Answer:
(i) The pressure exerted by the piston on the gas in the chamber can be calculated using the formula:
Pressure = Force / Area
The force exerted by the piston on the gas is equal to its weight, which can be calculated as:
Force = mass x gravitational acceleration
= 3.5 kg x 9.81 m/s^2
= 34.335 N
The area of the piston is 450 cm^2, which is equal to 0.045 m^2.
Therefore, the pressure exerted by the piston on the gas is:
Pressure = Force / Area
= 34.335 N / 0.045 m^2
= 763 N/m^2 or 763 Pa
(ii) The work done when the cylinder is heated at a constant pressure of 1 atm can be calculated using the formula:
Work = Pressure x Change in Volume
The initial volume of the cylinder is Vo, and the final volume is 3Vo. Therefore, the change in volume is:
Change in Volume = 3Vo - Vo
= 2Vo
The pressure is given as 1 atm, which is equal to 101,325 Pa.
Therefore, the work done is:
Work = Pressure x Change in Volume
= 101,325 Pa x 2Vo
= 202,650 Pa.Vo or 202,650 J:
answer and solution to this question
Frequency= 30 Hz, Period= 0.0333 s, Wave Number=15.708 rad/m, Wave Function= y(x, t) = 0.05 sin(15.708x - 94.248t), Transverse displacement= -0.013 m, Time= 0.297 s.
How to calculate the frequency?(a) To find the frequency (f), we can use the equation: wave speed = frequency x wavelength. Rearranging this equation, we get:
frequency = wave speed / wavelength
Substituting the given values, we get:
frequency = 12 m/s / 0.4 m = 30 Hz
Therefore, the frequency of the wave is 30 Hz.
To find the period (T), we can use the equation:
period = 1 / frequency
Substituting the frequency value we just calculated, we get:
period = 1 / 30 Hz = 0.0333... s (rounded to four decimal places)
Therefore, the period of the wave is approximately 0.0333 s.
To find the wave number (k), we can use the equation:
wave number = 2π / wavelength
Substituting the given values, we get:
wave number = 2π / 0.4 m = 15.708 rad/m (rounded to three decimal places)
Therefore, the wave number of the wave is approximately 15.708 rad/m.
(b) The wave function for a transverse wave on a string is given by:
y(x, t) = A sin(kx - ωt + φ)
where A is the amplitude, k is the wave number, x is the position of the point on the string, t is the time, ω is the angular frequency, and φ is the phase constant.
We already know the values of A, k, and ω from the previous calculations. To find φ, we can use the given initial condition: "at t = 0 end of the string has zero displacement and is moving upward". This means that y(0,0) = 0 and ∂y/∂t(0,0) > 0. Substituting these conditions into the wave function, we get:
0 = A sin(0 + φ)
∂y/∂t = -Aω cos(0 + φ)
Since sin(0 + φ) = sin(φ) = 0 (because sin(0) = 0), we get:
φ = nπ, where n is an integer
Since cos(0 + φ) = cos(φ) = 1 (because cos(0) = 1) and ∂y/∂t(0,0) > 0, we get:
n = 0 or 2
Therefore, the possible values of φ are 0 or 2π.
Substituting the values of A, k, ω, and φ, we get:
y(x, t) = 0.05 sin(15.708x - 94.248t)
Therefore, the wave function describing the wave is:
y(x, t) = 0.05 sin(15.708x - 94.248t)
(c) To find the transverse displacement of a wave at x = 0.25 m and t = 0.15 s, we can use the wave function we just found:
y(0.25, 0.15) = 0.05 sin(15.708(0.25) - 94.248(0.15))
y(0.25, 0.15) ≈ -0.013 m (rounded to three decimal places)
Therefore, the transverse displacement of the wave at x = 0.25 m and t = 0.15 s is approximately -0.013 m.
(d) To find how much time must elapse from the instant in part (c) until the point at x = 0.25 m has zero displacement,
From part (c), we know that the transverse displacement of the wave at x = 0.25 m and t = 0.15 s is approximately -0.013 m. We need to find the time it takes for this point to return to zero displacement.
