A crate of mass
m = 26 kg
rides on the bed of a truck attached by a cord to the back of the cab as in the figure below. The cord can withstand a maximum tension of 69 N before breaking. Neglecting friction between the crate and truck bed, find the maximum acceleration the truck can have before the cord breaks. (Enter the magnitude of the maximum acceleration in the forward direction.)
m/s2

Answers

Answer 1

Answer:

Explanation:

The maximum tension the cord can withstand is 69 N, so we know that the tension in the cord cannot exceed this value. The tension in the cord is related to the acceleration of the truck through Newton's second law:

ΣF = ma

where ΣF is the net force on the crate, m is the mass of the crate, and a is the acceleration of the truck.

In this case, the only force acting on the crate in the horizontal direction is the tension in the cord. Therefore, we can write:

ΣF = T = ma

where T is the tension in the cord.

We can solve this equation for the acceleration:

a = T/m

We know that the tension cannot exceed 69 N, so the maximum acceleration the truck can have before the cord breaks is:

a = 69 N / 26 kg

a ≈ 2.65 m/s^2

Therefore, the maximum acceleration the truck can have before the cord breaks is 2.65 m/s^2.


Related Questions

What is the conservation of energy examples?

Answers

The law of conservation of energy states that energy can neither be created nor destroyed, but it can be transformed from one form to another. Here are some examples of the conservation of energy:

A roller coaster moving up and down a track: As the roller coaster climbs up a hill, it gains potential energy. When it reaches the top and starts to descend, this potential energy is converted into kinetic energy. At the bottom of the hill, the kinetic energy is at its maximum and the potential energy is at its minimum.

A pendulum swinging back and forth: As a pendulum swings, it moves between two points of maximum potential energy, where it is momentarily at rest, and two points of maximum kinetic energy, where it is moving the fastest.

A light bulb converting electrical energy into light: When a light bulb is turned on, electrical energy is converted into light energy and heat energy. The total amount of energy is conserved, but some of it is lost as heat.

A car braking to a stop: When a car brakes, the kinetic energy of the moving car is converted into thermal energy due to friction between the brake pads and the wheels. The total amount of energy is conserved, but the kinetic energy is transformed into a less useful form.

A battery powering a device: When a battery is used to power a device, chemical energy is converted into electrical energy. The electrical energy is then used to perform work, such as lighting a bulb or spinning a motor.

These are just a few examples of the conservation of energy in action. In each case, energy is transformed from one form to another, but the total amount of energy remains constant.

HELP
Complete the ray diagram below:

The image characteristics are ____. (2 points)

A concave mirror is shown with curvature positioned at 8 on a ruler that goes from 0 to 14 centimeters. The object is located at 5, and the focal point is located at 6.5.


upright, virtual, and smaller

upright, real, and same size

inverted, virtual, and smaller

inverted, real, and same size

Answers

Real, inverted, and same size are the features of the image. when A concave mirror with a curvature of 8 is displayed on a ruler with a range of 0 to 14 cm.

The mirror formula may be used to calculate the image distance for an item located 4 cm from a 1.5 cm focal length mirror.

1/f = 1/u+1/v

f is the focal length

u is the object distance

v is the image distance

Keep in mind that the concave mirror's image distance and focal length are both positive.

Given:

u = 4cm

f = 1.5cm

1/v = 1/1.5-1/4

1/v = 0.67-0.25

1/v = 0.42

v = 1/0.42

v = 2.38cm

The picture is Genuine and INVERTED since the image distance value is positive.

We shall find its magnification and see if it is magnified or lessened. It is amplified if the magnification is larger than 1, and it is decreased if it is less.

Magnification = v/u

Magnification = 2.38/4

Magnification = 0.595 or. 0.6

The picture is reduced in size since the magnification is less than one (SMALLER).

Learn more about Inverted here:

https://brainly.com/question/16150120

#SPJ1

The cross-sectional area of vessel A is 50 cm² and it contains water to a height 30 cm. The vessel B has an area of cross-section of 25 cm². The two vessels are connected with a thin tube as shown in the figure, When the tap is slowly opened, and the water attained an equilibrium in both vessels. The reduction in the potential energy of the water is (Density of water is 1000 kgm-³)

1) 7.5 J
2) 22.5 J
3) 0.75 J
4) 8.5 J
5) 75 J

Please show the working along with a brief explanation.​

Answers

The reduction in the potential energy of the water is approximately 7.5 J.

option 1

What is the reduction in potential energy?

We can use the principle of conservation of energy to determine the reduction in potential energy of the water.

Initially, the water in vessel A has a certain amount of potential energy due to its height above the bottom of the vessel. When the water flows through the tube and reaches vessel B, its height above the bottom of vessel B is lower than that of vessel A, which means that its potential energy has decreased.

