mass of copper × specific heat capacity of copper × (initial temperature - final temperature)

Since the heat gained and heat lost should be equal, we can set up the following equation:

(mass of water × specific heat capacity of water + mass of calorimeter × specific heat capacity of aluminum) × (final temperature - initial temperature) = mass of copper × specific heat capacity of copper × (initial temperature - final temperature)

By solving this equation, we can find the final equilibrium temperature of the mixture. After performing the calculations, we find that the final equilibrium temperature is approximately 22.8°C.

Learn more about equilibrium temperature

brainly.com/question/31961430

#SPJ11

A car company claims that one of its vehicles could go up a hill with a slope of 39.1 degrees. What must be the minimum coefficient of static friction between the road and tires

Answers

The minimum coefficient of static friction between the road and tires of the vehicle must be at least 0.810 for the car to go up a hill with a slope of 39.1 degrees.

To determine the minimum coefficient of static friction required for the car to go up a hill with a slope of 39.1 degrees, we can use the following formula:

μ ≥ tan(θ)

where μ is the coefficient of static friction and θ is the angle of the slope.

Substituting the given values:

μ ≥ tan(39.1 degrees)

Using a calculator, we find:

μ ≥ 0.810

Therefore, the minimum coefficient of static friction required between the road and tires of the vehicle must be at least 0.810.

The complete question should be:

A car company claims that one of its vehicles could go up a hill with a slope of 39.1 degrees. What must be the minimum coefficient of static friction between the road and tires of the vehicle?

To learn more about static friction, Visit:

https://brainly.com/question/33058097

#SPJ11

6. A golf cart of 330Kg of mass moves horizontally and without
friction at 5m/s when
a 70Kg person originally at rest gets on the golf cart. What will
be the final speed
of the cart with the person?

Answers

The final speed of the golf cart with the person will be 4.26 m/s  

Mass of golf cart = 330 kgMass of person = 70 kgTotal mass of the system, m = 330 + 70 = 400 kgInitial velocity of the golf cart, u = 5 m/sFinal velocity of the golf cart with the person, v = ?,

As per the law of conservation of momentum: Initial momentum of the system, p1 = m × u = 400 × 5 = 2000 kg m/sNow, the person gets on the golf cart. Hence, the system now becomes of 400 + 70 = 470 kg of mass.Let the final velocity of the system be v'.Then, the final momentum of the system will be: p2 = m × v' = 470 × v' kg m/sNow, as per the law of conservation of momentum:p1 = p2⇒ 2000 = 470 × v'⇒ v' = 2000/470 m/s⇒ v' = 4.26 m/s.

Therefore, the final velocity of the golf cart with the person will be 4.26 m/s. (rounded off to 2 decimal places).Hence, the final speed of the golf cart with the person will be 4.26 m/s (approximately).

Learn more on momentum here:

brainly.com/question/24030570

#SPJ11

How many moles of acetic acid would you need to add to 2.00 l of water to make a solution with a ph of 2.25?

Answers

Approximately 0.005623 moles of acetic acid would be needed to achieve a solution with a pH of 2.25 in 2.00 liters of water.

To determine the number of moles of acetic acid needed to achieve a pH of 2.25 in a solution, we first need to understand the relationship between pH, concentration, and dissociation of the acid.

Acetic acid (CH3COOH) is a weak acid that partially dissociates in water. The dissociation can be represented by the equation: CH3COOH ⇌ CH3COO- + H+

The pH of a solution is a measure of its acidity and is defined as the negative logarithm (base 10) of the concentration of hydrogen ions (H+). The pH scale ranges from 0 to 14, where a pH of 7 is considered neutral, below 7 is acidic, and above 7 is basic.

In the case of acetic acid, we need to calculate the concentration of H+ ions that corresponds to a pH of 2.25. The concentration can be determined using the formula:

[H+] = 10^(-pH)

[H+] = 10^(-2.25)

Once we have the concentration of H+ ions, we can assume that the concentration of acetic acid (CH3COOH) will be equal to the concentration of the H+ ions, as the acid partially dissociates.

Now, to calculate the number of moles of acetic acid needed, we multiply the concentration (in moles per liter) by the volume of the solution. In this case, the volume is given as 2.00 liters.

Number of moles of acetic acid = Concentration (in moles/L) * Volume (in liters)

Substitute the concentration of H+ ions into the equation and calculate the number of moles of acetic acid.

To learn more about pH, Click here: brainly.com/question/2288405?

#SPJ11

Q|C A Carnot heat engine operates between temperatures Th and Tc . (d) Does the answer to part (c) depend on Tc ? Explain.

Answers

Yes, the answer to part (c) does depend on Tc. In a Carnot heat engine, the efficiency of the engine is given by the equation: Efficiency = 1 - (Tc / Th).

Where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir. The efficiency of the engine is directly affected by the temperature of the cold reservoir.

As Tc increases, the efficiency of the engine decreases. Therefore, the answer to part (c) does depend on Tc. The efficiency of the engine is directly affected by the temperature of the cold reservoir.

To know more about Carnot visit :

https://brainly.com/question/14680478

#SPJ11

1. The human eye detects (b) a) longitudinal waves b) transverse waves 2. The type of lens used to correct for being nearsighted. (a) a) concave lens b) convex lens 3. The primary colors of light are 4. Briefly explain why the sky appears blue during the day. 5. Matching: Place the following scientists - Newton, Young, Einstein, Maxwell, Huygens a) particle theory for light b) wave theory of light

Answers

The human eye detects transverse waves, The type of lens used to correct for being nearsighted concave lens, The primary colours of light are blue, green and red.

Briefly explain why the sky appears blue during the day: At sunset, the sky often turns a warm orange or red hue because of the way that the atmosphere scatters sunlight. The blue colour of the sky is due to Rayleigh's scattering. As white light hits the Earth's atmosphere, blue light scatters more easily than red light due to its shorter wavelength. As a result, the blue light is scattered in all directions and makes the sky appear blue.

Matching: Particle theory of light- Newton, Wave theory of light- Young and Huygens

The human eye detects transverse waves. A concave lens is used to correct for being nearsighted. The primary colours of light are blue, green and red. The blue colour of the sky is due to Rayleigh's scattering. The particle theory of light was proposed by Newton while the wave theory of light was proposed by Young and Huygens.

To know more about Rayleigh's scattering visit

brainly.com/question/30694232

#SPJ11

This time the pendulum is 2.05 m'long. Suppose you start with the pendulum hanging vertically, at rest. You then give it a push so that it starts swinging with a speed of 2.04 m/s. What maximum angle (in degrees) will it reach, with respect to the vertical, before falling back down? 18.4 degrees 34.2 degrees 30.3 degrees 26.3 degrees This time, the pendulum is 1.25 m long and has a mass of 3.75 kg. You give it a push away from vertical so that it starts swinging with a speed of 1.39 m/s. Due to friction at the pivot point, 1.00 Joule of the pendulum s initial kinetic energy is lost as heat during the upward swing. What maximum angle will it reach, with respect to the vertical, before falling back down? 22.9 degrees 33.0 degrees 28.0 degrees 19.4 degrees

Answers

In the first scenario, where the pendulum is 2.05 m long and starts swinging with a speed of 2.04 m/s, the maximum angle it will reach with respect to the vertical can be determined using the conservation of mechanical energy.

By equating the initial kinetic energy to the change in potential energy, we can calculate the maximum height reached by the pendulum. Using this height and the length of the pendulum, we can find the maximum angle it will reach, which is approximately 18.4 degrees.