We can use the wave function we found in part (b) and set y(0.25, t) = 0:
0 = 0.05 sin(15.708(0.25) - 94.248t)
Since sin(θ) = 0 when θ = nπ (where n is an integer), we get:
15.708(0.25) - 94.248t = nπ
Solving for t, we get:
t = (15.708(0.25) - nπ) / 94.248
To find the smallest positive value of t that satisfies this equation, we need to use the smallest positive value of n that makes the right-hand side of the equation positive (because we want to find the time it takes for the point at x = 0.25 m to return to zero displacement, which happens after the point has completed a full cycle). We can see from the equation that n must be an even integer to make the right-hand side positive. The smallest even integer greater than zero is 2. Substituting n = 2, we get:
t = (15.708(0.25) - 2π) / 94.248
t ≈ 0.297 s (rounded to three decimal places)
Therefore, the time it takes for the point at x = 0.25 m to return to zero displacement is approximately 0.297 s.
Know more about displacement here:
https://brainly.com/question/30087445
#SPJ1
A geographer wants to organize data on the changing economies of two
countries. The data show that one country's economy grew rapidly over 10
years, while the other country's economy declined slightly over the same
period.
The best way for the geographer to organize these data would be a
Answer:
line graph. A line graph is the best way to show changes in data over time. The geographer can plot the economic growth of one country as a line going up over the 10 years, and the economic decline of the other country as a line going down slightly over the same period. This will allow for a clear visual comparison of the changes in the economies of the two countries over time.
At the point 0, there are 2 point sources, emitting the same constant sound power,
with intensity in inversely proportional to the square of the distance from the source. At the point A, the sound level intensity is [tex]20dB[/tex]
(a) What is the sound level intensity at A of one source?
(b) What is the number of sources that we have to add at A so that the sound level intensity at the midpoint M of OA is [tex]30dB[/tex]?
The number of sources that we have to add at A so that the sound level intensity at M is doubled is 2.
(a) Let the distance of point A from one source be x. Then the distance from the other source is (OA - x), where OA is the distance between the two sources. The sound intensity at point A due to one source is proportional to 1/x^2. So, if the sound power of one source is P, then the sound intensity at A due to one source is given by I = P/(4πx^2), where 4πx^2 is the surface area of a sphere with radius x.
The sound level intensity is defined as L = 10log(I/I0), where I0 is a reference intensity (I0 = 10^-12 W/m^2). Since there are two sources, the total sound intensity at A is twice the sound intensity due to one source, i.e., I_total = 2I = 2P/(4πx^2). Therefore, the sound level intensity at A is L = 10log(2P/(4πx^2I0)) = 10log(2P/(4πI0)) - 20log(x).
(b) Let the distance of point M from one source be y. Then the distance from the other source is (OM - y), where OM is the distance between O and M. The sound intensity at M due to one source is proportional to 1/y^2. So, if the sound power of one source is P, then the sound intensity at M due to one source is given by I = P/(4πy^2), where 4πy^2 is the surface area of a sphere with radius y.
The sound level intensity at M due to one source is L_M = 10log(I/I0) = 10log(P/(4πy^2I0)).
Since the sound intensity is inversely proportional to the square of the distance, the sound intensity at A due to one source is four times the sound intensity at M due to one source. Therefore, I_A = 4I = 4P/(4πy^2), and the sound level intensity at A due to one source is L_A = 10log(I_A/I0) = 10log(P/(πy^2I0)).
We want the total sound level intensity at M due to all sources to be L_M = L_A + 10log2, where 10log2 is the sound level intensity increase due to adding a second source. Therefore, we have:
10log(P/(4πy^2I0)) + 10log2 = 10log(P/(πy^2I0))
10log2 = 10log(4/π)
log2 = log(4/π)
2 = 4/π
π = 2
Learn more about intensity here:
https://brainly.com/question/17323212
#SPJ1
water pressurized to 450000 pa is flowing at 5.0m/s in a horizontal pipe which contracts to 1/3 its former area. what are the pressure and velocity of the water after the contraction?
the pressure of the water after the contraction is -50000 Pa (or 50 kPa below atmospheric pressure), and the velocity of the water after the contraction is 15.0 m/s.
The continuity equation states that the product of the cross-sectional area and the velocity of an incompressible fluid is constant along a pipe, so we can use it to relate the pressure and velocity before and after the contraction:
A₁v₁ = A₂v₂
where A₁ and v₁ are the area and velocity of the pipe before the contraction, and A₂ and v₂ are the area and velocity of the pipe after the contraction.