The potential energy of the water in vessel A is given by:

PE_A = mgh_A

The mass of the water in vessel A is given by:

m = density x volume

volume = A x h_A

Substituting for m and simplifying, we get:

PE_A = density x A x h_A x g

Similarly, the potential energy of the water in vessel B is:

PE_B = density x A_B x h_B x g

At equilibrium, the height of the water in the two vessels will be the same, so we can set h_A = h_B = h.

Also, since the water is in equilibrium, the pressure at the bottom of both vessels must be the same. This means that the pressure difference between the top and bottom of the water column in vessel A (due to the weight of the water) must be balanced by the pressure difference between the top and bottom of the water column in vessel B.

The pressure difference in vessel A is:

P_A = density x g x h_A

and the pressure difference in vessel B is:

P_B = density x g x h_B

Since the pressure difference must be balanced, we have:

P_A - P_B = density x g x h_A - density x g x h_B = 0

which simplifies to:

h_A = h_B x A_B / A

Substituting for h_A and h_B in the expressions for PE_A and PE_B, we get:

PE_A = density x A x h x g

PE_B = density x A_B x h x g x A / A_B

The reduction in potential energy of the water is:

ΔPE = PE_A - PE_B = density x g x h x (A - A_B x A / A_B)

which simplifies to:

ΔPE = density x g x h x (A - A_B)

Substituting the given values, we get:

ΔPE = 1000 kg/m³ x 9.8 m/s² x 0.3 m x (50 cm² - 25 cm²)

Converting the area units to m², we get:

ΔPE = 1000 kg/m³ x 9.8 m/s² x 0.3 m x (0.005 m² - 0.0025 m²)

Simplifying, we get:

ΔPE = 7.4 J

Learn more about potential energy here: https://brainly.com/question/1242059

#SPJ1

A Car accelerate Cuniformly from) 13 ms -1 to 31ms-1 while entering the motor way Covering the distance 220m​

Answers

Answer:

3.84 m/s^2.

Explanation:

To solve this problem, we can use the following kinematic equation:

v^2 = u^2 + 2as

where:

v is the final velocity (31 m/s)

u is the initial velocity (13 m/s)

a is the acceleration (which is assumed to be constant)

s is the distance traveled (220 m)

We want to solve for the acceleration, so we can rearrange the equation as follows:

a = (v^2 - u^2) / 2s

Substituting the given values:

a = (31^2 - 13^2) / (2 x 220)

a = 3.84 m/s^2

Therefore, the acceleration of the car is 3.84 m/s^2.

please rate

PLS ANWSER QUICK

1. Compare the relative light-gathering power of a telescope with a 40-inch primary lens with an otherwise identical telescope with a smaller 20-inch lens. Then, analyze the limitations and importance of space telescope data across the electromagnetic spectrum. In your answer, describe one way such telescope data can help astronomers determine distances between celestial objects and how this relates to how astronomers use observational astronomy methods like the cosmic distance ladder.

Answers

The relative light-gathering power of a telescope is directly proportional to the square of its primary lens diameter. Therefore, a telescope with a 40-inch primary lens will have four times the light-gathering power of an otherwise identical telescope with a 20-inch lens. This means that the larger telescope will be able to collect more light and produce brighter and clearer images of celestial objects.

However, the limitations of telescopes are not solely dependent on their size. Factors such as atmospheric turbulence, light pollution, and the quality of the optics and detectors used in the telescope can also affect the quality of the images produced. Additionally, space telescopes have the advantage of being above the Earth's atmosphere, which can distort and absorb light, allowing for clearer and more precise observations of celestial objects.

Space telescopes can gather data across the electromagnetic spectrum, including wavelengths that cannot be observed from the ground, such as ultraviolet and X-ray radiation. This allows astronomers to study a wide range of celestial objects, from stars and galaxies to black holes and supernovae, in greater detail.

One way in which space telescope data can help astronomers determine distances between celestial objects is through the use of standard candles, which are objects of known luminosity. By measuring the apparent brightness of these objects, astronomers can calculate their distances using the inverse-square law of light. This method is one of several techniques used in observational astronomy to determine the distances of celestial objects, known as the cosmic distance ladder.

In conclusion, while a larger primary lens can improve the light-gathering power of a telescope, other factors also influence the quality of the images produced. Space telescopes have the advantage of being able to gather data across the electromagnetic spectrum, providing astronomers with a wealth of information about celestial objects. This information can help astronomers determine distances between objects using techniques such as the cosmic distance ladder, advancing our understanding of the universe.
Final answer:

A telescope with a 40-inch primary lens has four times the light-gathering power compared to a telescope with a 20-inch lens. Space telescope data is important for studying celestial objects across the electromagnetic spectrum and provides comprehensive information. Telescopic data helps determine distances between objects through techniques like redshift measurement and the cosmic distance ladder.

Explanation:

The relative light-gathering power of a telescope is determined by the area of its primary lens or mirror. In this case, the telescope with the 40-inch primary lens has four times the light-gathering power compared to the telescope with the 20-inch lens. This is because the area of the 40-inch lens is four times larger than the area of the 20-inch lens.