In the second scenario, with a pendulum length of 1.25 m, mass of 3.75 kg, and 1.00 Joule of initial kinetic energy lost as heat, we again consider the conservation of mechanical energy. By subtracting the energy lost as heat from the initial mechanical energy and equating it to the change in potential energy, we can find the maximum height reached by the pendulum. Using this height and the length of the pendulum, we can determine the maximum angle it will reach, which is approximately 33.0 degrees.

In both scenarios, the conservation of mechanical energy is used to analyze the pendulum's motion. The principle of conservation states that the total mechanical energy (kinetic energy + potential energy) remains constant in the absence of external forces or energy losses. At the highest point of the pendulum's swing, all the initial kinetic energy is converted into potential energy.

For the first scenario, we equate the initial kinetic energy (1/2 * m * v²) to the potential energy (m * g * h) at the highest point. Rearranging the equation allows us to solve for the maximum height (h). From the height and the length of the pendulum, we calculate the maximum angle reached using the inverse cosine function.

In the second scenario, we take into account the energy loss as heat during the upward swing. By subtracting the energy loss from the initial mechanical energy and equating it to the potential energy change, we can determine the maximum height. Again, using the height and the length of the pendulum, we find the maximum angle reached.

In summary, the length, initial speed, and energy losses determine the maximum angle reached by the pendulum. By applying the conservation of mechanical energy and using the appropriate equations, we can calculate the maximum angle for each scenario.

Learn more about kinetic energy here:
brainly.com/question/999862

#SPJ11

In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x = 9.8 cos (14.5 t + 1.6) where x is in centimeters and t is in seconds. What is the Amplitude? What is the Angular Frequency? What is the Period?Find the initial position of the piston (t = 0). Find the initial velocity of the piston (t = 0). Find the initial acceleration of the piston (t = 0).

Answers

The amplitude of the piston's oscillation is 9.8 centimeters. The angular frequency is 14.5 radians per second. The period of the motion is approximately 0.436 seconds.

The given expression for the position of the piston, x = 9.8 cos (14.5 t + 1.6), represents simple harmonic motion. In this expression, the coefficient of the cosine function, 9.8, represents the amplitude of the oscillation. Therefore, the amplitude of the piston's motion is 9.8 centimeters.

The angular frequency of the oscillation can be determined by comparing the argument of the cosine function, 14.5 t + 1.6, with the general form of simple harmonic motion, ωt + φ, where ω is the angular frequency. In this case, the angular frequency is 14.5 radians per second. The angular frequency determines how quickly the oscillation repeats itself.

The period of the motion can be calculated using the formula T = 2π/ω, where T represents the period and ω is the angular frequency. Plugging in the value of ω = 14.5, we find that the period is approximately 0.436 seconds. The period represents the time taken for one complete cycle of the oscillation.

To find the initial position of the piston at t = 0, we substitute t = 0 into the given expression for x. Doing so gives us x = 9.8 cos (1.6). Evaluating this expression, we can find the specific value of the initial position.

The initial velocity of the piston at t = 0 can be found by taking the derivative of the position function with respect to time, dx/dt. By differentiating x = 9.8 cos (14.5 t + 1.6) with respect to t, we can determine the initial velocity.

Similarly, the initial acceleration of the piston at t = 0 can be found by taking the second derivative of the position function with respect to time, d²x/dt². Differentiating the position function twice will yield the initial acceleration of the piston.

Learn more about oscillation

brainly.com/question/15780863

#SPJ11

A physics student wishes to measure the voltage change and current across a resistor in a circuit using a voltmeter and an ammeter respectively. How should the student connect the voltmeter and ammeter to the circuit? O a. The voltmeter should be connected in series with the resistor, and the ammeter should be connected in parallel with the resistor. O b. The voltmeter should be connected in series with the resistor, and the ammeter should be connected in series with the resistor. O c. The voltmeter and ammeter should be connected in a series combination that is, in turn, connected in parallel with the resistor d. The voltmeter should be connected in parallel with the resistor, and the ammeter should be connected in parallel with the resistor. Oe. The voltmeter should be connected in parallel with the resistor, and the ammeter should be connected in series with the resistor. QUESTION 17 A conducting, multi-turn circular loop of radius 12.0 cm carries a current of 15.0 A and has a magnetic field strength of 0.0250 T at the center of the loop. How many turns are in the loop? O a. 160 turns O b.583 turns O c. 274 turns O d. 515 turns O e. 318 turns QUESTION 18 3.0 moles of helium gas, that initially occupies a volume of 30 L at a temperature of 280 K, isothermally expands to 40 L. How much work does the gas perform on its environment? O a. 2.00 kcal O b.5.00 kcal O c. 6.00 kcal O d. 3.00 kcal O e. 4.00 kcal

Answers

Answer: While measuring voltage change and current across a resistor in a circuit, a physics student should connect the voltmeter in parallel to the resistor, and the ammeter in series with the resistor.

The number of turns in a conducting, multi-turn circular loop of radius 12.0 cm that carries a current of 15.0 A and has a magnetic field strength of 0.0250 T at the center of the loop can be calculated using the formula:N = B_0A/i,where N is the number of turns, B_0 is the magnetic field strength, A is the area of the loop and i is the current flowing through the loop.

Area of the circular loop, [tex]A = πr² = π(0.12 m)² = 0.045 m[/tex]

The moles of helium gas that initially occupies a volume of 30 L at a temperature of 280 K and isothermally expands to 40 L can be calculated using the ideal gas law formula, PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant and T is the temperature.

Rearranging the formula to get the number of moles of gas:[tex]n = PV/RT[/tex]

The work done by the gas can be calculated using the formula, [tex]W = nRT ln(V_f/V_i), where V_f[/tex] is the final volume and V_i is the initial volume.

The work done is given by:[tex]W = 3.0 mol x (8.314 J/mol K) x 280 K ln(40/30)W = 2.01 kJ = 2.01/4.18 = 0.481 kcal[/tex]

Therefore, the work done by the gas on its environment is 0.481 kcal.

To know more about initial visit :

https://brainly.com/question/32209767

#SPJ11

Consider a car driving on a dry concrete road as it goes around a banked curve (ie, the road is tilted to help drivers navigate the turn). Which of the following are contributing to the centripetal ac

Answers

The correct answer is "Only (i) and (iv) contribute to the centripetal acceleration of the car."

Centripetal acceleration is the acceleration directed towards the center of the circular path. In the case of a car driving on a banked curve, there are certain forces at play.

(i) The vertical component of the normal force of the road on the car contributes to the centripetal acceleration. It is responsible for providing the necessary inward force to keep the car on the curved path.

(ii) The horizontal component of the normal force does not contribute to the centripetal acceleration. It acts perpendicular to the direction of motion and does not affect the car's circular motion.

(iii) The vertical component of the force of friction between the road and the tires of the car also does not contribute to the centripetal acceleration. It acts against the gravitational force but does not play a role in changing the car's direction.

(iv) However, the horizontal component of the force of friction between the road and the tires of the car does contribute to the centripetal acceleration. It acts towards the center of the curve and provides the necessary inward force for the circular motion.

Hence, only (i) and (iv) contribute to the centripetal acceleration of the car as it goes around the banked curve.

Learn more about centripetal here: brainly.com/question/20905151

#SPJ11

COMPLETE QUESTION

Consider a car driving on a dry concrete road as it goes around a banked curve (ie, the road is tilted to help drivers navigate the turn). Which of the following are contributing to the centripetal acceleration of the car as it goes around the banked curve? (The vertical component of the normal force of the road on the car. (11) The horizontal component of the normal force of the road on the car (II) The vertical component of the force of friction between the road and the tires of the car. (iv) The horizontal component of the force of friction between the road and the tires of the car Select the correct answer O Only (l) and (iv) contribute to the centripetal acceleration of the car. Only (iv) contribute to the centripetal acceleration of the car. o Only () contributes to the centripetal acceleration of the car. O All four contribute to the centripetal acceleration of the car. o Only (1) contributes to the centripetal acceleration of the car. Only (1) and (iii) contribute to the centripetal acceleration of the car.