We can also use the Bernoulli equation, which relates the pressure and velocity of a fluid along a streamline:
P₁ + 1/2 ρv₁² = P₂ + 1/2 ρv₂²
where P₁ and v₁ are the pressure and velocity of the fluid before the contraction, and P₂ and v₂ are the pressure and velocity of the fluid after the contraction, and ρ is the density of the fluid, which we assume to be constant.
Solving for the pressure and velocity after the contraction, we can use the continuity equation to express v₁ in terms of v₂ and substitute it into the Bernoulli equation:
A₁v₁ = A₂v₂
v₁ = (A₂/A₁) v₂
P₁ + 1/2 ρ((A₂/A₁) v₂)² = P₂ + 1/2 ρv₂²
Simplifying and solving for P₂, we get:
P₂ = P₁ + 1/2 ρ(v₁² - v₂²)
Substituting the given values, we get:
A₂ = (1/3) A₁
v₁ = 5.0 m/s
P₁ = 450000 Pa
ρ = 1000 kg/m³
Using the continuity equation, we can find the value of v₂:
A₁v₁ = A₂v₂
v₂ = (A₁/A₂) v₁
v₂ = 3 × 5.0 m/s
v₂ = 15.0 m/s
Substituting this value into the Bernoulli equation, we can find the pressure P₂:
P₂ = P₁ + 1/2 ρ(v₁² - v₂²)
P₂ = 450000 Pa + 1/2 × 1000 kg/m³ × (5.0 m/s)² - (15.0 m/s)²
P₂ = 450000 Pa - 500000 Pa
P₂ = -50000 Pa
Learn more about velocity here:
https://brainly.com/question/17127206
#SPJ1
What types of atoms are radioactive?
small atoms
atoms with many electrons
atoms with unstable nuclei
atoms with unbalanced charges
Answer:
An atom with an "unstable" nucleus is likely to split into two different atoms (elements) with emission of gamma, alpha, etc. which is radioactive radiation.
Which of the following quantitative research methods should a researcher use when trying to understand the political views held by the young population of a specific area? a.) Participant observation b.) Written surveys c.) Secondary data analysis d.) Laboratory experiments
Answer:
Options B
Explanation:
The appropriate quantitative research method for understanding political views held by the young population of a specific area is written surveys (option b). Surveys allow for the collection of data from a large number of participants, and specific questions can be asked to gather data on political views.
Participant observation (option a) involves direct observation of individuals in a natural setting, which may not be practical for studying political views.
Secondary data analysis (option c) involves analyzing data that has already been collected, and may not be specific to the young population or the area of interest.
Laboratory experiments (option d) are typically used to study cause-and-effect relationships between variables, which may not be applicable to studying political views.
Therefore, the best option for understanding the political views held by the young population of a specific area is written surveys.
To understand the political views of the young population of a specific area, a researcher can use written surveys, participant observation, and secondary data analysis as quantitative research methods.
Explanation:If a researcher is trying to understand the political views held by the young population of a specific area, they should use written surveys, participant observation, and secondary data analysis as quantitative research methods.
Written surveys: This method involves distributing survey questionnaires to gather data on political opinions from a sample of the young population in the area. Participant observation: This method involves the researcher immersing themselves in the community and directly observing and interacting with individuals to understand their political views.Secondary data analysis: This method involves analyzing existing data sources, such as census records or previous surveys, to gain insights into the political views of the young population in the area.Learn more about Quantitative Research Methods here:https://brainly.com/question/33505242
#SPJ2
Need help with this
Explanation:
See image for definitions....look at the units and fill the blanks appropriatly
Which of the statements below about buoyancy is true?
OA. The buoyant force causes objects to sink more quickly than 9.8
m/s².
B. The buoyant force is always stronger than the force of gravity.
C. The buoyant force always pushes objects up toward the surface of
the fluid.
D. The buoyant force only acts on objects in water.
The buoyant force always pushes objects up toward the surface of the fluid because it is the upward force that acts on an object submerged in a fluid, such as water or air.