Space telescope data is important across the electromagnetic spectrum because it allows astronomers to study celestial objects in different wavelengths, revealing information that is not accessible through visible light observations alone. By using data from telescopes that operate in various parts of the electromagnetic spectrum, astronomers can gather more comprehensive information about the universe.

One way telescope data helps determine distances between celestial objects is through the measurement of redshift. Redshift occurs when light from distant objects is stretched to longer wavelengths due to the expansion of the universe. By analyzing the amount of redshift in the light from a celestial object, astronomers can estimate its distance. This method is a part of the cosmic distance ladder—a set of techniques used to determine distances to different objects in the universe.

Learn more about Telescope Light-Gathering Power and Space Telescope Data here:

https://brainly.com/question/31942374

#SPJ2

What is Albert Einstein theory?​

Answers

Albert Einstein was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics.

Where is the contradiction between quantum physics and Einstein’s gravity?

Rμν−12gμνR=8πGT^μν.

This is Einstein’s field equation. Essentially, this equation is general relativity. The left-hand side represents the geometry of spacetime. The right-hand side, the energy, momentum, and stresses of matter.

What this equation describes, in the words of Wheeler, is this: Spacetime tells matter how to move; matter tells spacetime how to curve.

But look closely. That T

on the right-hand side. It has a hat.

It has a hat because it is a quantum-mechanical operator. Because we know that matter consists of quantum fields. So it is described by operator-valued quantities (Dirac called them q-numbers). They are unlike ordinary numbers. For instance, when you multiply them, the order in which they appear matters. That is, when you have two operators p^

and q^

, p^q^≠q^p^

most of the time. So they are definitely not like numbers.

When Einstein wrote down his field equation over 100 years ago, the T

did not have a hat. But that’s because they didn’t know about operator-valued quantities at the time. Now we do. So I have to put the hat there.

But there are no hats on the left-hand side. And because of that, my equation might as well say something like, some apples = some oranges. It makes no sense. The stuff on the left-hand side (which consists of numbers) can never equal the stuff on the right-hand side (which definitely does not consist of numbers.)

I can make it work, though. I can replace that operator with its so-called expectation value:

Rμν−12gμνR=8πG⟨Tμν⟩.

This is called semiclassical gravity. And it works well, very well indeed. A little too well, as a matter of fact. Gravity is so weak, quantum effects are so irrelevant, this equation accurately describes Nature everywhere we can look. But we still don’t like it, because using that expectation value trick is a cheat, a cop-out.

Now you might wonder, why don’t I put hats on top of the things on the left-hand side? I would… if I knew how to quantize spacetime. That is, how to turn the numbers that describe gravity into quantum-mechanical operators.

But I do not. And nobody does. The standard methods all fail, leading to equations that make no sense at all.

So we are kind of stuck… we don’t know how to quantize gravity, and our observations don’t help us, don’t offer any hints as to how to get beyond semiclassical gravity. Theorists keep trying to come up with new ideas (or recycle old ones) but basically, we’ve been pretty much just spinning our wheels for decades.

QUESTION 7
Which of the following statements best summarizes the energy conversion taking place in the every day item shown below? (a flashlight)

a. Chemical energy from the battery is converted to electrical energy in the flashlight.
b. Nuclear energy from the battery is converted to thermal energy that heats up the light.
c. Thermal energy from the battery is converted to electrical energy in the flashlight.
d. Electrical energy from the battery is converted to potential energy.

Answers

Answer:

a. Chemical energy from the battery is converted to electrical energy in the flashlight.

What was the angle of application of the force of 35 if on a distance of 15 the work of 350 was done?

Answers

The Answer is 48.19 degrees

A block of mass m1=3.0kg rests on a frictionless horizontal surface. A second block of m2=2.0kg hangs from an ideal cord of negligible mass that runs over an ideal pulley and then is connected to the first block . the blocks are released from rest . determine the displacement of the velocityA block of mass m1=3.0kg rests on a frictionless horizontal surface. A second block of m2=2.0kg hangs from an ideal cord of negligible mass that runs over an ideal pulley and then is connected to the first block . the blocks are released from rest . Determine how far has block 1 moved during the 1.2-s interval?
A) 13.4 m
B) 2.1 m
C) 28.2m
D) 7.6m​

Answers

The answer is:

D. 7.6m

What is a force that acts upon a projectile launched into the air?

1. Centripetal

2. Gravity

3. Trajectory

Answers

The force that acts upon a projectile launched into the air is gravity.

What is gravity?

Gravity is a fundamental force of nature that causes all physical objects to attract each other. It is the force that pulls objects towards each other, and it is the reason why objects with mass are attracted towards the center of the Earth.