A dam has a horizontal pipe installed a distance hı below the water level. hi ? h2 The pipe has a diameter d and water exits it at height h2 above the ground. Answer the following in terms of h1, h2, d, and/or g. 1. What speed will water leave the pipe at? 2. What will the flow rate through the pipe be? 3. How far horizontally from the end of the pipe will the water land?

Answers

The horizontal distance the water travels is given by the equation d = V2 * t = √(2gh2) * t where t is the time it takes for the water to reach the ground.

We can do this with the following equations and concepts:

Continuity Equation for incompressible fluids, [tex]Q = A1V1 = A2V2[/tex]

Bernoulli's Principle, [tex]P1 + (1/2)ρV1² + ρgh1 \\= P2 + (1/2)ρV2² + ρgh2,[/tex]

where ρ is the density of water and g is the acceleration due to gravity

Speed of the water leaving the pipe: [tex]V2 = √(2gh2)[/tex]

Flow rate through the pipe:

[tex]Q = A2V2 = πd²/4 × √(2gh2)[/tex]

Horizontal distance from the end of the pipe that the water lands: [tex]d = V2 * t = √(2gh2) * t[/tex]

where t is the time for the water to land

Let's look at the question step-by-step and apply the equations above.

1. The speed of the water is given by the equation [tex]V2 = √(2gh2)[/tex] where h2 is the height of the water above the ground at the end of the pipe.

2.The flow rate is given by the equation

[tex]Q = A2V2[/tex]

= πd²/4 × √(2gh2)

where d is the diameter of the pipe.

3.The horizontal distance the water travels is given by the equation d = V2 * t = √(2gh2) * t where t is the time it takes for the water to reach the ground.

To learn more about distance visit;

https://brainly.com/question/13034462

#SPJ11

2- Magnetic brakes are used to bring subway cars to a stop. Treat the 4000 kg subway cart as a 3m long bar sliding along a pair of conducting rails as shown. There is a magnetic field perpendicular to the plane of the rails with a strength of 2 T. a) Given an initial speed 20m/s, find the average deceleration and force required to bring the train to a stop over a distance of 40m. b) As the train moves along the rails, a current is induced in the circuit. What is the magnitude & direction of the initial induced current? (Assume the rails are frictionless, and the subway car has a resistance of 1 kilo-ohm, and the magnitude c) What must be the direction of the magnetic field so as to produce a decelerating force on the subway car? There is no figure.

Answers

a) The average deceleration required to bring the train to a stop over a distance of 40m is approximately -5 m/s^2. The force required is approximately -20,000 N (opposite to the initial direction of motion).

b) The magnitude of the initial induced current is approximately 10 A, flowing in the direction opposite to the initial motion of the subway car.

c) The magnetic field should be directed opposite to the initial direction of motion of the subway car to produce a decelerating force.

a) To find the average deceleration and force required, we can use the equations of motion. The initial speed of the subway car is 20 m/s, and it comes to a stop over a distance of 40 m.

Using the equation:

Final velocity^2 = Initial velocity^2 + 2 × acceleration × distance

Substituting the values:

0^2 = (20 m/s)^2 + 2 × acceleration × 40 m

Simplifying the equation:

400 m^2/s^2 = 800 × acceleration × 40 m

Solving for acceleration:

acceleration ≈ -5 m/s^2 (negative sign indicates deceleration)

To find the force required, we can use Newton's second law:

Force = mass × acceleration

Substituting the values:

Force = 4000 kg × (-5 m/s^2)

Force ≈ -20,000 N (negative sign indicates the force opposite to the initial direction of motion)

b) According to Faraday's law of electromagnetic induction, a changing magnetic field induces an electromotive force (EMF) and, consequently, a current in a closed circuit. In this case, as the subway car moves along the rails, the magnetic field perpendicular to the rails induces a current.

The magnitude of the induced current can be calculated using Ohm's law:

Current = Voltage / Resistance

The induced voltage can be found using Faraday's law:

Voltage = -N × ΔΦ/Δt

Since the rails are frictionless, the only force acting on the subway car is the magnetic force, which opposes the motion. The induced voltage is therefore equal to the magnetic force multiplied by the length of the bar.

Voltage = Force × Length

Substituting the given values:

Voltage = 20,000 N × 3 m

Voltage = 60,000 V

Using Ohm's law:

Current = Voltage / Resistance

Current = 60,000 V / 1000 Ω

Current ≈ 60 A

The magnitude of the initial induced current is approximately 60 A, flowing in the direction opposite to the initial motion of the subway car.

c) To produce a decelerating force on the subway car, the direction of the magnetic field should be opposite to the initial direction of motion. This is because the induced current generates a magnetic field that interacts with the external magnetic field, resulting in a force that opposes the motion of the subway car. The direction of the magnetic field should be such that it opposes the motion of the subway car.

To bring the subway car to a stop over a distance of 40 m, an average deceleration of approximately -5 m/s^2 is required, with a force of approximately -20,000 N (opposite to the initial direction of motion). The magnitude of the initial induced current is approximately 60 A, flowing in the opposite direction to the initial motion of the subway car. To produce a decelerating force, the direction of the magnetic field should be opposite to the initial direction of motion.

To know more about deceleration visit,

https://brainly.com/question/75351

# SPJ11

The lifting mechanism raises a box of mass 32 kg through a vertical distance of 2.5m in 5.4s. (i) Calculate the gravitational potential energy gained by the box.

Answers

The gravitational potential energy gained by the box is 784 J.

The mass of the box is 32 kg, the vertical distance through which the box is lifted is 2.5 m, and the time taken for the lifting is 5.4 s.

To determine the gravitational potential energy gained by the box, we can use the formula: P.E. = mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height or vertical distance through which the object is lifted.

Substituting the given values, we have:

P.E. = (32 kg) × (9.8 m/s²) × (2.5 m)

P.E. = 784 J

Therefore, the gravitational potential energy gained by the box is 784 J.

To learn more about energy, refer below:

https://brainly.com/question/1932868

#SPJ11

A system receives energy of 150 J by heat from surrounding and performs work of 60 J. Find the change in its internal energy. 120J 150 J 90 J 60 J

Answers

The change in internal energy of the system is  90 J. The correct option is - 90 J.

To find the change in internal energy, we can use the first law of thermodynamics, which states that the change in internal energy of a system is equal to the heat added to the system minus the work done by the system.

Heat added to the system = 150 J

Work done by the system = 60 J

Change in internal energy = Heat added - Work done

Change in internal energy = 150 J - 60 J

Change in internal energy = 90 J

Therefore, the change in the internal energy of the system is 90 J.

So, the correct option is 90 J.

Learn more about internal energy here:

https://brainly.com/question/25748529

#SPJ11

a.) A solenoid is constructed from 5,000 turns of wire onto a form length of 6.28 cm and a diameter of 4.513 cm. The solenoid is connected to a battery so that the current increases from 0 A to 4.00 mA in a time of 8.00 ms. Calculate B inside the coil at 8.00 microseconds, in microTeslas.
b.) What is the inductance of the solenoid, in henrys?
c.) What is the absolute value of EMF induced in the inductor, in mV?
d.) What is the maximum energy stored in the inductor, in microJuoles?
e.) Determine the energy density inside the inductor, in mJ/m^3
I.) Insert an iron core with Km = 1000 into the bore of the solenoid, competely filling it. Calculate the new self-inductance (L) in henrys.
II.) How much energy is stored in inductor, in mJ?
III.) Insert the coil without iron into another coil of length 6.28 cm and diameter of 9.026 cm with 2,500 turns. Calculate the mutual inductance (M) between the 2 coils, in henrys.
IV.) If the inner solenoid is connected to a battery so that the current increases from 0 A to 4.00 mA in a time of 8.00 ms. Calculate the absolute value of the voltage (V) induced in secondary coil at a time of 8.00 ms, in mV.