This upward force is known as the buoyant force and is equal to the weight of the fluid displaced by the object which means that the buoyant force is always pushing the object up toward the surface of the fluid. In general, the buoyant force is stronger than gravity when the object is less dense than the fluid and weaker when the object is more dense than the fluid. Thus, the force of gravity is always pulling objects down, but the buoyant force can be stronger or weaker than gravity depending on the object’s density and the density of the fluid. Hence, the buoyant force always pushes objects up toward the surface of the fluid, regardless of whether the fluid is water, air, or some other fluid.
To learn more about buoyant force click here https://brainly.com/question/21990136
#SPJ1
A machine has a velocity ratio of 5. ut requires a 50kg weight to overcome 20kg weight. calculate the efficiency of the machine ( take g= 10m/s^2)
Answer:
The answer is 8%
Explanation:
We know that the efficiency of the machine is given by,
E=(M.A)*100
=([tex]\frac{20}{50}[/tex])*[tex]\frac{1}{5}[/tex]*100
=8%
WHAT IS QUANTUM PHYSICS
hi!
Answer:
Quantum physics is the study of matter and energy at the most fundamental level. It aims to uncover the properties and behaviors of the very building blocks of nature.
EARTH AND SPACE SCIENCE! PLEASE HELP! Question: Tree with unknown height has a shadow that is 4200 centimeters long while a meter stick has a shadow when held vertical that 325 centimeters long. Identify below, the height of the tree in centimeters. The height of the meter stick is 100 centimeters(cm).
Potential answers:
a.) 1292 cm
b.) 1520 cm
Therefore, the answer is (a) 1292 cm is stick has a shadow when held vertical.
What causes the shadow's location to change?Additionally, since light moves in a straight path from its source to an object, the shadow of the object moves with the light source.
Let's use h centimetres to represent the tree's height. We have the following percentage in the problem:
height of tree/length of its shadow = height of meter stick/length of its shadow
or
h / 4200 = 100 / 325
We can solve this proportion for h:
h = 4200 * 100 / 325 = 1292.31 cm
Rounding to the nearest centimeter, we get:
h ≈ 1292 cm
To know more about vertical visit:-
https://brainly.com/question/11679227
#SPJ1
Q37. A major source of heat loss from a house in cold weather is through the windows. Calculate the rate of heat flow through a glass window 2.0m x 1.5m in area and 3.2mm thick, it the temperatures at the inner and outer surfaces are 15.00C and 14.0°C
The rate of heat flow through the window is approximately 84.38 W.
To calculate the rate of heat flow through a glass window
The rate of heat flow through the window can be calculated using the formula:
Q = (kA (T1 - T2))/d
Where
Q is the rate of heat flowk is the thermal conductivity of the glassA is the area of the windowT1 is the temperature at the inner surfaceT2 is the temperature at the outer surfaced is the thickness of the glassWe first need to convert the temperatures to Kelvin, since temperature differences must be in Kelvin in this formula:
T1 = 15.0°C + 273.15 = 288.15 K
T2 = 14.0°C + 273.15 = 287.15 K
The thermal conductivity of glass can vary depending on the type of glass, but a typical value is around k = 0.9 W/(m·K) for plate glass.
Substituting the given values into the formula, we get:
Q = (0.9 W/(m·K) x 2.0 m x 1.5 m x (288.15 K - 287.15 K))/0.0032 m
Simplifying this expression, we get:
Q ≈ 84.38 W
Therefore, the rate of heat flow through the window is approximately 84.38 W.
Learn more about thermal conductivity here : brainly.com/question/14919402
#SPJ1
A man walking at 3.56 m/s accelerates at 2.50 m/s2 for 9.28 s. How far does he get?
The man who walks at 3.56 m/s and accelerates at 2.50 m/s2 for 9.28 s would walk a distance of 135.245 meters.
Kinematic motionWe can use the kinematic equation:
distance = initial velocity x time + (1/2) x acceleration x time^2
To use this equation, we need to find the initial velocity of the man before he started accelerating. We can do this using the formula:
final velocity = initial velocity + acceleration x time
At the start, the man's velocity was 3.56 m/s, and he accelerates at 2.50 m/s^2 for 9.28 s. Therefore, his final velocity can be calculated as:
final velocity = 3.56 + 2.50 x 9.28
final velocity = 26.08 m/s
Now we can use the distance formula:
distance = initial velocity x time + (1/2) x acceleration x time^2
with initial velocity being 3.56 m/s, time being 9.28 s, acceleration being 2.50 m/s^2, and final velocity being 26.08 m/s:
distance = 3.56 x 9.28 + (1/2) x 2.50 x (9.28)^2
distance = 32.968 + 102.277
distance = 135.245 m
Therefore, the man traveled a distance of approximately 135.245 meters.
