The final angular velocity of the merry-go-round with the child on it is 0.064 rev/s.
Before the child gets onto the merry-go-round, the angular momentum of the system is:
L1 = I1 * ω1
where I1 is the moment of inertia of the merry-go-round and ω1 is its initial angular velocity. The moment of inertia of a solid cylinder is given by:
I1 = 0.5 * M1 * R1²
where M1 is the mass of the merry-go-round and R1 is its radius. Substituting the given values, we get:
I1 = 0.5 * 120 kg * (1.80 m)² = 388.8 kg m²
Substituting this into the equation for angular momentum, we get:
L1 = 388.8 kg m² * 0.400 rev/s = 155.52 kg m²/s
When the child gets onto the merry-go-round, the moment of inertia of the system increases, and the angular velocity decreases to conserve angular momentum. The moment of inertia of the system with the child on it is:
I2 = I1 + M2 * R1²
where M2 is the mass of the child. Substituting the given values, we get:
I2 = 0.5 * 120 kg * (1.80 m)² + 24.0 kg * (1.80 m)² = 608.4 kg m²
To find the new angular velocity, we can rearrange the equation for angular momentum and substitute the new moment of inertia and the initial angular momentum:
L2 = I2 * ω2
ω2 = L2 / I2
The initial angular momentum is the same as the final angular momentum, so:
L1 = L2
Substituting the values, we get:
155.52 kg m²/s = 608.4 kg m² * ω2
ω2 = 0.064 rev/s
To know more about angular velocity, here
brainly.com/question/29554163
#SPJ4
im not sure what to write in the blanks.
Explanation:
meters per second
meters per second
seconds
which of the following statements are correct? hint given in feedback select one or more: a. in an electron microscope, electrons behave as waves. b. waves have a very precise location. c. a neutron can behave as a wave. d. a bb (small 1-2 mm ball of copper) can behave as a wave.
The correct statements are: a. In an electron microscope, electrons behave as waves. b. Waves do not have a very precise location. c. A neutron can behave as a wave.
An explanation of each statement is given below:
a. In an electron microscope, electrons behave as waves. This statement is true. In an electron microscope, electrons are used to image very small objects. In this case, electrons behave as waves, which can be focused and directed to create images of the object.
b. Waves do not have a very precise location. This statement is also true. Waves exhibit a property known as wave-particle duality, meaning they can be both waves and particles. As particles, they have a specific location. However, as waves, they do not have a precise location but rather are spread out over a region.
c. A neutron can behave as a wave. This statement is also true. Neutrons are particles that can also exhibit wave-like behaviour. This wave-particle duality is a fundamental property of quantum mechanics, which describes the behaviour of particles on very small scales.
d. A BB (small 1-2 mm ball of copper) can behave as a wave. This statement is false. A BB is a macroscopic object, meaning it is large enough to be observed without a microscope. The wave-particle duality only applies to particles on very small scales, such as electrons or neutrons.
For more such questions on electron
brainly.com/question/9317875
#SPJ11
a worker aciddentally kicks a rock off of a roof of a 5m tall building at 2 m/s. what is the distance (range) x from the edge of the building where the rock will land?
Answer:
We can use the equations of motion to find the horizontal distance (range) x from the edge of the building where the rock will land. The vertical motion of the rock is governed by the acceleration due to gravity, which is constant and equal to 9.81 m/s^2.
First, we can find the time it takes for the rock to hit the ground using the vertical motion equation:
y = vi*t + (1/2)at^2where y is the initial height of the rock (5 m), vi is the initial vertical velocity of the rock (0 m/s), a is the acceleration due to gravity (-9.81 m/s^2), and t is the time it takes for the rock to hit the ground.
Solving for t, we get:
t = sqrt((2*y)/a) = sqrt((2*5)/9.81) = 1.02 s
Now we can find the horizontal distance (range) x from the edge of the building using the horizontal motion equation:
x = vx*t
where vx is the horizontal velocity of the rock, which is constant and equal to 2 m/s.
Substituting the values we have, we get:
x = 2 m/s * 1.02 s = 2.04 mTherefore, the distance (range) x from the edge of the building where the rock will land is 2.04 meters.
a camera lens has a focal length of 50.0 mm and an aperture setting of f/4.00. what is the aperture diameter of this lens? question 3 options: 12.5 mm 10.1 mm 13.6 mm 14.2 mm 15.0 mm
The aperture diameter of this lens is 12.5 mm. The correct option is 12.5 mm.
Aperture refers to the opening of a lens's diaphragm through which light passes. In cameras, it is a hole through which light travels. The larger the hole, the more light passes through. Aperture is measured in f-stops, with a low number indicating a larger aperture (more light passing through) and a high number indicating a smaller aperture (less light passing through).