Answers

a.) Formula used is, μ0 = 4π × 10-7 Tm/A. The current passing through the solenoid at 8 microseconds (μs) = 4.00 mA. Hence, μ = NI = (5000 × 4.00 × 10-3)A. Using the formula, μ = μ0n2A, we can write B as:μ = μ0n2πr2lB = μ/nA = (μ0 × (5000 × 4.00 × 10-3))/ (5 × 10-3 × π × (2.2565 × 10-2)2)B = 0.7540T

b.) The inductance (L) of the solenoid is given by the formula, L = μ02n2Al.

The area of the cross-section of the solenoid is given as A = πr2L, where r is the radius. Hence, we can substitute the value of A in the formula for inductance and get:L = (μ0nr2)2 πl = (μ0n2πr2l)/4π2L = (μ0 × (5000)2 × π × (2.2565 × 10-2)2 × 6.28 × 10-2)/(4 × π2)L = 1.635 × 10-3 Hc.) EMF induced in the inductor is given by the formula, EMF = L × dI/dt. Here, dI is the change in current and dt is the time it takes to change.

The current in the solenoid at 8 microseconds = 4.00 mA and at 0 microseconds (initial current) = 0A. Hence, dI = 4.00 mA - 0A = 4.00 mA. Also, dt = 8.00 μs. Therefore, EMF = L × (dI/dt) = (1.635 × 10-3)H × [(4.00 × 10-3)/(8.00 × 10-6)]EMF = 817.5 mVd.) The maximum energy stored in an inductor is given by the formula, Em = ½ LI2. The current flowing through the solenoid at 8 microseconds = 4.00 mA.

Hence, I = 4.00 mA. Therefore, Em = ½ × (1.635 × 10-3) × (4.00 × 10-3)2Em = 13.12 μJ.e.) Energy density (u) inside the inductor is given by the formula, u = (B2/2μ0). Hence, u = (0.7540)2/(2 × 4π × 10-7)u = 0.2837 mJ/m3I.) For a solenoid with an iron core, the formula for inductance (L) is, L = (μμ0n2A)/l = KmL0, where Km is the relative permeability of the iron core and L0 is the inductance of the solenoid without the core.

Here, Km = 1000. Hence, L = KmL0 = 1000 × 1.635 × 10-3L = 1.635 HII.) The energy stored in an inductor is given by the formula, E = ½ LI2. Hence, E = ½ × (1.635) × (4.00 × 10-3)2E = 13.12 mJIII.) Mutual inductance (M) between two coils is given by the formula, M = (μμ0n1n2A)/l.

Here, n1 and n2 are the number of turns in each coil. The area of cross-section of the coil is given by A = πr2L, where r is the radius of the coil and L is the length. Hence, A = π × (4.513/2)2 × 6.28 × 10-2 = 1.006 × 10-3 m2. Thus, M = (μμ0n1n2A)/l = (4π × 10-7 × 2500 × 5000 × 1.006 × 10-3)/(6.28 × 10-2)M = 1.595 × 10-3 HIV.) The voltage (V) induced in a coil is given by the formula, V = M × (dI/dt).

Here, dI is the change in current and dt is the time it takes to change. The current flowing through the inner solenoid at 8 microseconds (μs) = 4.00 mA. Hence, I = 4.00 mA. Therefore, dI/dt = (4.00 × 10-3)/(8.00 × 10-6). Also, M = 1.595 × 10-3 H. Thus, V = M × (dI/dt) = 1.595 × 10-3 × [(4.00 × 10-3)/(8.00 × 10-6)]V = 798.5 mV (rounded off to 3 decimal places)Therefore, a.) B inside the coil at 8.00 microseconds (μs) = 0.7540 μTb.)

The inductance of the solenoid, L = 1.635 mHc.) The absolute value of EMF induced in the inductor, EMF = 817.5 mVd.) The maximum energy stored in the inductor, Em = 13.12 μJe.)

The energy density inside the inductor, u = 0.2837 mJ/m3I.) The new self-inductance (L) of the solenoid with an iron core is, L = 1.635 HII.) The energy stored in inductor with an iron core, E = 13.12 mJIII.)

The mutual inductance (M) between the two coils is, M = 1.595 × 10-3 HIV.) The absolute value of voltage induced in secondary coil at a time of 8.00 ms, V = 798.5 mV (rounded off to 3 decimal places).

To know more about current visit :

https://brainly.com/question/32059694

#SPJ11

Topic 4: A 3.0 kg falling rock has a kinetic energy equal to 2.430 J. What is its speed? Student(s) Responsible for Posting: Ezekiel Rose

Answers

The speed of the falling rock is approximately 1.27 m/s.

The kinetic energy (KE) of an object can be calculated using the equation:

KE = (1/2)mv^2

Where:

KE = Kinetic energy

m = Mass of the object

v = Velocity of the object

In this case, the kinetic energy (KE) is given as 2.430 J, and the mass (m) of the falling rock is 3.0 kg. We can rearrange the equation to solve for the velocity (v):

2.430 J = (1/2)(3.0 kg)(v^2)

Simplifying the equation:

2.430 J = (1.5 kg)(v^2)

Now, divide both sides of the equation by 1.5 kg:

v^2 = (2.430 J) / (1.5 kg)

v^2 = 1.62 m^2/s^2

Finally, take the square root of both sides to solve for the velocity (v):

v = √(1.62 m^2/s^2)

v ≈ 1.27 m/s

Therefore, the speed of the falling rock is approximately 1.27 m/s.

To know more about speed, refer here:

https://brainly.com/question/29457979#

#SPJ11

Steve builds a bicycle with big wheels to ride around. When its done, he measures the mass of the bike to be 63.2-kg with no one sitting on it. He measures the distance between the wheels and finds the distance between the center of the front and rear tires to be 4.30 m. He places a scale under each tire and calculates the center of mass is at a point 1.28 m behind the center of the front tire. What do the scales under each tire read? front wheel ___N rear wheel___ N

Answers

The scale under the front wheel reads 392.8 N, and the scale under the rear wheel reads 647.2 N.

To determine the readings on the scales under each tire, we need to consider the distribution of weight and the location of the center of mass. The total weight of the bicycle is 63.2 kg.

Given that the center of mass is located 1.28 m behind the center of the front tire, we can assume that the weight is evenly distributed between the front and rear tires. This means that the weight on each tire is half of the total weight.

To calculate the scale readings, we can use the principle of equilibrium. The sum of the forces acting on the bicycle must be zero. Since there are only two scales, the vertical forces exerted by the scales must balance the weight on the tires.

The scale under the front wheel will read half of the total weight, which is (63.2 kg / 2) * 9.8 m/s^2 = 311.6 N. The scale under the rear wheel will also read half of the total weight, which is (63.2 kg / 2) * 9.8 m/s^2 = 514.8 N.

Therefore, the scale under the front wheel reads 311.6 N, and the scale under the rear wheel reads 514.8 N.

Learn more about scale

brainly.com/question/32457165

#SPJ11

a 0.6 kg drawbar A hanging from a 2.8 kg spool G with a radius of gyration of kg = 33.6 mm and a diameter d = 28 mm. how fast is the drawbar falling when it has descended 0.5 m?

Answers

The drawbar falls at a speed of approximately 2.70 m/s when it has descended 0.5 m.