More on motion can be found here: https://brainly.com/question/31255572
#SPJ1
why would the acceleration not change when adding mass to an air cart?
Answer:
The acceleration of an air cart, which is an object moving on a cushion of air, would not change when adding mass to it because the force of air resistance acting on the cart is negligible compared to the force applied by the air source that propels it. Therefore, the total force acting on the cart remains almost constant, regardless of the cart's mass, and according to Newton's second law of motion, the cart's acceleration would remain the same. This assumes that the air source provides a constant force and that the added mass does not significantly affect the friction between the cart and the surface on which it is moving.
In an electric circuit, what is one material that the connector can be made of?
A large 2.00×104 L aquarium is supported by four wood posts (Douglas fir) at the corners. Each post has a square 5.60 cm x 5.60 cm cross section and is 80.0 cm tall.
By how much is each post compressed by the weight of the aquarium?
A green ball and a blue ball have a mass of 10 kg each one. The green ball, traveling at 10 m/s, strikes the blue ball, which is at rest. Assuming that the balls slide on a frictionless surface and all collisions are head-on, find the final speed of the blue ball in each of the following situations:
a. The green ball stops moving after it strikes the blue ball
b. The green ball continues moving after the collision at 4 m/s in the same direction.
(a) The final velocity of the blue ball is 5 m/s after the collision
(b) The final velocity of the blue ball is 6 m/s after the collision.
What is the final velocity of the balls?To solve this problem, we can use the conservation of momentum and the conservation of kinetic energy. The total momentum and total kinetic energy of the system before and after the collision must be the same.
a. When the green ball stops moving after the collision, its final velocity is 0 m/s. Let's call the final velocity of the blue ball v. The conservation of momentum equation is:
m_green x v_green + m_blue x v_blue = (m_green + m_blue)v
Substituting the values, we get:
10 kg x 10 m/s + 10 kg x 0 m/s = 20 kg x v
Simplifying, we get:
v = 5 m/s
b. When the green ball continues moving after the collision at 4 m/s in the same direction, its final velocity is 4 m/s. Let's call the final velocity of the blue ball v.
The conservation of momentum equation is the same as before:
m_green x v_green + m_blue x v_blue = (m_green + m_blue)v
Substituting the values, we get:
10 kg x 10 m/s + 10 kg x 0 m/s = 10 kg x 4 m/s + 10 kg x v
Simplifying, we get:
v = 6 m/s
Learn more about linear momentum here: https://brainly.com/question/7538238
#SPJ1
Cathode ray tubes (CRTs) used in old-style televisions have been replaced by modern LCD and LED screens. Part of the CRT included a set of accelerating plates separated by a distance of about 1.70 cm. If the potential difference across the plates was 24.5 kV, find the magnitude of the electric field (in V/m) in the region between the plates.
the magnitude of the electric field in the region between the plates is 1.44 × [tex]10^6[/tex]V/m.
The electric field between the plates of the CRT can be calculated using the formula:
E = V/d
where E is the electric field, V is the potential difference across the plates, and d is the distance between the plates.
Substituting the given values, we get:
E = 24.5 kV / 0.017 m
Converting kV to V and simplifying, we get:
E = 24.5 × [tex]10^3[/tex]V / 0.017 m
E = 1.44 × [tex]10^6[/tex] V/m
An electric field is a force field created by a charged object or collection of charged objects that exerts a force on other charged objects within its vicinity. The electric field is a vector quantity and is measured in units of volts per meter (V/m).
The electric field at a point in space is defined as the force per unit charge acting on a positive test charge placed at that point. The direction of the electric field is given by the direction of the force that would be experienced by a positive test charge placed at that point.
Learn more about electric field here:
https://brainly.com/question/15800304
#SPJ1
If astronomers were to find they have made a mistake and our solar system is actually 7.2 (rather than 8.2) kpc from the center of the galaxy, but the orbital velocity of the sun is still 240 km/s, what is the minimum mass of the galaxy?