When an object is launched into the air, it is subject to the force of gravity, which pulls the object down towards the Earth. As the object moves through the air, the force of gravity causes it to follow a curved path, known as a trajectory, until it eventually hits the ground. While other forces such as air resistance may also act upon the projectile, gravity is the primary force that determines the path of the projectile.

Learn about gravity here https://brainly.com/question/557206

#SPJ1

A 2.9 kg solid cylinder (radius = 0.20 m , length = 0.70 m ) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.75 m high and 5.0 m long.

Answers

The final velocity of the cylinder is 1.22 m/s when it reaches the bottom of the ramp.

To solve this problem, we need to use conservation of energy and rotational kinematics.

Calculate the gravitational potential energy (GPE) of the cylinder at the top of the ramp:

GPE = mgh = (2.9 kg)(9.81)(0.75 m) = 21.39 J

Calculate the final kinetic energy (KE) of the cylinder when it reaches the bottom of the ramp:

[tex]KE = 1/2 mv^2 + 1/2 Iω^2[/tex]

where v is the linear velocity, I is the moment of inertia, and ω is the angular velocity.

Since the cylinder rolls without slipping, we know that v = ωr, where r is the radius of the cylinder.

[tex]KE = 1/2 mv^2 + 1/4 mv^2 = 3/4 mv^2 = 3/8 mgh[/tex]

Substituting the values we have:

KE = 3/8 (2.9 kg)(9.81)(0.75 m) = 63.56 J

Finally, we can use conservation of energy to find the final velocity of the cylinder:

GPE = KE

[tex]mgh = 3/8 mgh + 1/2 mv^2 + 1/2 Iω^2[/tex]

Solving for velocity:

[tex]v = \sqrt (2gh/5) = \sqrt(29.81 m/s^20.75 m/5) = 1.22 m/s[/tex]

learn more about conservation of energy here:

https://brainly.com/question/2137260

#SPJ1

the complete question is:

At the top of a ramp, a 2.9 kg solid cylinder (radius = 0.20 m, length = 0.70 m) is released from rest and allowed to roll without slipping. The ramp measures 0.75 m in height and 5.0 m in length. calculate the final velocity when it reaches the bottom of the ramp



2. A point charge of +2 µC is located at the center of a spherical shell of radius 0.20 m that has a charge –2 µC uniformly distributed on its surface. Find the electric field
a) 0.1 m from the center.
b) 0.5 m from the center.

Answers

Answer:

Explanation:

Since the spherical shell has a net charge of -2 µC, it will create an electric field outside the shell. Within the shell, the electric field is zero due to symmetry.

a) To find the electric field 0.1 m from the center, we can use Gauss's law and consider a Gaussian surface in the shape of a sphere with a radius of 0.1 m centered at the center of the spherical shell. The electric field at a distance r from the center of the spherical shell is given by:

E = kq / r^2

where k is Coulomb's constant (9.0 x 10^9 N*m^2/C^2) and q is the charge enclosed by the Gaussian surface.

In this case, the charge enclosed by the Gaussian surface is the point charge of +2 µC at the center of the spherical shell. Therefore, we have:

E = kq / r^2 = (9.0 x 10^9 N*m^2/C^2) * (2 x 10^-6 C) / (0.1 m)^2 = 1.8 x 10^6 N/C

So the electric field 0.1 m from the center is 1.8 x 10^6 N/C.

b) To find the electric field 0.5 m from the center, we can again use Gauss's law and consider a Gaussian surface in the shape of a sphere with a radius of 0.5 m centered at the center of the spherical shell. The charge enclosed by this Gaussian surface is the sum of the point charge of +2 µC at the center and the charge of -2 µC on the spherical shell. Therefore, we have:

q_enclosed = q_center + q_shell = 2 x 10^-6 C - 2 x 10^-6 C = 0 C

Since there is no charge enclosed by the Gaussian surface, the electric field at a distance of 0.5 m from the center is zero.

So the electric field 0.5 m from the center is 0 N/C.

What is the maximum allowable conductor temperature insulation rating of an NMWU conductor?
O a. 110°C
O b. 90°C
O c. 60°C
O d. 30°C

Answers

A. 90°C, NMWU (Nylon-coated Metal Clad) is a type of electrical wire commonly used in residential and commercial wiring applications.

What is Nylon-coated Metal Clad?

It is composed of a metal conductor, such as aluminum or copper, wrapped in a protective layer of nylon. The advantage of this type of wire is that it is easier to work with than other types of wire, is highly resistant to corrosion, and can withstand temperatures up to 90°C.

The insulation rating of a wire is a measure of its ability to withstand heat or cold without being damaged. This rating is determined by the maximum temperature that the insulation can withstand before it begins to degrade or break down. For NMWU wire, the maximum allowable conductor temperature insulation rating is 90°C. Other types of wire may have lower or higher ratings.

The insulation rating of the wire must be taken into account when selecting a wire for an application. If a wire is subjected to temperatures greater than its rated insulation temperature, the insulation can be damaged and the wire may become unsafe.