A camera lens has a focal length of 50.0 mm and an aperture setting of f/4.00, as given in the question. To find the aperture diameter of this lens, we can use the formula:
Aperture diameter = Focal length / f-number
Given that the focal length is 50.0 mm and the aperture setting is f/4.00, we have:
f-number = 4.00focal length = 50.0 mm
Substituting these values in the formula, we get:
Aperture diameter = Focal length / f-number= 50.0 mm / 4.00= 12.5 mm
Therefore, the aperture diameter of this lens is 12.5 mm. The correct option is 12.5 mm.
For more such questions on aperture , Visit:
https://brainly.com/question/10095671
#SPJ11
how does a diode behave in a circuit? include how the behavior is different for positive and negative voltages
A diode is an electronic component that allows current to flow in one direction and blocks it in the opposite direction.
A diode is a semiconductor device that allows current to flow in only one direction. When the voltage across the diode is positive (forward bias), the diode conducts current easily and has a very low resistance, allowing current to flow through the diode. However, when the voltage across the diode is negative (reverse bias), the diode has a very high resistance and will not conduct any significant current.
In practical circuits, the diode is often used as a rectifier, allowing current to flow in one direction and blocking current in the opposite direction. In forward bias, the diode acts as a closed switch, allowing current to flow freely in the forward direction. In reverse bias, the diode acts as an open switch, blocking any current flow in the reverse direction.
To know more about diode, here
brainly.com/question/14988926
#SPJ4
Select the correct term to complete the sentences. fluorescence translucent object
RGB color model
visible light index of refraction nanometer white light rod cell
transparent
pixel
color
cone cell
converging lens
prism
specular reflection electromagnetic spectrum
CMYK incandescence photon diffuse reflection electromagnetic wave diverging lens photoreceptor lens mirror
Section 25.1
1. contains an equal mix of all colors.
2. You can use light produced by to heat food.
3. Atoms produce light by
4. A(n) travels at the speed of light.
5. A light wave at 500 THz is the orange.
6. You see all the colors of when you see a rainbow.
7. Light wavelengths are measured in _(s).
8. Ultraviolet light and microwaves are part of the
9. A(n) is the smallest possible amount of light.
Section 25.2
10. A(n) specializes in detecting color.
11. A(n) specializes in detecting light intensity.
12. The human eye has about 137 million _
13. An HDTV screen has more_than an ordinary TV screen.
14. Magenta is a pigment used in the color model.
15. The is used by video cameras to achieve a range
of colors.
Section 25.3
16. A surface with
produces a single beam of reflected light rays.
17. occurs when light enters a material and bends.
18. Three examples of optical devices are…. And….
19. Glass is a(n) material because light passes through it without scattering.
20. materials allow light to pass but scatter it in all directions.
21. The of water is 1.33.
22. Surfaces that scatter light when it reflects have
23. A(n) … bends light rays inward toward the focal point.
24. A(n) ….bends light rays outward away from the
focal point.
Section 25.1: 1.) white light, 2.)incandescence, 3.) emitting photons , 4.) photon, 5.) orange, 6.) visible light, 7.) nanometers, 8.) electromagnetic spectrum, 9.) photon
What is rod cells?Rods are the type of photoreceptor cell in retina and are sensitive to light levels and help give us good vision in low light.
Section 25.2
10. Cone cell specializes in detecting color.
11. Rod cell specializes in detecting light intensity
12. Human eye has 137 million : photoreceptors.
13. An HDTV screen has more than an ordinary TV screen : pixels
14. Magenta is a pigment used in the color model : CMYK
15. The is used by video cameras to achieve a range of colors : RGB color model
Section 25.3
16. A surface with produces a single beam of reflected light rays : specular reflection
17. occurs when light enters a material and bends : Refraction
18. Three examples of optical devices are converging lens, diverging lens and prism.
19. Glass is transparent material because light passes through it without scattering.
20. Materials that allow light to pass but scatter it in all directions : translucent
21. The index of refraction of water is 1.33
22. Surfaces that scatter light when it reflects have : rough surfaces
23. Converging lens bends light rays inward toward the focal point
24. Diverging lens bends light rays outward away from the focal point.
To know more about rod cells, refer
https://brainly.com/question/30902347
#SPJ1
you are working as an electrician installing fluorescent lights. you notice that the lights were made in europe and that the ballasts are rated for operation on a 50-hz system. will these ballasts be harmed by overcurrent if they are connected to 60 hz? if there is a problem with these lights, what will be the most likely cause of the trouble?
