"A sample of hydrogen gas at 273 K has a volume of 2 L at 9 atm
pressure. What is its pressure if its volume is changed to 12 L at
the same temperature.

Answers

Answer 1

The pressure of the hydrogen gas, when its volume is changed to 12 L at the same temperature, is 18 atm.

To solve this problem, we can use Boyle's Law, which states that the pressure and volume of a gas are inversely proportional when temperature remains constant. Mathematically, Boyle's Law can be expressed as:

P₁V₁ = P₂V₂

Where P₁ and V₁ are the initial pressure and volume, and P₂ and V₂ are the final pressure and volume.

Given that the initial volume (V₁) is 2 L, the initial pressure (P₁) is 9 atm, and the final volume (V₂) is 12 L, we can plug these values into the equation:

(9 atm) * (2 L) = P₂ * (12 L)

Simplifying the equation:

18 atm·L = 12 P₂ L

Dividing both sides of the equation by 12 L:

18 atm = P₂

Therefore, The pressure of the hydrogen gas, when its volume is changed to 12 L at the same temperature, is 18 atm.

Learn more about hydrogen here:

https://brainly.com/question/24433860

#SPJ11


Related Questions

A capacitor with initial charge qo is discharged through a resistor. (a) In terms of the time constant t, how long is required for the capacitor to lose the first one-third of its charge? XT (b) How long is required for the capacitor to lose the first two-thirds of its charge?

Answers

(a) The time required for the capacitor to lose the first one-third of its charge is given by t1 = t * ln(3), and (b) the time required to lose the first two-thirds of its charge is t2 = t * ln(3^2)

(a) To calculate the time required for the capacitor to lose the first one-third of its charge, we can use the formula:t1 = t * ln(3)

Where t1 represents the time required, t is the time constant, and ln denotes the natural logarithm. This formula is derived from the exponential decay behavior of a charging or discharging capacitor.

(b) Similarly, to find the time required for the capacitor to lose the first two-thirds of its charge, we can use the formula:

t2 = t * ln(3^2)

Here, t2 represents the time required to lose the first two-thirds of the charge.

(a) The time required for the capacitor to lose the first one-third of its charge is given by t1 = t * ln(3), and (b) the time required to lose the first two-thirds of its charge is t2 = t * ln(3^2). These formulas utilize the natural logarithm and the time constant to calculate the desired time durations.

Learn more about capacitor click here:

brainly.com/question/31627158

#SPJ11

A source emits sound waves in all directions.
The intensity of the waves 4.00 m from the sources is 9.00 *10-4 W/m?
Threshold of Hearing is 1.00 * 10-12 W/m?
A.) What is the Intensity in decibels?
B.) What is the intensity at 10.0 m from the source in Watts/m2?
C.) What is the power of the source in Watts?

Answers

A) The intensity in decibels is calculated using the formula: dB = 10 log10(I/I0), where I is the intensity of the sound wave and I0 is the threshold of hearing.

B) To find the intensity at 10.0 m from the source in Watts/m², we can use the inverse square law, which states that the intensity is inversely proportional to the square of the distance from the source.

C) The power of the source can be calculated by multiplying the intensity by the surface area over which the sound waves are spreading.

A) To calculate the intensity in decibels, we can substitute the given values into the formula. Using I = 9.00 * 10⁽⁻⁴⁾ W/m² and I0 = 1.00 * 10⁽⁻¹²⁾ W/m², we can find dB = 10 log10(9.00 * 10⁽⁻⁴⁾ / 1.00 * 10⁽⁻¹²⁾).

B) Applying the inverse square law, we can determine the intensity at 10.0 m from the source by multiplying the initial intensity (9.00 * 10⁽⁻⁴⁾ W/m²) by (4.00 m)² / (10.0 m)².

C) To find the power of the source, we need to consider the spreading of sound waves in all directions. Since the intensity at a distance of 4.00 m is given, we can multiply this intensity by the surface area of a sphere with a radius of 4.00 m.

By following these steps, we can calculate the intensity in decibels, the intensity at 10.0 m from the source, and the power of the source in Watts.

Learn more about intensity

brainly.com/question/13155277

#SPJ11

Three current carrying wires are located at the edges of a right triangle. Calculate the magnitude and direction of the magnetic field at point Clocated midway on the hypotenuse. Take l=20 cm,l=2 mA.

Answers

Hence as the magnetic fields due to Wires 1 and 3 are in the same direction (into the page), and the magnetic field due to Wire 2 is in the opposite direction (out of the page), we need to subtract the magnitude of the magnetic field due to Wire 2 from the sum of the magnitudes of the magnetic fields due to Wires 1 and 3 to get the net magnetic field at point C.

To calculate the magnetic field at point C, we can use the Biot-Savart Law, which relates the magnetic field generated by a current-carrying wire to the distance from the wire.

Let's assume the right triangle has sides A, B, and C, with point C being the midpoint of the hypotenuse. The wires are located along the edges of the triangle, so let's label them as follows:

Wire 1: Located along side A, with a current I1 = 2 mA

Wire 2: Located along side B, with a current I2 = 2 mA

Wire 3: Located along the hypotenuse (opposite side C), with a current I3 = 2 mA

To calculate the magnetic field at point C due to each wire, we can use the following formula:

dB = (μ₀ / 4π) * (I * dl × r) / r^3

Where:

dB is the infinitesimal magnetic field vector,

μ₀ is the permeability of free space (4π × 10^-7 T·m/A),

I is the current in the wire,

dl is an infinitesimal length element of the wire,

r is the distance from the wire element to the point where we want to calculate the magnetic field.