Therefore, it is important to ensure that the insulation rating of the wire is appropriate for the application. For NMWU wire, the maximum allowable conductor temperature insulation rating is 90°C, so it should only be used in applications.

Learn more about Nylon-coated Metal Clad here:

https://brainly.com/question/15184283

#SPJ1

HELP!!! Which simple machines represent variations of an inclined plane? Select all that apply.
screw
lever
wedge
pulley
wheel and axle

Answers

Screw screw screws screws

waves are generated in a rope of length 6m. What is the speed of the wave if its period is 2s

Answers

The speed of the wave with the period given above would be = 3m/s

How to calculate the speed of the wave?

The wave length generated by the rope = 6m

The period of the wave = 2s

But the formula use for calculate the speed of a wave = v=λf

Where v = speed

λ= wavelength = 6m

f = Frequency.

Also F = 1/T

Where T = period = 2s

F = 1/2 = 0.5 Hz

V = 6× 0.5

V = 3m/s

Learn more about speed here:

https://brainly.com/question/24739297

#SPJ1

An athlete whirls a 7.66 kg hammer tied to the end of a 1.4 m chain in a simple horizontal circle where you should ignore any vertical deviations. The hammer moves at the rate of 0.372 rev/s. What is the tension in the chain? Answer in units of N.

Answers

The hammer's centripetal acceleration is therefore 100.59 m/s².

Using an example, what is acceleration?

An object has positive acceleration when it is going faster than it was previously. Positive acceleration was demonstrated by the moving car in the first scenario. Positive forward motion is being made by the car.

Hammer mass, m, is 6.55 kg. chain length, including the length of the arms, r = 1.3 m, Hammer's angular velocity is given by the formula: = 1.4 rev/s = 8.79646 rad/s (1 rev = 6.28 rad).

The formula a = V2/r, where V is the transverse velocity of the hammer, yields the centripetal acceleration.

V = r, hence

As a result, a = r²

A = 1.3 x 8.796462, or 100.59 m/s², is obtained by substituting the supplied numbers in the equation above.

The hammer's centripetal acceleration is therefore 100.59 m/s².

To know more about Acceleration visit:

brainly.com/question/30499732

#SPJ1

A current of O.S.A flows in a circuit with resistance 60 calculate the potential difference of the circuit

Answers

Therefore, the potential difference of the circuit is 30 volts.

What in electricity is a potential difference?

The external effort required to move a charge from one position to another in an electric field is known as an electric potential difference, or voltage. A test charge that has an electric potential differential of +1 will experience a shift in potential energy.

To calculate the potential difference (V) of the circuit, we can use Ohm's Law, which states that V = IR, where I is the current flowing through the circuit and R is the resistance of the circuit.

In this case, the current (I) is given as 0.5 A and the resistance (R) is given as 60 Ω. Therefore, we can substitute these values into Ohm's Law to find the potential difference:

V = IR

V = 0.5 A × 60 Ω

V = 30 volts

To know more about potential difference visit:-

brainly.com/question/12198573

#SPJ9

Which correctly describes a different evolutionary stage of a star like the sun

A) it’s forms from a cold, dusty molecular cloud

B) During a yellow giant stage, it burns carbon in its core and helium in the shell surrounding the core.

C) After leaving the main sequence, its core is stable due to electron degeneracy

D) It becomes a white dwarf after exploding as a supernova

E)During a red giant stage, its core contracts and cools

Answers

The statement that correctly defines an evolutionary stage of a star like the sun is that after leaving the main sequence, its core is stable due to electron degeneracy. That is option C.

What are the stage of life cycle of a star?

The stages of the life cycle of a star include the following:

Giant Gas CloudProtostarT-Tauri PhaseMain SequenceRed GiantThe Fusion of Heavier ElementsSupernovae and Planetary Nebulae

The evolutionary stage is also called the main sequence stage of the life cycle of the star.

In this stage, the core temperature reaches the point for the fusion to occur whereby the protons of hydrogen are converted into atoms of helium. This leads to the stability of the core of the newly formed start due to electron degeneracy.

Learn more about star formation here:

https://brainly.com/question/29976256

#SPJ1

Work Energy Theorem Question:: A 0.0025 kg bullet traveling straight horizontally at 350 m/s hits a tree and slows uniformly to a stop while penetrating a distance of 0.12 m into the tree’s trunk. What is the initial KE of the bullet? What is the final KE of the bullet? What the the change in KE of the bullet? What is the force exerted?

Answers


Answer:

To solve this problem, we can use the Work-Energy Theorem, which states that the net work done on an object is equal to its change in kinetic energy.

The initial kinetic energy of the bullet can be calculated using the formula:

KE = 0.5 * m * v^2
where KE is the kinetic energy, m is the mass, and v is the velocity.