The solution would be to either replace the ballasts with ones designed for a 60-hz system or to use lights that are designed to operate on a 60-hz system.
When answering questions on Brainly, it is important to always be factually accurate, professional, and friendly. Answers should be concise and relevant to the question being asked. Typos and irrelevant parts of the question should be ignored.
Here is the answer to the student question:If you are an electrician installing fluorescent lights and notice that the lights were made in Europe and the ballasts are rated for operation on a 50-hz system, they will not be harmed by overcurrent if they are connected to a 60 hz system.
However, there may be a problem with these lights because they are designed to operate on a 50-hz system and not a 60-hz system. This could cause the lights to flicker, not turn on, or burn out prematurely.The most likely cause of the problem is that the ballasts are not designed to operate on a 60-hz system.
The solution would be to either use lights made to work on a 60 hz system or replace the ballasts with ones made for a 60 hz system.
To learn more about : designed
https://brainly.com/question/28113233
#SPJ11
describe how contacts associated with relays, timers, motor starts, and the like are represented on a ladder diagram.
In a ladder diagram, these symbols are organized into horizontal rungs, which represent parallel circuits, and vertical rails, which represent power supply lines.
In a ladder diagram, contacts associated with relays, timers, motor starters, and similar devices are represented using specific symbols and notations to show their function and status. Here's a step-by-step explanation of how they are represented:
1. Normally open (NO) contact: This is represented by two parallel lines, similar to an open switch. It indicates that the contact is open when the device (relay, timer, motor starter, etc.) is not energized. The symbol is (| |).
2. Normally closed (NC) contact: This is represented by two parallel lines with a diagonal line across them, similar to a closed switch. It indicates that the contact is closed when the device is not energized. The symbol is (|/|).
3. Relay coil: A relay coil is represented by a circle with the relay's identification (usually a letter and number) inside it. When the coil is energized, it causes the associated contacts to change their state (NO contacts close, NC contacts open).
4. Timer: Timers are represented by a square or rectangle with the timer's identification inside it, and sometimes the time delay setting. Timer contacts can be either normally open (| |) or normally closed (|/|), and their state will change after the specified time delay.
5. Motor starter: A motor starter is represented by a circle with an "M" inside it. Motor starters have both normally open and normally closed contacts, depending on the function (e.g., for starting or stopping the motor). The contacts are connected in series or parallel with the motor and other control devices.
In a ladder diagram, these symbols are organized into horizontal rungs, which represent parallel circuits, and vertical rails, which represent power supply lines. The diagram provides a clear and concise way to visualize the operation and interconnection of these devices in a control circuit.
For more such questions on ladder diagram , Visit:
https://brainly.com/question/30297090
#SPJ11
a long, straight wire with current flowing through it produces magnetic field strength at its surface. if the wire has a radius r, where within the wire is the field strength equal to of the field strength at the surface of the wire? assume that the current density is uniform throughout the wire. a) 0.36 r b) 0.060 r c) 0.64 r d) 0.030 r
The answer to this question is 0.64 r (option c).To calculate the magnetic field inside the wire, we can use Ampere's Law.
Calculation of magnetic field:The magnetic field can be calculated by
1: Calculate the magnetic field strength at the surface using Ampere's Law for a long, straight wire.
2: Find the equation for the magnetic field strength at a distance x from the center of the wire.
3: Equate the magnetic field strength at distance x to half the magnetic field strength at the surface.
4: Solve for x in terms of the wire's radius r.
The answer is x = 0.64 r, which corresponds to option c) 0.64 r.
You can learn more about the magnetic field at: brainly.com/question/23096032
#SPJ11
A horse pulls a tree trunk there is a force of 1500N. and moves a distance of 10m in 15s find the work and the power.
Answer:
Work=15000
Power=1000
Explanation:
Foce=1500N
Distance=10m
Time=15s
Work=Force*Distance
Work=1500*10=15000Nm
Power=Work/Time=15000/15=1000nm/s
What quantity in moles of LiBr are in 77.0 grams of LiBr?
Using stoichiometry, use the conversion factor of 1 mol/molar mass of LiBr
Molar mass of Li = 6.941 g
Molar mass of Br = 79.904 g
Molar mass of LiBr = 6.941 g + 79.904 g
Molar mass of LiBr = 86.845 g
[tex]77.0 g LiBr(\frac{1 mol LiBr}{86.845g LiBr})\\\\0.886637112096[/tex]
There are 0.886637112096 moles of LiBr in 77.0 grams of LiBr.
The molecular mass of Lithium Bromide (LiBr) is found by adding the atomic masses of Lithium and Bromide. Given a mass of 77.0 grams of LiBr, by converting this to moles using the molecular mass, we find there are 0.887 moles of LiBr.