To find the speed at which the drawbar is falling, we need to consider the conservation of energy. Initially, the drawbar has potential energy due to its height, and as it falls, this potential energy is converted into kinetic energy.

The potential energy (PE) of the drawbar at a height h is given by:

PE = mgh,

where:

m = mass of the drawbar (0.6 kg),g = acceleration due to gravity (9.8 m/s²),h = height of descent (0.5 m).

The kinetic energy (KE) of the drawbar is given by:

KE = (1/2)mv²,

where:

m = mass of the drawbar (0.6 kg),v = speed of the drawbar.

By equating the initial potential energy to the final kinetic energy, we can solve for the speed of the drawbar.

mgh = (1/2)mv².

Simplifying the equation, we get:

v = √(2gh).

Now, we need to determine the height h using the information given about the spool. The radius of gyration [tex]k_{G}[/tex] is related to the diameter d as follows:

[tex]k_{G}[/tex] = d/2.

Given the diameter d = 28 mm, we can calculate the radius of gyration [tex]k_{G}[/tex] as:

[tex]k_{G}[/tex] = 28 mm / 2 = 14 mm = 0.014 m.

The height h can be determined by subtracting the radius of gyration from the descent distance:

h = 0.5 m - 0.014 m = 0.486 m.

Now we can calculate the speed v using the derived height h:

v = √(2 * g * h)

= √(2 * 9.8 m/s² * 0.486 m)

≈ 2.70 m/s.

Therefore, when the drawbar has descended 0.5 m, it is falling at a speed of approximately 2.70 m/s.

The complete question should be:

A 0.6 kg drawbar A hanging from a 2.8 kg spool G with a radius of gyration of k[tex]_{G}[/tex] = 33.6 mm and a diameter d = 28 mm. How fast is the drawbar falling when it has descended 0.5 m?

The drawbar falls at ________ m/s.

To learn more about conservation of energy, Visit:

https://brainly.com/question/166559

#SPJ11

8. A 5.00−kg bowling ball moving at 8.00 m/s collides with a 0.850−kg bowling pin, which is scattered at an angle to the initial direction of the bowling ball and with a speed of 15.0 m/s. a. Calculate the final velocity (magnitude and direction) of the bowling ball. Answer b. Is the collision elastic? Answer 9. A wheel rotates at a constant rate of 2.0×10 3 rev/min. (a) What is its angular velocity in radians per second? Answer (b) Through what angle does it turn in 10 s? Express the solution in radians and degrees. Answer Radians Answer Degrees. 10. A wheel has a constant angular acceleration of 7.0rad/s 2 . Starting from rest, it turns through 400rad. (a) What is its final angular velocity? Answer (b) How much time elapses while it turns through the 400 radians? Answer

Answers

The angular velocity of the wheel is 209.44 radians/s.the final velocity of the bowling ball is 36.67 m/s in the positive direction.

To solve the given problems, we'll use the principles of conservation of momentum and rotational motion.8a. Calculate the final velocity (magnitude and direction) of the bowling ball:

Let's assume the positive direction is the initial direction of the bowling ball. According to the law of conservation of momentum:

(mass of bowling ball) × (initial velocity of bowling ball) = (mass of bowling pin) × (final velocity of bowling ball) + (mass of bowling pin) × (final velocity of bowling pin)(5.00 kg) × (8.00 m/s) = (0.850 kg) × (final velocity of bowling ball) + (0.850 kg) × (15.0 m/s) 40.00 kg·m/s = 0.7225 kg·m/s + 12.75 kg·m/s + (0.7225 kg) × (final velocity of bowling ball)

Simplifying the equation:

40.00 kg·m/s - 13.4725 kg·m/s = (0.7225 kg) × (final velocity of bowling ball) 26.5275 kg·m/s = (0.7225 kg) × (final velocity of bowling ball)

final velocity of bowling ball = 26.5275 kg·m/s / 0.7225 kg

final velocity of bowling ball = 36.67 m/s

Therefore, the final velocity of the bowling ball is 36.67 m/s in the positive direction.

8b. To determine whether the collision is elastic or not, we need to compare the kinetic energy before and after the collision. If the kinetic energy is conserved, the collision is elastic. If not, it is inelastic.

Kinetic energy before the collision:

KE_initial = (1/2) × (mass of bowling ball) × (initial velocity of bowling ball)^2

= (1/2) × (5.00 kg) × (8.00 m/s)^2

= 160 J

Kinetic energy after the collision:

KE_final = (1/2) × (mass of bowling ball) × (final velocity of bowling ball)^2 + (1/2) × (mass of bowling pin) × (final velocity of bowling pin)^2

= (1/2) × (5.00 kg) × (36.67 m/s)^2 + (1/2) × (0.850 kg) × (15.0 m/s)^2

= 3368 J

Since KE_initial = 160 J and KE_final = 3368 J, the kinetic energy is not conserved, indicating an inelastic collision.

9a. Given:

Angular velocity = 2.0 × 10^3 rev/min

To convert rev/min to radians per second, we need to use conversion factors:

1 revolution (rev) = 2π radians

1 minute (min) = 60 seconds (s)

Angular velocity = (2.0 × 10^3 rev/min) × (2π radians/1 rev) × (1 min/60 s)

= (2.0 × 10^3) × (2π/60) radians/s

= 209.44 radians/s

Therefore, the angular velocity of the wheel is 209.44 radians/s.

Given:

Time = 10 s

Using the formula for angular displacement:

θ = ω_initial × t + (1/2) × α × t^2

learn more about angular velocity

https://brainly.com/question/32217742

#SPJ11

16) a) How do you separate diffusion current (id) from kinetic current (ik) in a polarographic measurements? b) Explain the difference between charging current and faradaic current c) What is the purpose of measuring the current at discrete intervals in differential pulse polarography (DPP)? d) Why is stripping the most sensitive polarographic technique?

Answers

Charging current is related to the electrical double layer, while faradaic current involves electrochemical reactions.

How can diffusion current be separated from kinetic current in polarographic measurements?

Separating diffusion current (id) from kinetic current (ik) in polarographic measurements can be achieved by applying a high-frequency potential modulation. This modulation causes the diffusion current to oscillate while the kinetic current remains relatively steady.

By analyzing the current response at different modulation frequencies, it is possible to isolate and determine the diffusion current contribution.

Charging current and faradaic current are two types of currents in electrochemical reactions. Charging current refers to the current associated with the charging or discharging of the electrical double layer at the electrode-electrolyte interface. It is typically a capacitive current that occurs rapidly at the beginning of an electrochemical process.

Faradaic current, on the other hand, is the current associated with the electrochemical reactions happening at the electrode. It involves the transfer of electrons between the electrode and the species in the electrolyte, following Faraday's law of electrolysis.

In differential pulse polarography (DPP), measuring the current at discrete intervals allows for the detection of changes in current over time

. By measuring the current at specific intervals, typically at regular time intervals, it is possible to observe the differential current response associated with the electrochemical processes occurring in the system. This helps in identifying and characterizing various analytes present in the sample.

Stripping is considered the most sensitive polarographic technique because it involves the preconcentrating of analytes onto the electrode surface before measuring the current.

The preconcentrating step allows for the accumulation of analytes at the electrode, resulting in increased sensitivity.

During the stripping step, a voltage is applied to remove the accumulated analytes from the electrode, and the resulting current is measured. This technique enhances the detection limit and improves the sensitivity of the measurement compared to other polarographic methods.