Substituting the given values, we get:
KE = 0.5 * 0.0025 kg * (350 m/s)^2
KE = 306.25 J

Therefore, the initial kinetic energy of the bullet is 306.25 J.

When the bullet hits the tree, it slows down uniformly to a stop while penetrating a distance of 0.12 m into the tree's trunk. We can assume that the work done by the force of friction between the bullet and the tree is equal to the change in kinetic energy of the bullet.

The final kinetic energy of the bullet is zero because it comes to a stop. Therefore, the change in kinetic energy is:

ΔKE = final KE - initial KE
ΔKE = 0 - 306.25 J
ΔKE = -306.25 J

The negative sign indicates that the kinetic energy of the bullet has decreased.

To calculate the force exerted on the bullet, we can use the formula for work:

W = F * d * cos(θ)
where W is the work done, F is the force, d is the distance, and θ is the angle between the force and the displacement.

Since the force is acting in the opposite direction to the displacement, the angle θ is 180 degrees (cos(180) = -1). Therefore, the formula becomes:

W = -F * d

Substituting the given values, we get:

-306.25 J = -F * 0.12 m
F = 2552.08 N

Therefore, the force exerted on the bullet is 2552.08 N.

I need help with this question

Answers

The Large Hadron Collider is a product of and is used for

A. scientific investigations, technological development.

What is Large Hadron Collider

The Large Hadron Collider (LHC) was designed and built for scientific investigations in the field of particle physics. Its primary purpose is to collide particles at very high energies and observe the resulting interactions to gain insights into the fundamental nature of matter and the universe.

However, the construction and operation of the LHC have also contributed to technological development in fields such as superconductivity, cryogenics, and data processing.

Learn more about Large Hadron Collider at:

https://brainly.com/question/2492364

#SPJ1

How much heat is necessary to change 10 g of ice at -20°C into water at 10°C?

Answers

Answer:

Explanation:

The process can be broken down into two steps:

Heat required to raise the temperature of ice from -20°C to 0°C.

Heat required to melt ice at 0°C and raise the temperature of water from 0°C to 10°C.

Step 1:

The heat required to raise the temperature of ice can be calculated using the specific heat capacity of ice, which is 2.09 J/g°C.

Heat required = mass × specific heat capacity × change in temperature

Heat required = 10 g × 2.09 J/g°C × (0°C - (-20°C))

Heat required = 418 J

Step 2:

The heat required to melt ice and raise the temperature of water can be calculated using the heat of fusion of ice and the specific heat capacity of water.

Heat required to melt ice = mass × heat of fusion of ice

Heat required to melt ice = 10 g × 334 J/g

Heat required to melt ice = 3340 J

Heat required to raise the temperature of water can be calculated using the specific heat capacity of water, which is 4.18 J/g°C.

Heat required = mass × specific heat capacity × change in temperature

Heat required = 10 g × 4.18 J/g°C × (10°C - 0°C)

Heat required = 418 J

Total heat required = Heat required in Step 1 + Heat required to melt ice + Heat required in Step 2

Total heat required = 418 J + 3340 J + 418 J

Total heat required = 4176 J

Therefore, 4176 J of heat is required to change 10 g of ice at -20°C into water at 10°C.

If the wind bounces backward from the sail, will the craft be set in motion?

Answers

If the wind bounces backward from the sail, the boat will not be set in motion as no forward force is generated. For the boat to move forward, the sail must be positioned to catch the wind and create lift in the desired direction.

If the wind bounces backward from the sail, the craft will not be set in motion. In order for a sailboat to move forward, the wind must push on the sail, creating a force that propels the boat forward through the water. When the wind hits the sail, it creates lift in a direction perpendicular to the sail's surface, which results in a forward force that propels the boat.

However, if the wind bounces backward from the sail, it does not create lift and therefore does not result in a forward force on the boat. Instead, the wind is redirected in a different direction, and the boat remains stationary. In order for the boat to move forward, the sail must be positioned to catch the wind and create lift in the desired direction, propelling the boat forward.

To know more about motion please refer: https://brainly.com/question/12640444

#SPJ1

if an 80 kg person is 5 m away from a 100 kg person, what is the force of gravity between them?

Answers

The force of gravity between the 80 kg person and the 100 kg person, who are 5 meters apart, is approximately 1.07269 × 10^-6 Newtons.

To find the force of gravity between them?

The force of gravity between two objects is given by the formula:

F = G(m1*m2)/r^2

Where

F is the force of gravity G is the gravitational constant (6.67430 × 10^-11 N·(m/kg)^2) m1 and m2 are the masses of the two objectsr is the distance between them

Plugging in the given values, we get:

F = 6.67430 × 10^-11 N·(m/kg)^2 * (80 kg) * (100 kg) / (5 m)^2

Simplifying this expression, we get:

F = 1.07269 × 10^-6 N

Therefore, the force of gravity between the 80 kg person and the 100 kg person, who are 5 meters apart, is approximately 1.07269 × 10^-6 Newtons.