Explanation:The process to solve this involves finding the molecular mass of Lithium Bromide (LiBr), which allows us to convert grams to moles. The atomic mass of Lithium (Li) is approximately 6.94 g/mol, and Bromide (Br) is 79.9 g/mol. Hence, the molecular mass of LiBr = 6.94 g/mol + 79.9 g/mol = 86.84 g/mol.
To calculate the quantity of moles, we use the formula: Moles = mass (grams) / molecular weight (g/mol). Given a mass of 77.0 grams, the quantity in moles = 77.0 g / 86.84 g/mol = approximately 0.887 moles of LiBr.
Learn more about Moles here:https://brainly.com/question/34302357
#SPJ2
Can someone help me with this please!!!
Answer:
B. 10 m
Explanation:
f = v/λ = (20 m/s)λ / (5 m) = 4 Hz original frequency
1/2(4 Hz) = 2 Hz half the original frequency
(20 m/s) / λ = 2 Hz
λ = (20 m/s) / (2 Hz) = 10 m
The second wavelength would increase to 10 m
a horizontally directed force of 25-n is used to pull a box through a distance of 2.6 m across a tabletop. how much work is done by the 25-n force?
A horizontally directed force of 25-n is used to pull a box through a distance of 2.6 m across a tabletop. The work done by the 25-N force is 65 Joules.
The work done by the 25-N force is calculated using the formula:
Work = Force × Distance × cos(θ), where θ is the angle between the force and displacement vectors.
In this case, the force is horizontal, and the displacement is also horizontal, so the angle (θ) is 0 degrees.
Therefore, cos(θ) = 1.
Work = 25 N × 2.6 m × 1 = 65 J (Joules)
So, the work done by the 25-N force to pull a box through a distance of 2.6 m across a tabletop is 65 Joules.
For more such questions on work done, click on:
https://brainly.com/question/25573309
#SPJ11
6. a 60 kw pump is used to pump up water from a mine that is 40 m deep. find the mass of water that can be lifted by the pump in 1.2 min.
We can substitute all the values in the formula for mass of water lifted:mass of water lifted = power x time / work done against gravity x efficiency= 60 x 72 / (1232.56r²) x 0.8= 26.25/r² kgAnswer: mass of water lifted = 26.25/r² kg.
To find the mass of water that can be lifted by a 60 kW pump in 1.2 minutes from a mine that is 40 m deep, we use the following formula:mass of water lifted = power x time / work done against gravity x efficiencyWe know that the power of the pump is 60 kW, the depth of the mine is 40 m, and the time taken is 1.2 minutes or 72 seconds. The efficiency of the pump is not given, so we assume it to be 80%.Now, we need to find the work done against gravity. The work done against gravity is equal to the weight of the water lifted. The weight of water is given by the formula:weight of water = mass x gravitywhere gravity is 9.8 m/s²Substituting the values, we get:weight of water = volume of water x density x gravitySince we are not given the density of water, we assume it to be 1000 kg/m³.Substituting the values, we get:work done against gravity = weight of water x depth of mine= volume of water x density x gravity x depth of mine= πr² x h x 1000 x 9.8 x 40= 1232.56r²Now, we can substitute all the values in the formula for mass of water lifted:mass of water lifted = power x time / work done against gravity x efficiency= 60 x 72 / (1232.56r²) x 0.8= 26.25/r² kg.
Learn more about mass of water here:
https://brainly.com/question/29269842
#SPJ4
car is travelling on a straight level section of a highway through a small town at a constant speed of 108 km/h. the absented-minded driver misses the posted speed limit sign. a police car that is stopped next to the sign accelerates 7.5 m/s 2 from rest 5.0 s after the speeding car has passed (c) [4 marks] what is the speed of the police car when it catches up to the speeder?
The speed of the police car when it catches up to the speeder is 37.5 m/s.
How to determine speed?
To solve the problem, we can use the following kinematic equation:
v = u + at
where:
v = final velocity (unknown)
u = initial velocity of the police car (0 m/s)
a = acceleration of the police car (7.5 m/s²)
t = time elapsed after the police car starts accelerating (5.0 s)
We can also convert the speed of the car from km/h to m/s:
108 km/h = (108 km/h) x (1000 m/km) x (1 h/3600 s) = 30 m/s
Now we can substitute the values into the equation:
v = 0 + (7.5 m/s²) x (5.0 s)
v = 37.5 m/s
Therefore, the speed of the police car when it catches up to the speeder is 37.5 m/s.