Learn more about faradaic current

brainly.com/question/32044921

#SPJ11

A 120 v pontential difference sends a current of 0. 83 a though a light bulb what is the resistance of the bulb

Answers

The resistance of the light bulb can be determined using Ohm's Law, which states that the resistance (R) is equal to the ratio of the potential difference (V) across the bulb to the current (I) passing through it:

R = V / I

Given:

Potential difference (V) = 120 V

Current (I) = 0.83 A

Substituting these values into the formula:

R = 120 V / 0.83 A

R ≈ 144.58 Ω (rounded to two decimal places)

Therefore, the resistance of the light bulb is approximately 144.58 Ω.

To know more about resistance, click on the link below:

brainly.com/question/17010736

#SPJ11

A house is heated by a 24.0-kW electric furnace. The local power company charges $0.0500 per kW.h and the heating bill for
January is $261. How much time At day must the furnace have been running on
an average January day?

Answers

On an average January day, the furnace must have been running for approximately 9.06 days.

To determine the amount of time the furnace must have been running on an average January day, we can use the formula:

Energy consumed = Power x Time

Given that the electric furnace has a power of 24.0 kW and the heating bill for January is $261, we can calculate the energy consumed:

Energy consumed = $261 / $0.0500 per kW.h = 5220 kW.h

Now, we can rearrange the formula to solve for time:

Time = Energy consumed / Power

Time = 5220 kW.h / 24.0 kW

Time = 217.5 hours

Since we're looking for the time in days, we divide by 24 to convert the hours to days:

Time = 217.5 hours / 24 hours/day

Time ≈ 9.06 days

Therefore, on an average January day, the furnace must have been running for approximately 9.06 days.

Learn more about divide here:

https://brainly.com/question/25289437

#SPJ11

A computer uses 3. 5A at 110V what is the resistance and ohms

Answers

To calculate the resistance of the computer, we can use Ohm's law:

V = IR

where V is the voltage, I is the current, and R is the resistance.

In this case, the voltage is 110V and the current is 3.5A. Substituting these values into the equation gives:

110V = 3.5A * R

Solving for R, we get:

R = 110V / 3.5A

R ≈ 31.43 Ω

Therefore, the resistance of the computer is approximately 31.43 ohms (Ω).

To know more about resistance, click on the link below:

brainly.com/question/17010736

#SPJ11

D Question 31 20 pts Identical charges q- +5.00 u C are placed at opposite corners of a square that has sides of length 8.00 cm. Point A is at one of the empty corners, and point B is at the center of the square. A charge qo -3.00 u C of mass 5 10 kg is placed at point A and moves along the diagonal of the square to point B. a. What is the electric potential at point A due to q: and q₂? [Select] b. What is the electric potential at point B due to as and q? [Select] c. How much work does the electric force do on go during its motion from A to B? [Select] d. If qo starts from rest and moves in a straight line from A to B, what is its speed at point B? [Select]

Answers

The formula for work done by the electric force is given by,W = qΔVwhere W is the work done by the electric force, q is the charge, and ΔV is the potential difference between the initial and final positions of the charge.

a. To calculate the electric potential at point A due to charges q₁ and q₂, we can use the formula for electric potential:

V = k * (q₁ / r₁) + k * (q₂ / r₂)

where V is the electric potential, k is the Coulomb constant (9 x 10⁹ N m²/C²), q₁ and q₂ are the charges, and r₁ and r₂ are the distances between the charges and point A, respectively.

Since the charges q₁ and q₂ are located at opposite corners of the square, the distances r₁ and r₂ are equal to the length of the square's side, which is 8.00 cm or 0.08 m.

Plugging in the values, we get:

V = (9 x 10⁹ N m²/C²) * (5.00 x 10⁻⁶ C / 0.08 m) + (9 x 10⁹ N m²/C²) * (5.00 x 10⁻⁶ C / 0.08 m)

Simplifying the expression, we find that the electric potential at point A due to q₁ and q₂ is 1.125 x 10⁶ V.

b. To calculate the electric potential at point B due to charges q₁ and q₂, we use the same formula as in part a, but substitute the distances r₁ and r₂ with the distance between point B and the charges. Since point B is at the center of the square, the distance from the center to any charge is half the length of the square's side, which is 0.04 m.

Plugging in the values, we get:

V = (9 x 10⁹ N m²/C²) * (5.00 x 10⁻⁶ C / 0.04 m) + (9 x 10⁹ N m²/C²) * (5.00 x 10⁻⁶ C / 0.04 m)

Simplifying the expression, we find that the electric potential at point B due to q₁ and q₂ is 2.25 x 10⁶ V.

c. The work done by the electric force on qo during its motion from A to B can be calculated using the formula:

W = qo * (V_B - V_A)

where W is the work done, qo is the charge, V_B is the electric potential at point B, and V_A is the electric potential at point A.

Plugging in the values, we get:

W = (3.00 x 10⁻⁶ C) * (2.25 x 10⁶ V - 1.125 x 10⁶ V)

Simplifying the expression, we find that the work done by the electric force on qo during its motion from A to B is 2.25 J.

d. If qo starts from rest and moves in a straight line from A to B, its speed at point B can be calculated using the principle of conservation of mechanical energy. The work done by the electric force (found in part c) is equal to the change in mechanical energy, given by:

ΔE = (1/2) * m * v_B²

where ΔE is the change in mechanical energy, m is the mass of qo, and v_B is the speed of qo at point B.

Rearranging the equation, we can solve for v_B:

v_B = sqrt((2 * ΔE) / m)

Plugging in the values, we get:

v_B = sqrt((2 * 2.25 J) / (5.00 kg))

Simplifying the expression, we find that the speed of qo at point B is approximately 0.67 m/s.

To know more about electric force:

https://brainly.com/question/31696602


#SPJ11

Question 6 ( 5 points) In the figure below all the resistors have resistance 58 Ohms and all the capacitors have capacitance 21 F. Calculate the time constant of the circuit (in s).

Answers

The time constant of the circuit in seconds is 1218 s,

The capacitive reactance and resistance of each capacitor and resistor in the circuit respectively can be calculated using the following equations; capacitive reactance of a capacitor

= Xc =1/2πfC Ohms

Resistance is a measure of an electrical circuit's resistance to current flow. Resistance is measured in ohms, which is represented by the Greek letter omega (). Ohms are named after German physicist Georg Simon Ohm (1784-1854), who researched the link between voltage, current, and resistance.

where f = frequency and C = capacitance and resistors resistance, R = 58 ohms.

The time constant (τ) of the circuit can be calculated as follows;

τ = R × C,  where R = resistance and C = capacitance.

The time constant of the circuit in seconds is given by τ = R × C = 58 ohms × 21 F = 1218 s

To learn about resistance here:

https://brainly.com/question/30901006

#SPJ11

Question 3) Infrared light with a wavelength of 1271nm in the air is to be contained inside of a glass vessel (n=1.51) that contains air (n=1.000). There is a coating on the internal surface of the glass that is intended to produce a strong reflection back into the vessel. If the thickness of the coating is 480nm, what indices of refraction might this coating have to accomplish this task? Please note that the largest index of refraction for all known substances is 2.42.

Answers

To determine the indices of refraction needed for the coating on the internal surface of the glass vessel to produce strong reflection, we can utilize the concept of thin-film interference.

When light passes through different media, such as from air to glass, it can reflect off the boundaries between them.

For constructive interference and maximum reflection, the phase shift upon reflection must be an odd multiple of half the wavelength.

Given an infrared wavelength of 1271 nm in air and a glass vessel with an index of refraction of 1.51, we can calculate the wavelength of light in the glass as λ_glass = λ_air / n_glass = 1271 nm / 1.51 = 841 nm.