Learn more about force of gravity here : brainly.com/question/20548149

#SPJ1

A missile weighing 400N on the earth surface is shot into the atmosphere to an altitude of 6.4 x 106 m. Taking the earth as a sphere of radius 6.4 x 10-6 m and assuming the inverse-square law of universal gravitation, what would be the weight of the missile at that altitude?​

Answers

Answer:

Explanation:

We can use the inverse-square law of universal gravitation to determine the weight of the missile at an altitude of 6.4 x 10^6 m. The law states that the force of gravity between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.

Let M be the mass of the Earth and m be the mass of the missile. At the Earth's surface, the weight of the missile is:

F1 = mg

where g is the acceleration due to gravity on the Earth's surface, which we assume to be 9.81 m/s^2.

At an altitude of 6.4 x 10^6 m, the distance between the center of the Earth and the missile is:

r = R + h

where R is the radius of the Earth (6.4 x 10^6 m) and h is the altitude of the missile (6.4 x 10^6 m).

The weight of the missile at this altitude can be calculated using the inverse-square law of universal gravitation:

F2 = G * M * m / r^2

where G is the gravitational constant (6.6743 x 10^-11 N * m^2 / kg^2).

Substituting the given values, we get:

F2 = (6.6743 x 10^-11 N * m^2 / kg^2) * (5.97 x 10^24 kg) * (400 N) / (6.4 x 10^6 m + 6.4 x 10^6 m)^2

F2 = 39.61 N

Therefore, the weight of the missile at an altitude of 6.4 x 10^6 m is approximately 39.61 N.

A similar device includes a transformer so that an MP3 player can also be charged. The primary coil has 300 turns.

(a) How many turns are needed in the secondary winding if the voltage is stepped up from 6.2 V to 15.5 V?

(b) Given that the current in the primary winding is 10 mA, what power is transmitted to the secondary windings if the transformer is 77% efficient?​

Answers

The secondary coil needs 120 turns.The power transmitted to the secondary winding is 0.155 W.

How does the voltage change between the primary and secondary coil in a transformer?

A transformer works by using electromagnetic induction to transfer electrical energy between two circuits. The voltage changes between the primary and secondary coil based on the ratio of the number of turns in each coil. In a step-up transformer, the voltage is increased from the primary to the secondary coil, while in a step-down transformer, the voltage is decreased.

What are some common uses for transformers in electronic devices?

Transformers are commonly used in electronic devices to convert voltage levels, isolate circuits, and match impedances. They are often used in power supplies to step down the voltage from the wall outlet to a level that can be used by the device. They are also used in audio amplifiers to match the impedance of the output to the speaker, and in radio and television receivers to tune in to different frequencies.

To know more about voltage,visit:

https://brainly.com/question/29445057

#SPJ1

Find the density of seawater at a depth where
I the pressure atm
at the
the
surface is 1050 kg/m³. Seawater has a bulk
modulus of 2.3 x 10° N/m². Bulk modulus is
defined to be
B =
Po AP
Ap

Answers

Answer:

To find the density of seawater at a certain depth, we need to use the following equation:

P = P0 + ρgh

where:

P0 = pressure at the surface (given as 1 atm = 101325 Pa)

ρ = density of seawater at the depth we're interested in

g = acceleration due to gravity (9.81 m/s^2)

h = depth below the surface

We also need to use the bulk modulus equation to find the change in pressure with depth:

B = (ρ/ρ0)(P-P0)/P

where:

ρ0 = density of seawater at the surface (given as 1050 kg/m^3)

P = pressure at the depth we're interested in

Combining these two equations, we get:

B = (ρ/ρ0)((P0 + ρgh) - P0)/P

B = ρgh/P

ρ = (BP)/(gh)

Substituting the given values, we get:

ρ = (2.3 x 10^9 N/m^2)(101325 Pa)/(9.81 m/s^2)(1050 kg/m^3)(1 atm)

ρ ≈ 1031.4 kg/m^3

Therefore, the density of seawater at a depth where the pressure is 1 atm and the density at the surface is 1050 kg/m^3 is approximately 1031.4 kg/m^3.

Compare the empirical equation from y=9.8x to V= gT + V0 to determine g and V0

Answers

Answer:

Explanation:

The empirical equation y = 9.8x represents the relationship between the displacement y of an object and the time x it has been falling under the influence of gravity.

On the other hand, the equation V = gT + V0 represents the relationship between the velocity V of an object, the time T, the initial velocity V0, and the acceleration due to gravity g.

To compare the two equations, we can equate the displacement y in the first equation with the expression for displacement in terms of velocity and time, which is y = (1/2)gt^2 + V0t, where t is the time.

Substituting this into the empirical equation, we get:

9.8x = (1/2)gt^2 + V0t

We can see that this equation has three variables: g, V0, and t. We can't determine all three variables from this equation alone.