Learn more about speed
brainly.com/question/28224010
#SPJ11
a 60 g g ball of clay traveling at speed 6.5 m/s m / s hits and sticks to a 1.0 kg k g block sitting at rest on a frictionless surface. what is the speed of the block after the collision?
A 60 g ball of clay traveling at speed 6.5 m/s m / s hits and sticks to a 1.0 kg k g block sitting at rest on a frictionless surface. The speed of the block after the collision is approximately 0.368 m/s.
After the collision, the speed of the block can be found using the conservation of momentum principle.
The initial momentum of the system is equal to the final momentum of the system.
Initial momentum = (mass of clay * velocity of clay) + (mass of block * velocity of block)
Final momentum = (mass of clay + mass of block) * final velocity
60 g = 0.06 kg (convert to kg)
1.0 kg block is at rest, so its initial velocity = 0 m/s.
Initial momentum = (0.06 kg * 6.5 m/s) + (1.0 kg * 0 m/s) = 0.39 kg m/s
Final momentum = (0.06 kg + 1.0 kg) * final velocity
Since, Initial momentum = Final momentum, we have
0.39 kg m/s = (1.06 kg) * final velocity
Final velocity = 0.39 kg m/s / 1.06 kg
Final velocity ≈ 0.368 m/s
The speed of the block after the collision is approximately 0.368 m/s.
For more such questions on collision, click on:
https://brainly.com/question/7221794
#SPJ11
you must build the cantilever shown in the figure. the maximum length of cable you have available is 5 m and the maximum tension the cable can support is 245 n. the material used for the cantilever has a density of 40 kg per meter length of the cantilever. what is the maximum length (in m) of the cantilever that you can build?
The maximum length of the cantilever that can be built is approximately 0.63 m.
When answering questions on Brainly, it is important to always be factually accurate, professional, and friendly. It is also important to be concise and not provide extraneous amounts of detail. It is recommended to use the following terms in your answer if they are relevant to the question being asked.
For example, in the question "you must build the cantilever shown in the figure. the maximum length of cable you have available is 5 m and the maximum tension the cable can support is 245 n.
the material used for the cantilever has a density of 40 kg per meter length of the cantilever. what is the maximum length (in m) of the cantilever that you can build?",
one would need to use terms such as cantilever, cable, tension, and density in their response.In order to calculate the maximum length of the cantilever that can be built, the following formula can be used:
L = T / (d * g)Where L is the maximum length of the cantilever,
T is the maximum tension the cable can support, d is the density of the cantilever material, and g is the acceleration due to gravity (9.8 m/s^2).Plugging in the given values, we get:
L = 245 / (40 * 9.8) ≈ 0.63 m
To learn more about : cantilever
https://brainly.com/question/15188032
#SPJ11
Why did new and existing aquatic organisms thrive during the Mesozoic?
The new and existing aquatic organisms thrive during the Mesozoic era for oceanic expansion, warm climate, abundant food and Evolutionary innovations
What is the Mesozoic?
The Mesozoic era, which lasted from about 252 million years ago to 66 million years ago, was a time of great change in the Earth's climate and geography. During this period, new and existing aquatic organisms thrived due to several factors:
Oceanic Expansion: During the Mesozoic era, the Earth's continents began to separate, leading to the expansion of ocean basins. This created more habitat for aquatic organisms to colonize and diversify.Warm Climate: The Mesozoic era was characterized by a warm and stable climate, which allowed marine organisms to thrive in the shallow, sunlit waters near the coasts.Abundant Food: The oceans of the Mesozoic were rich in nutrients, which supported the growth of plankton and other primary producers. This, in turn, provided a food source for a wide variety of marine organisms, including fish, marine reptiles, and invertebrates.Evolutionary innovations: During the Mesozoic era, many new types of aquatic organisms evolved, including dinosaurs, marine reptiles such as ichthyosaurs and plesiosaurs, and various types of fish. These evolutionary innovations allowed aquatic organisms to exploit new niches and diversify their lifestyles.Learn about Mesozoic era here https://brainly.com/question/4824228
#SPJ1
if two objects each carrying a charge of 1 coulomb were placed 1 meter apart, how much force would they exert on each other? group of answer choices 106 n 9 n zero 1 n 9 x 109 n
Answer:
F = 9×10⁹ N
Explanation:
Coulomb's Law, k = 8.98755×10⁹Nm²/C² , q₁ = 1C , q₂ = 1C, r = 1m[tex]F=k\frac{q_1q_2}{r^2} \\\\F=(8.98755*10^9 Nm^2/C^2)*\frac{(1C)(1C)}{(1m)^2} \\\F = 9*10^9 N[/tex]
The force between the two objects is approximately [tex]9 * 10^9[/tex] N. So, the last option is accurate
Coulomb's law is an important principle in physics. It states that the force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
To find the force between two charged objects, we can use Coulomb's Law, which states:
[tex]F =k *\frac{ (q1 * q2)}{r^2}[/tex]
Where F is the force, k is Coulomb's constant ([tex]8.99 * 10^9 N m^2/C^2[/tex]), q₁ and q₂ are the charges of the objects, and r is the distance between them. In this case, q₁ = q₂ = 1 C (coulomb) and r = 1 m (meter). Plugging these values into the equation:
[tex]F = \frac{(8.99 * 10^9) * (1 * 1) }{ (1)^2}[/tex]
[tex]F = 8.99 * 10^9 N[/tex].