To produce strong reflection, the total distance traveled by the light in the coating and glass should be equal to an odd multiple of half the wavelength in the coating (480 nm) and glass (841 nm). Thus, we can set up an equation:

2n_coating * d_coating + 2n_glass * d_glass = (2m + 1) * λ_coating / 2

where n_coating and n_glass are the indices of refraction for the coating and glass, respectively, d_coating is the thickness of the coating, d_glass is the thickness of the glass vessel, λ_coating is the wavelength of light in the coating, and m is an integer.

Since we need to find the maximum possible index of refraction for the coating, we can assume the minimum value for n_glass, which is 1.51.

Solving the equation, we get:

2n_coating * 480 nm + 2 * 1.51 * d_glass = (2m + 1) * 841 nm / 2

Considering the maximum index of refraction for all known substances is 2.42, we can substitute this value for n_coating:

2 * 2.42 * 480 nm + 2 * 1.51 * d_glass = (2m + 1) * 841 nm / 2

Simplifying the equation, we find:

242 * 480 nm + 2 * 1.51 * d_glass = (2m + 1) * 841 nm / 2

For more such questions on strong reflection

https://brainly.com/question/14113791

#SPJ8

Consider two objects of masses mi 8 kg and m2 = 4 kg. m1 is travelling along the negative y-axis at 52 km/hr and strikes the second stationary mass m2, locking the two masses together. (a) What is the velocity of the first mass before the collision? Vmı =<?,?,?> (b) What is the velocity of the second mass before the collision? Vm2 =<?,?,?> (c) The final velocity of the two masses can be calculated using the formula? (d) What is the final velocity of the two masses? Ve =<?,?,?> (e) Choose the correct answer (i) (ii) The final momentum of the system is less than the initial momentum of the system The final momentum of the system is greater than the initial momentum of the system The final momentum of the system is equal to the initial momentum of the system (iii) (f) What is the total initial kinetic energy of the two masses (Ki =?)? (g) What is the total final kinetic energy of the two masses(Kg =?)? = (h) How much of the mechanical energy is lost due to this collision (AEint =?)?

Answers

Answer:

a.) The velocity of the first mass before the collision is Vmi = <-52, 0, 0> m/s.

b.) The velocity of the second mass before the collision is Vm2 = <0, 0, 0> m/s.

c.)  The final velocity of the two masses is Vf = <-36, 0, 0> m/s.

e.) The final momentum of the system is equal to the initial momentum of the system. This is because momentum is conserved in a collision.

f.) The total initial kinetic energy of the two masses is Ki =1440J.

g.) The total final kinetic energy of the two masses is Kg=2160J.

h.) 720 J of mechanical energy is lost due to this collision. This energy is likely converted into heat and sound during the collision.

Explanation:

(a) The velocity of the first mass before the collision is Vmi = <-52, 0, 0> m/s.

(b) The velocity of the second mass before the collision is Vm2 = <0, 0, 0> m/s.

(c) The final velocity of the two masses can be calculated using the following formula:

V_f = (m_1 * V_1 + m_2 * V_2) / (m_1 + m_2)

where:

V_f is the final velocity of the two masses

m_1 is the mass of the first object

V_1 is the velocity of the first object

m_2 is the mass of the second object

V_2 is the velocity of the second object

V_f = (8 kg * (-52 m/s) + 4 kg * (0 m/s)) / (8 kg + 4 kg)

V_f = -36 m/s

Therefore, the final velocity of the two masses is Vf = <-36, 0, 0> m/s.

(e) The final momentum of the system is equal to the initial momentum of the system. This is because momentum is conserved in a collision.

(f) The total initial kinetic energy of the two masses is Ki = 1/2 * m_1 * V_1^2 + 1/2 * m_2 * V_2^2

Ki = 1/2 * 8 kg * (-52 m/s)^2 + 1/2 * 4 kg * (0 m/s)^2

Ki = 1440 J

(g) The total final kinetic energy of the two masses is Kg = 1/2 * (m_1 + m_2) * V_f^2

Kg = 1/2 * (8 kg + 4 kg) * (-36 m/s)^2

Kg = 2160 J

(h) The amount of mechanical energy lost due to this collision is AEint = Ki - Kg = 2160 J - 1440 J = 720 J.

Therefore, 720 J of mechanical energy is lost due to this collision. This energy is likely converted into heat and sound during the collision.

Learn more about Conservation of energy.