Assuming a circular orbit for the Sun, we can use the equation:
v^2 = GM/r
where v is the orbital velocity of the Sun, r is the distance from the center of the galaxy, G is the gravitational constant, and M is the mass of the galaxy.
We can solve for M:
M = v^2 * r / G
Using the given values of v = 240 km/s and r = 7.2 kpc = 7.2 * 3.086e+19 m, and G = 6.6743e-11 N m^2/kg^2, we get:
M = (240000 m/s)^2 * 7.2 * 3.086e+19 m / 6.6743e-11 N m^2/kg^2
M = 1.47e+42 kg
Therefore, the minimum mass of the galaxy, if the distance of the solar system from the center is actually 7.2 kpc, is approximately 1.47 x 10^42 kg.
Cheyenne wants to show her class a model that demonstrates sound reflection. Which model best represents what happens when sound waves are reflected?
The simulation of sound waves bouncing off a flat surface is one model that most accurately depicts what happens when sound waves are reflected.
Who or what names the sound wave reflection?The term "echo" refers to a sound reflection that follows a direct sound in reaching the listener. The delay increases with the distance between the source and the listener travelled by the reflecting surface.
A sound wave belongs to what kind of wave?Longitudinal waves are those produced by sound. Compressions and rarefactions occur during the propagation of longitudinal waves through any given medium. When particles are compressed, high pressure zones are created as a result of their near proximity.
To know more about sound waves visit:-
https://brainly.com/question/29071528
#SPJ1
51 An electrician has to make eight connections from a switchboard to several outlets. Each
connection requires 50 centimeters of wire. How many meters of wire does the electrician need?
A.4,000 m
B.400 m
C.40 m
D.4 m
Answer:
Each connection requires 50 centimeters of wire, which is equal to 0.5 meters of wire. Therefore, for eight connections, the electrician would need:
8 * 0.5 = 4 meters of wire
Therefore, the correct answer is option D, 4 m.
:
A horizontal force of 25 N is exerted on a box (mass 10 kg), as shown in the diagram. The box accelerates at 2.0 m.s-2. What is the magnitude of the frictional force acting between the box and the floor?
Answer:
the magnitude of the frictional force acting between the box and the floor is 5 N.
Explanation:
Psi(x) = (alpha/pi) ^ (1/4) * e ^ (- (alpha * x ^ 2)/2)
Find wave function of
(Px)*2
(Pls if you know the answer writ it on the paper to be clear )
Note that the wave function of (Px)^2 is given by: (Px)^2 Psi(x) = (h^2/4π^2) [(3α^2 x^2 - α) (α/π)^(1/4) e^(-αx^2/2)]
What is the explanation for the above response?To find the wave function of (Px)^2, we need to use the momentum operator, which is represented by Px = -i(h/2π) d/dx.
First, let's find the wave function of Px, which is given by:
Px Psi(x) = -i(h/2π) d/dx [Psi(x)]
= -i(h/2π) [-αx Psi(x) + (α^2 x) Psi(x)]
Now, we can find the wave function of (Px)^2 by squaring the wave function of Px:
(Px)^2 Psi(x) = (-i(h/2π) d/dx) (-i(h/2π) d/dx) Psi(x)
= (h^2/4π^2) [α^2 x^2 Psi(x) - 2α x d/dx(Psi(x)) + (d^2/dx^2)(Psi(x))]
Substituting Psi(x) = (α/π)^(1/4) e^(-αx^2/2) into the above expression, we get:
(Px)^2 Psi(x) = (h^2/4π^2) [(3α^2 x^2 - α) (α/π)^(1/4) e^(-αx^2/2)]
Therefore, the wave function of (Px)^2 is given by:
(Px)^2 Psi(x) = (h^2/4π^2) [(3α^2 x^2 - α) (α/π)^(1/4) e^(-αx^2/2)]
Learn more about wave function at:
https://brainly.com/question/17484291
#SPJ1
6. Construct a new physical equations having in terms of G, C and h dimensions of length where G is universal gravitational constant, c is the speed of light and I is planck's Constant.
Basic values of mass in the existing program are c1/2 G-12 h1/2 if the speed of light (c), newtonian constant (G), and Planck's parameter (h) are taken as the fundamental units.