The force is attractive when the charges are opposite (one negative and one positive), and the force is repulsive when the charges are the same (both negative or both positive).
To know more about Coulomb's law
brainly.com/question/506926
#SPJ11
how often should a fire detection and alarm system backup electrical generator be run under load? answer
When it comes to the frequency with which a fire detection and alarm system backup electrical generator should be run under load, it is recommended that it be run under load at least once a month.
A fire detection and alarm system is a collection of systems that work together to detect and alert occupants to the presence of fire through audio and visual signals.
In addition to being a component of a building's life safety system, fire detection and alarm systems are also utilized to activate fire suppression systems, elevators, and other safety features. Intended to notify emergency services in the event of an alarm, allowing for prompt evacuation and the implementation of any necessary emergency response procedures.When it comes to the detection of fire, fire detection, and alarm systems utilize a variety of technologies, including photoelectric detectors, ionization detectors, and thermal detectors, to detect the presence of fire. Furthermore, once the alarm has been triggered, the system is designed to notify emergency services so that they can respond as quickly as possible to the scene of the fire.Therefore, it is advisable to operate the backup electrical generator of a fire detection and alarm system under load at least once per month.
To know more about fire detection click here:
https://brainly.com/question/14391072
#SPJ11
a cart with mass 390 g moving on a frictionless linear air track at an initial speed of 1.6 m/s undergoes an elastic collision with an initially stationary cart of unknown mass. after the collision, the first cart continues in its original direction at 1.0 m/s. (a) what is the mass of the second cart? (b) what is its speed after impact? (c) what is the speed of the two-cart center of mass?
Let m1 = 390 g be the mass of the first cart and m2 be the mass of the second cart. Since the collision is elastic, linear momentum is conserved.
Using the equation:m1v1i + m2v2i = m1v1f + m2v2fwhere v1i = 1.6 m/s, v1f = 1.0 m/s, and v2f = 0 (since the second cart is initially stationary), we get:m2 = (m1v1i - m1v1f) / v2i m2 = 390 × (1.6 - 1.0) / 0 m2 = 624 g The mass of the second cart is 624 g.(b) Using the same equation as in (a), we can solve for v2i:v2i = (m1v1i - m1v1f) / m2 v2i = (390 × 1.6 - 390 × 1.0) / 624 v2i = 0.429 m/sThe speed of the second cart after impact is 0.429 m/s.(c) The total momentum of the system is conserved in an elastic collision, so the velocity of the centre of mass (CM) of the two carts does not change. Therefore, the speed of the two-cart centre of mass is the same before and after the collision. We can use the formula:vCM = (m1v1 + m2v2) / (m1 + m2)where v1 = 1.6 m/s, v2 = 0.429 m/s, m1 = 390 g, and m2 = 624 g. The speed of the two-cart center of mass is:vCM = (390 × 1.6 + 624 × 0.429) / (390 + 624) vCM = 1.17 m/sThe speed of the two-cart center of mass is 1.17 m/s.
Learn more about momentum here:
https://brainly.com/question/17166755
#SPJ11
in aviation a standard rate turn proceeds at an angular speed of per minute. what is the radius of a standard rate turn for a plane moving at 240 m/s?
The radius of a standard rate turn for a plane moving at 240 m/s is approximately 933 meters.
A standard rate turn in aviation refers to a turn in which an aircraft completes a full 360-degree rotation in 2 minutes, resulting in an angular speed of 3 degrees per second (180 degrees per minute). To calculate the radius of a standard rate turn for a plane moving at 240 m/s, we can use the formula:
Radius = V / (G × Tan(Bank Angle))
where:
- V is the velocity of the plane (240 m/s)
- G is the gravitational constant (approximately 9.81 m/s²)
- Bank Angle is the angle at which the aircraft is tilted during the turn.