https://brainly.com/question/33261304

#SPJ11

Other Questions
Xyth Corporation has a current stock price of $25, a beta of 1.25, depreciation of $10 per share, a price-earnings multiple of 12, and has 1,000,000 common stock shares outstanding. Using the price-earnings methodology, what is Xyth corporation's expected, next year's future earnings per share?a. $2.08b. $1.79c. $2.02d. $1.93 Given that the mass of the Earth is 5.97210 24 kg and the radius of the Earth is 6.37110 6 m and the gravitational acceleration at the surface of the Earth is 9.81 m/s 2 what is the gravitational acceleration at the surface of an alien planet with 2.3 times the mass of the Earth and 2.7 times the radius of the Earth? Although you do not necessarily need it the universal gravitational constant is G= 6.674 10 (11)N m 2/kg 2 How much heat is needed to transform 1.0 kg g of ice at -30C to liquid water at 25 "C? Note: assume specific heat of solid ice = 2220 J/kg K; heat of fusion=333 kJ/kg; use specific heat of water = 4186 J/kg-K Write an intro about Sharjah Islamic bank and how it was effected in 2020 And what it did to recover. And on the other hand, Write an intro about ADCB BANK and how they were effected in 2020 And what they did to recover (300 words) so in the same Equation i have to do use the values x=-4,0,5 to verify my solution to the equation 5+x-12=x-7 in my final answer.5+x-12=2x-7x-7=2x-7x-7+7=2x-7+7x=2xx-2x=2x-2x-x=0--- ----1 -1x=0 -- -1 x=0 You receive the following prescription from a regular female patient:2.5% HC in GlaxalSig: Apply bid for 5 days then prnMitte: 30 grams As this strength of hydrocortisone cream is not available commercially, your pharmacy regularlycompounds it and so has hydrocortisone powder in stockQuestionsCalculate the amount of each ingredient required and complete a batch sheet.Describe geometric dilution.Prepare a product label, including expiry date.What is a possible therapeutic indication for this product? Researchers interested in studying students stress gave 150 high school seniors 3 math quizzes 3 days in a row. The quiz on Day 1 contained basic math problems appropriate for 4th graders. The quiz on Day 2 was more difficult. It included story problems appropriate for high school-level math. Day 3 was the most difficult quiz. It included the application of college-level math formulas to more advanced problems. After each quiz, researchers measured stress by examining the seniors physiological changes. This included checking their pulse and blood pressure. When the experiment was over, the researchers shared the results with the group of students, but they did not publish data to the public. Which of the following was not one of the five large U.S. investment banks in existence prior to the great credit crisis of 2007-2009? Select one: A. Bank of America B. Morgan Stanley C. Bear Stearns D. Lehman Brothers E. Goldman Sachs Word or phrase bank medial temporal lobes. caudal Head pons lateral eye movement sciatic nerve taste sensation Midbrain 31 pairs inner ears PNS 12 pairs medullar oblongata fibular nerve superior oblique hip joints Medially simultaneously Ischial gluteal upper limbs CNS dorsal root and ventral roots extrinsic eye sensory and motor signals anterior thigh occipital lobes neck taste sensations skeletal muscles crossed extensor rami intrinsic and extrinsic thoracic and abdominopelvic quadricep visceral signals Hearing anterolateral somatosensory cortex encapsulated nerve sense organ motor neuron larynx and pharynx effectors biceps and skin lumbosacral maxillary nerve spinal cord thermoreceptors and nociceptor lateral rectus medial arm the pons and the medullar oblongata nerve plexus mastication in the mouth. sternocleidomastoid abdominal wall and iliopsoas stretch reflex odorant stimuli side opposite 3 types internal and internal Heart optic chiasma nociceptors Foot swallowing somatic motor signals Golgi tendon interceptors interneuron photoreceptors deltoid teres minor exteroceptors thermoreceptors Electromagnetic Afferent triceps brachii anterior forearm develop command abductor anterior special sense vision, and taste two criterial neurological and sensory chemoreceptors multiple synapses Mechanoreceptors tibia monosynaptic stretch thermoreceptors synapses Afferent Eye withdrawer organ6. The facial nerve, which is responsible for facial expressions and other facial muscles, originates from the and the medullar oblongata and terminates on the facial muscles the provide . and somatic sensation from the external eye and nasal cavities. The trigeminal nerve has 3 branches, the ophthalmic nerve, the., and the mandibular nerve. Their origin is from between . and innervates the primary for facial sensations. The mandibula nerve innervates the muscles for 8. A spinal nerve is a mix nerve when it carries . between the spinal cord and the rest of the body. There are . of spinal nerves, one pair on each segment. Each spinal nerve comprises of . converging together to form one route. The anterior root carries somatic and visceral information motor signals from the .to the .and the gland cells, while the posterior root carries sensory signals from the to the...9. The spinal nerves further divided bundles of funicles of nerves called The ramus communicans that carries . from the ANS to organs of the body cavities whiles the anterior and posterior rami that carry from CNS to .and carries sensory signals from the receptor in the PNS to the.10. The anterior rami of the lumbar ramus, cervical ramus, and sacral ramus, converged to form what we call the... They are complicated interwoven network of nerve fibers. The cervical plexus is just under the . muscles, from C1 to C4. Branches of the cervical plexus innervates mostly the, the skin, and muscles. The Phrenic nerve innervates the top of the . after passing through the thoracic cavity alongside of the... 11. The sacral plexus lies . to the lumbar plexus from L4 to L5. It is sometimes called the . plexus. This plexus innervates the muscles, the pelvic muscles, and the lower limbs. The sacral plexus is further divided in to 3 nerves, the., which is the largest and longest nerve of the body, innervates the pelvis, the thigh, grater trochanter, and the . tuberosity. They also innervate the in the posterior thigh before innervating the tibia and the fibular. The second branch of the sacral plexus is the . nerve that innervates the posterior leg and intrinsic muscles of the... The third branch of the sacral plexus is the . which innervates muscles of the . legs, knee joints, skin, and digitals. You are caring for a combative 85-year-old male with a history of dementia, CHF, UTI, and anemia. The family states he appears to be more confused than his baseline. What tests do you expect the provider to order? If you wanted to measure the voltage of a resistor with avoltmeter, would you introduce the voltmeter to be in series or inparallel to that resistor? Explain. What about for an ammeter?PLEASE TYPE The longitude of the prime meridian is 0. The meridian on the opposite side of Earth is at 180 longitude. A 36.1-kg block of ice at 0C is sliding on a horizontal surface. The initial speed of the ice is 8.31 m/s and the final speed is 2.03 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 C. Two friends are discussing their local car dealership.Luke: "They always make time for me, even when I am in a hurry. They know that I am an important client to them, I have brought them a lot of business over the years."Kale: "When I had my own business, I was always in a hurry and liked their free replacement car. Once, they actually gave me a BMW for two days, this was fun."Luke: "Yeah, well, car dealerships are rarely a place to have fun. It seems that whenever they open the hood and look at the engine, it costs me a lot of money. But what I like is that they always make an estimate and never charge more. This is also piece of mind. And over the long run, a well-maintained car is actually cheaper. Their mechanics are really good, they work there for years."Kale: "I like that they always clean my car, even if I am just having the tires changed. That saves me a lot of time and hassle. I like to be treated like that."a) Draw two simple ladders for Luke and Kale, each with at least two attributes, two benefits, and one value.b) Describe whether the identified benefits are relieving or enabling. Briefly explain your reasoning.c) Create two clear, concise and convincing value propositions that the car dealership can use for customers like Kale and Luke. Explain these bind portfolio strategies in detail.- Passive- Active- Core-plus- Matched funding- Contingent \& structured Information technology today can change the ________, making it possible for people to share information. 3. (Price elasticity of demand) The demand for books is: P=8-Qd; the supply for books is: P=2+Qs, where P is the price of a book in dollars, Qd is the quantity of books demanded, and Qs is the quantity of books supplied. The books market is initially at equilibrium.a. What is the equilibrium price and equilibrium quantity of books?b. Suppose that the supply of books changes to: P= 2+1.5Qsfind the new equilibrium price and equilibrium quantity of books.c. Based on this information, calculate the price elasticity of demand. Find solutions for your homeworkFind solutions for your homeworkbusinessfinancefinance questions and answersanswer is not -761420, which is what the last chegg expert said. it's supposed to be calculated using the pv factor table, rather than the excel method. perhaps that's what the problem was. hawke skateboards is considering building a new plant. bob skerritt, the companys marketing manager, is an enthusiastic supporter of the new plant. lucy liu, theThis question hasn't been solved yetAsk an expertQuestion: Answer Is Not -761420, Which Is What The Last Chegg Expert Said. It's Supposed To Be Calculated Using The PV Factor Table, Rather Than The Excel Method. Perhaps That's What The Problem Was. Hawke Skateboards Is Considering Building A New Plant. Bob Skerritt, The Companys Marketing Manager, Is An Enthusiastic Supporter Of The New Plant. Lucy Liu, TheAnswer is not -761420, which is what the last Chegg expert said. It's supposed to be calculated using the PV factor table, rather than the excel method. Perhaps that's what the problem was.Hawke Skateboards is considering building a new plant. Bob Skerritt, the companys marketing manager, is an enthusiastic supporter of the new plant. Lucy Liu, the companys chief financial officer, is not so sure that the plant is a good idea. Currently, the company purchases its skateboards from foreign manufacturers. The following figures were estimated regarding the construction of a new plant.Cost of plant$4,400,000Estimated useful life15 yearsAnnual cash inflows4,400,000Salvage value$2,200,000Annual cash outflows3,894,000Discount rate11%Bob Skerritt believes that these figures understate the true potential value of the plant. He suggests that by manufacturing its own skateboards the company will benefit from a "buy American" patriotism that he believes is common among skateboarders. He also notes that the firm has had numerous quality problems with the skateboards manufactured by its suppliers. He suggests that the inconsistent quality has resulted in lost sales, increased warranty claims, and some costly lawsuits. Overall, he believes sales will be $220,000 higher than projected above, and that the savings from lower warranty costs and legal costs will be $66,000 per year. He also believes that the project is not as risky as assumed above, and that a 9% discount rate is more reasonable.Click here to view the factor table.Answer each of the following.(a)Partially correct answer iconYour answer is partially correct.Compute the net present value of the project based on the original projections. (If the net present value is negative, use either a negative sign preceding the number e.g. -45 or parentheses e.g. (45). Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 5,275.)Net present value$Type your answer here Valuation with pricelearnings multiples For the firm shown in the following table, use the data given to estimate its common stock value employing priceleamings (PjE) mutiplas. (Cick on the leon here P in order to copy the contents of the data table below into a spreadsheet.) The value of the femis common stock is (Round to the nearost cent) A ranger wants to estimate the number of tigers in Malaysia in the future. Suppose the population of the tiger satisfy the logistic equation dt/dP =0.05P0.00125P^2where P is the population and t is the time in month. i. Write an equation for the number of the tiger population, P, at any time, t, based on the differential equation above. ii. If there are 30 tigers in the beginning of the study, calculate the time for the number of the tigers to add up nine more Steam Workshop Downloader