However, if we know the time it takes for an object to fall a certain distance, we can use this equation to solve for g and V0. For example, if we know that an object falls 1 meter in 0.45 seconds, we can substitute x=1 and t=0.45 into the equation:

9.8(1) = (1/2)g(0.45)^2 + V0(0.45)

Simplifying this equation, we get:

g = 19.62 m/s^2

V0 = 0.45(9.8) = 4.41 m/s

So the acceleration due to gravity is 19.62 m/s^2 and the initial velocity is 4.41 m/s. Note that these values may not be exactly equal to the true values, as the empirical equation y=9.8x is only an approximation and there may be other factors affecting the motion of the object.

At 5220J, a temperature increase occurs from 10 degrees Celsius to 60 degrees Celsius. What is the mass of the water?

Answers

The mass of water that undergoes a change in temperature from 10 degrees celsius to 60 degrees celsius is 24.9 g.

What is mass?

Mass is the quantity of matter a body contained.

To calculate the mass of  the water, we use the formula below

Formula:

m = Q/cΔt................... Equation 1

Where:

m = Mass of waterQ = Amount of heatc = Specific heat capacity of waterΔt = Change in temperature

From the question,

Given:

Q = 5220 Jc = 4200 J/kg.KΔt = 60-10 = 50 degree celsius

Substitute these values into equation 1

Q = 5220/(4200×50)Q = 0.0249 kgQ = 24.9 g

Hence, the mass of water is 24.9 g.

Learn more about mass here: https://brainly.com/question/28409714

#SPJ1

You leave Fort worth ,Texas,at 2:41 p.m. and arrive in Dallas at 3:23 p.m. , covering a distance of 58km. what is your average speed in metres per second ?​

Answers

Answer:

Explanation:

The time taken to travel from Fort Worth to Dallas is:

t = 3:23 pm - 2:41 pm = 42 minutes = 0.7 hours

The distance covered is:

d = 58 km

The average speed is:

v = d/t = 58 km / 0.7 hours = 82.86 km/h

To convert km/h to m/s, we can use the conversion factor:

1 km/h = 0.2778 m/s

Therefore, the average speed in m/s is:

v = 82.86 km/h × 0.2778 m/s/km = 23.06 m/s (rounded to two decimal places)

So the average speed is 23.06 m/s.

A student uses 800 W microwave for three seconds how much energy does a student use

Answers

Answer:

The student use 2400 Joules

Explanation:

From the formula E = pt

p = 800W

t = 3 seconds

=> E = 800*3 = 2400J

Other Questions
the period of oscillation of a nonlinear oscillator depends on the mass m, with dimensions of m; a restoring force constant k with dimensions of ml2t2 , and the amplitude a, with dimensions of l. dimensional analysis shows that the period of oscillation should be proportional to what facilitates or mimics the activity of a given neurotransmitter system? group of answer choices axon agonist ssri antagonist You can counter the effects of psychological listening barriers by:_______- paying for one year of rent in advance causes one asset to increase and another asset to decrease, so there is no effect on the accounting equation. true or false Select the statements that are true for the graph of y=(x+2)^2+4 How many of each type of leukocyte can be found within the following images? how many of the 10 steps deal with government regulation as listed by the sba for starting a business? patients infected with hiv may not seroconvert(begin to produce antibodies) until 3 months later. true false g a compound contains 76.6% C, 6.38% H and 17.0% O. Which of the following is the correct empirical formula for the compound? second quarter of 2020 relative to previous quarters, which sectors of the economy appear to have been hit the hardest? what kind of poem reading does the following represent? the poem is written in two stanzas of iambic tetrameter with a rhyme scheme of aaa bbb. figurative reading literal reading analytical reading symbolic reading essential ingredients of market power are: group of answer choices substantial availability of viable substitutes ease with which buyers and sellers can weigh alternatives ability to influence terms of exchange inability to influence terms of exchange why is the response to a temperature change as a stress in a chemical reaction different from the response to a change in concentration? How did the united states acquire Texas According to Okun's law, if the unemployment rate goes from 3% to 7%, whatwill be the effect on the GDP? short term changes in atmospheric variables such as temperature, wind, precipitation, and barometric pressure over a given area and period of days are an example of: Please help me with this problem! Thank you! which of the following primary pressure areas are produced by thermal factors, rather than dynamic factors? question 62 options: equatorial low and polar high equatorial low and bermuda high aleutian low and icelandic low subtropical high and subpolar low Which of the following is the fundamental characteristic of the market in non-Western societies?A. It is located in a rural area close to where produce is grown.B. It is an abstract concept, where goods are exchanged over the Internet.C. It is a traditional marketplace, where actual goods are exchanged.D. It is found only in towns where produce is grown, distributed, and consumed.E. There is no concrete marketplace where actual goods are exchanged. A student uses 800 W microwave for three seconds how much energy does a student use