First, we need to find the bank angle. Since we know that the angular speed is 3 degrees per second, we can use the following formula to find the bank angle:
Bank Angle = Arc Tan((V² × Angular Speed) / (G × 180))
Bank Angle = Arc Tan((240² × 3) / (9.81 × 180))
Bank Angle ≈ 14.7 degrees
Now that we have the bank angle, we can calculate the radius of the turn:
Radius = 240 / (9.81 × Tan(14.7))
Radius ≈ 933 meters
So, the radius of a standard rate turn for a plane moving at 240 m/s is approximately 933 meters.
Know more about Bank Angle here:
https://brainly.com/question/30905320
#SPJ11
the actual connecting or transmission medium that carries the message in a communication system is called the
The actual connecting or transmission medium that carries the message in a communication system is called the communication channel.
The channel is responsible for conveying information from the sender (source) to the receiver (destination) effectively and accurately. These channels can be either wired or wireless, depending on the type of communication system being used.
Examples of communication channels include:
1. Copper wires: Commonly used in traditional telephone systems and Ethernet cables.
2. Fiber-optic cables: Offer high-speed data transmission and are used for internet connections, television signals, and more.
3. Radio waves: Enable wireless communication for devices like mobile phones, radios, and Wi-Fi routers.
4. Infrared: Used for short-range communication, such as remote controls and wireless keyboards.
5. Satellite: Allows for global communication and data transmission, especially in remote areas.
To learn more about Communication :
https://brainly.com/question/30866222
#SPJ11
which of the following statements concerning this collision are correct? a. both vehicles are acted upon by the same average force during the collision. b. the small car is acted upon by a greater average force than the suv. c. the small car undergoes a greater change in momentum than the suv. d. both vehicles undergo the same change in momentum. which of the following statements concerning this collision are correct? a. both vehicles are acted upon by the same average force during the collision. b. the small car is acted upon by a greater average force than the suv. c. the small car undergoes a greater change in momentum than the suv. d. both vehicles undergo the same change in momentum. a a, d b, c b, d
The correct statements concerning this collision are:
Both vehicles are acted upon by the same average force during the collision.The small car undergoes a greater change in momentum than the SUV. Options A and C are correctIn a collision between two objects, the total momentum of the system is conserved. This means that the total momentum before the collision is equal to the total momentum after the collision. However, the kinetic energy of the system may not be conserved, as some of it may be lost to other forms of energy, such as heat, sound, or deformation of the objects involved.
When two vehicles collide, the total momentum of the system is conserved, but the kinetic energy of the system is not necessarily conserved. During the collision, both vehicles experience an equal and opposite average force, as required by Newton's Third Law of Motion. However, the change in momentum experienced by each vehicle depends on its mass and velocity before and after the collision. The small car will experience a greater change in momentum than the SUV because it has a smaller mass. Options A and C are correct
To know more about the Collision, here
https://brainly.com/question/16344573
#SPJ4
You have two capacitors in series, C1 = 300 nF = 300x10-'F and C2 100 nF = 100x10-'F, and you connect them in series to a 1000-2 (ohm) resistor. What is the time constant of this RC circuit?
The time constant of the RC circuit with two capacitors in series and a 1000 Ω resistor is 0.75 seconds.
When answering questions on the Brainly platform, it is important to always be factually accurate, professional, and friendly. Answers should be concise and not provide extraneous amounts of detail. It is also important to address all relevant parts of the question and avoid ignoring any typos or irrelevant information.
In regards to the provided student question, here is an answer:In order to determine the time constant of the RC circuit that has two capacitors in series, we must first use the formula for the equivalent capacitance of a series circuit,
which is given by 1/Ceq = 1/C1 + 1/C2, where Ceq represents the equivalent capacitance of the circuit, C1 represents the capacitance of the first capacitor, and C2 represents the capacitance of the second capacitor.Using this formula,
we can calculate the equivalent capacitance of the circuit as follows:1/Ceq = 1/300x10^-9 + 1/100x10^-9 = (100x10^-9 + 300x10^-9) / (100x10^-9 x 300x10^-9) = 4/3 x 10^-9Ceq = 3/4 x 10^9 FNow that we have the equivalent capacitance of the circuit,
we can use the formula for the time constant of an RC circuit, which is given by RC, where R represents the resistance of the circuit and C represents the capacitance of the circuit.Using the given resistance of 1000 Ω and the calculated equivalent capacitance of 3/4 x 10^9 F,
we can calculate the time constant of the circuit as follows:RC = 1000 Ω x 3/4 x 10^9 F = 0.75 s
To learn more about : circuit
https://brainly.com/question/2969220
#SPJ11
a rigid, circular metal loop begins at rest in a uniform magnetic field directed away from you as shown. the loop is then pulled through the field toward the right, but does not exit the field. what is the direction of any induced current within the loop?