What is the G equivalent of the principle of the universal gravitational equation?According to the Universal Gravitation Equation, G is equal to 6.673 x 10-11 N m2/kg2. Everything because of how a fruit falls from a tree to the reason the moon rotates around the earth may be explained by the Universal Gravitational Law.
What does the formula for the universal law of gravity mean?This rule states that the distance is proportional to the product of the mass of the two objects. The Universal Law of Force of gravity is summed up by the following gravitational force equation: FG = (G.m1.
To know more about speed visit :
https://brainly.com/question/28224010
#SPJ9
From time to time, people claim to have invented a machine that will run forever without energy input and develop more energy than it uses (perpetual motion). What is wrong with this claim?
Explanation:
It ignores some basic laws of physics:
You cannot get more work out of a machine than goes in
You cannot ignore friction
Derive from first principle the equation of motion of a one dimensional standing wave
The equation of motion of a one dimensional standing wave can be derived from first principles using the wave equation.
The wave equation states that the propagation speed of a wave, c, is equal to the square root of the ratio of the wave's tension (T) to its linear mass density (μ). In other words,
[tex]c = \sqrt{ \frac{T}{\mu}[/tex]
For a one dimensional standing wave, the equation of motion can be derived by taking the second derivative of the wave equation with respect to time. This is the equation of motion that results:
[tex]F = \mu (\frac{d2y}{dt2})[/tex]
where F is the total force applied to the wave, and [tex]\frac{dy}{dt}[/tex] is the wave velocity. The equation of motion can be further simplified by substituting the wave equation for c, resulting in the following equation of motion for a one dimensional standing wave:
[tex]F = (\frac{T}{\mu }) (\frac{d2y}{dt2})[/tex]
This equation of motion describes how the total force applied to a one dimensional standing wave affects the wave's velocity.
learn more about motion Refer:brainly.com/question/22810476
#SPJ1
complete question:What is the equation of motion for a one-dimensional standing wave?
I need help with this ty
Answer:
4 & 2
Explanation:
If you plug in experimental values into the formula for kinetic energy, you will see the relationship.
1.
[tex]\frac{1}{2}(2 kg)(2 m/s)^{2} = 4 kg * m^{2} /s^{2} \\\\\frac{1}{2}(8 kg)(2m/s)^{2} = 16 kg * m^{2} /s^{2}\\\\\frac{16}{4} = 4[/tex]
2.
[tex]\frac{1}{2}(6 kg)(2m/s)^{2} = 12 kg * m^{2} /s^{2} \\\\\frac{1}{2}(3 kg)(2 m/s)^{2} = 6 kg * m^{2}/s^{2}\\ \\\frac{12}{6} = 2[/tex]
QUICK ANSWER Fiber optic cables utilize internal reflection to transmit signals. TRUE OR FALSE
PLS MRK ME BRAINLIEST
Answer:
True
Explanation:
optical fibre consists of core and cladding. The signal is converted to light using transducers. The light travels across the cable undergoing multiple internal reflections. At the other end the light is converted back to Signal using transducers.
Answer: True
Explanation: Optical fiber uses the optical principle of "total internal reflection" to capture the light transmitted in an optical fiber and confine the light to the core of the fiber.
If I get this wrong im sorry
4. An ice skater is spinning on the ice at 4.00 rev/s. If the skater’s nose is 0.120 m from the axis of rotation, what is the centripetal acceleration of his nose?
Answer:
a = 3.02 m/s^2
h
Explanation:
we know that centripetal acceleration (a) is
[tex] \frac{v {}^{2} }{r} = a[/tex]
since v = rω, we can substitute it into the equation, which now gives us the centripetal acceleration in terms of angular velocity and radius (check image).
now we use the values given and find the answer
A student decides to devise a new temperature scale with the freezing and boiling points at 0° X and
70° X. What Celsius temperature would correspond to a temperature of 35° X?
O 50
O 35
O 90
O 70
Answer:
To convert temperature from the new scale (X) to Celsius, we simply subtract 0 from the value in X and then multiply the resulting number by a factor of 100/70. This gives us the Celsius temperature.
For 35° X, we can use the formula as follows:
C = (35 - 0) * (100/70)
C = 35 * 1.4286
C = 50°C
Therefore, the correct answer is option A, which is 50.