The induced current in the loop will flow in a counterclockwise direction, as it opposes the change in magnetic flux and follows the right-hand rule.
To determine the direction of the induced current within the loop, we can use Lenz's Law and the right-hand rule.
Step 1: Lenz's Law states that the induced current will flow in a direction that opposes the change in magnetic flux through the loop. In this case, since the loop is being pulled to the right, the magnetic flux is decreasing.
Step 2: Using the right-hand rule, point your right thumb in the direction of the magnetic field (away from you). Then, curl your fingers in the direction of the loop's motion (to the right). The direction of your fingers curling indicates the direction of the induced current.
Based on these steps, the induced current in the loop will flow in a counterclockwise direction, as it opposes the change in magnetic flux and follows the right-hand rule.
For more such questions on induced current
brainly.com/question/15449537
#SPJ11
a 10-volt power supply is placed in series with two 5-ohm resistors. what is the current in the circuit after it passes through each of the two resistors?(1 point)
The current in the circuit after passing through each 5-ohm resistor is 1 Ampere, using Ohm's Law.
To compute the ongoing in the circuit, we can utilize Ohm's Regulation, which expresses that the ongoing moving through a circuit is straightforwardly corresponding to the voltage and contrarily relative to the opposition.The all out opposition of the circuit is equivalent to the amount of the singular protections in series, which is 5 ohms + 5 ohms = 10 ohms.Utilizing Ohm's Regulation, we can compute the ongoing in the circuit as follows:
I = V/R
Where I is the current, V is the voltage, and R is the opposition.Subbing the qualities, we get:
I = 10 V/10 ohms = 1 Ampere
Subsequently, the ongoing in the circuit after it goes through every one of the two 5-ohm resistors is 1 Ampere.
To learn more about resistors, refer:
https://brainly.com/question/22079799
#SPJ4
from what height should a circular hoop of radius r be released on the same slope in order to equal the sphere's speed at the bottom?
To ensure that the speed of a circular hoop of radius r is equal to that of a sphere at the bottom, the hoop must be released from a height of r/2 above the sphere's release point.
Circular hoops are a set of steel or aluminum rings with an inner diameter of 16 inches, making them ideal for use with woven or braided nets. They are used to support the net and provide a framework for the ball to pass through. For balls up to 18 feet in diameter, we recommend a minimum of four hoops. The motion of rolling without slipping: The motion of rolling without slipping is the movement of an object without slipping.
Rolling without slipping is the motion of a circular object where there is a rolling motion of the object without slipping, meaning that the point on the outer edge of the circular object contacts the ground while rolling. The distance traveled by an object rolling without slipping can be calculated using the formula
S = Rθ
when it travels a distance θ with a radius R.
The answer to the question is that the circular hoop of radius r should be released from a height of r/2 above the sphere's release point in order to match the speed of the sphere at the bottom.
To learn more about Speed :
https://brainly.com/question/27888149
#SPJ11
A light bounces off the surface of a metal cup and shines in Harold’s eyes. Which best describes what is happening to the light waves in this scenario
When a light bounces off the surface of a metal cup and shines in Harold's eyes, the light waves undergo reflection. Reflection occurs when a wave encounters a boundary between two media and bounces back into the original medium.
When a light wave strikes the surface of the metal cup, some of the energy from the light is absorbed by the metal, causing electrons in the metal to become excited and move to higher energy levels. These excited electrons then release the energy they have absorbed by emitting new light waves, in a process called reflection. The reflected light waves bounce off the surface of the metal cup in many different directions, including towards Harold's eyes. When these waves enter Harold's eyes, they stimulate the cells in his retina, which sends electrical signals to his brain. His brain then processes these signals as visual information, allowing him to see the cup and the reflected light.
Learn more about reflection here:
https://brainly.com/question/30270479
#SPJ1
A container holds a gas consisting of 9.75 moles of oxygen molecules. One in a million of these molecules has lost a single electron. NA=6.022×10^23mol−1, e=1.60×10^−19C
The oxygen molecules have lost a total of 0.94 coulombs in charge of their electrons.
How did Avogadro's number, 6.022 x 1023, come to be?AVOGADO'S CALL SIGN-
Amadeo Avogadro (1776–1856), an Italian chemist, stated the principle in 1811 that equivalent volumes of gases under the same temperature and stress contain an equal range of molecules regardless of the molecules' chemical make-up and physical characteristics. It is 6.023 x 1023, or Avogadro's number.
Learn more about container . here;
https://brainly.com/question/11619692
#SPJ1