To calculate the net magnetic field at point C, we'll sum the magnetic fields due to each wire vectorially.

Let's first calculate the magnetic field due to Wire 1 at point C:

Using the right-hand rule, we can determine that the magnetic field at point C due to Wire 1 will be directed into the page.

Now, let's calculate the magnetic field due to Wire 2 at point C:

Using the right-hand rule, we can determine that the magnetic field at point C due to Wire 2 will be directed out of the page.

Finally, let's calculate the magnetic field due to Wire 3 at point C:

Using the right-hand rule, we can determine that the magnetic field at point C due to Wire 3 will be directed into the page.

Hence as the magnetic fields due to Wires 1 and 3 are in the same direction (into the page), and the magnetic field due to Wire 2 is in the opposite direction (out of the page), we need to subtract the magnitude of the magnetic field due to Wire 2 from the sum of the magnitudes of the magnetic fields due to Wires 1 and 3 to get the net magnetic field at point C.

Learn more about Magnetic Fields from the given link!

https://brainly.in/question/7642672

#SPJ11

Two identical diverging lenses are separated by 15.1cm. The focal length of each lens is -7.81cm. An object is located 3.99cm to the left of the lens that is on the left. Determine the final image distance relative to the lens on the right.

Answers

Given the following conditionsTwo identical diverging lenses separated by 15.1cm.

The focal length of each lens is -7.81cm.

An object is located 3.99cm to the left of the lens that is on the left.

The image formed is virtual and erect as both the lenses are diverging lenses.

As the final image distance relative to the lens on the right is to be determined, it is easier to calculate it if the image distance relative to the left lens is found first.

Using the lens formula,

1/f = 1/v - 1/u

where,f is the focal length of the lens

u is the distance of the object from the lens

v is the distance of the image from the lens.

The object distance from the lens,

u = -3.99 cm (since it is on the left of the lens, it is taken as negative).

The focal length of the lens,

f = -7.81cm.

The image distance,

v = 1/f + 1/u

= 1/-7.81 - 1/-3.99

= -0.413 cm

As the image is virtual and erect, its distance from the lens is taken as positive.

Hence, the image is at a distance of 0.413cm from the left lens.

Now, using the formula for the combination of thin lenses,

1/f = 1/f₁ + 1/f₂ - d/f₁f₂

where,d is the distance between the two lenses

f₁ is the focal length of the first lens

f₂ is the focal length of the second lens.

Both lenses are identical and have the same focal length,

f₁ = f₂

= -7.81 cm.

The distance between the lenses,

d = 15.1 cm.

Substituting the values,

1/f = 1/-7.81 + 1/-7.81 - 15.1/-7.81×-7.81

= -0.258 cm⁻¹

The image distance relative to the lens on the right,

v₂ = f / (1/f - 2/f - d)

= -7.81 / (1/-0.258 - 2/-7.81 - 15.1/-7.81×-7.81)

= -3.33cm

Therefore, the final image distance relative to the lens on the right is -3.33cm.

To know more about distance  visit:

https://brainly.com/question/13034462

#SPJ11

Make a a derivation for the unknown resistor equation (Rx) in
terms of voltages and lengths on the wheatstone bridge

Answers

The unknown resistor (Rx) in a Wheatstone bridge circuit can be determined using the equation:

Rx = (V_out1 * R2) / (V_in - V_out2)

This equation relates Rx to the voltages V_out1 and V_out2, as well as the resistance R2 and the input voltage V_in.

Let's consider a typical Wheatstone bridge circuit consisting of four resistors: R1, R2, R3, and Rx. The bridge is supplied with a known voltage V_in and has two outputs: V_out1 and V_out2.

1. First, let's find the relationship between the voltages V_out1 and V_out2 in terms of the resistors. According to Kirchhoff's voltage law, the voltage drop across any closed loop in a circuit is zero. Applying this law to the two loops in the Wheatstone bridge, we have:

Loop 1: V_in = V_out1 + I1 * R1 + I2 * Rx

Loop 2: V_in = V_out2 + I3 * R3 + I2 * (R2 + Rx)

Where I1, I2, and I3 are the currents flowing through R1, Rx, and R3, respectively.

2. To simplify the equations, we can express I1, I2, and I3 in terms of the voltages and resistances using Ohm's law. Assuming the resistors have negligible internal resistance, we have:

I1 = V_out1 / R1

I2 = (V_out1 - V_out2) / (R2 + Rx)

I3 = V_out2 / R3

Substituting these values back into the loop equations, we get:

V_in = V_out1 + (V_out1 - V_out2) * Rx / (R2 + Rx)

V_in = V_out2 + V_out2 * R2 / (R2 + Rx)

3. Now, we can solve these two equations simultaneously to eliminate V_out1 and V_out2. Multiplying the first equation by (R2 + Rx) and the second equation by Rx, we get:

V_in * (R2 + Rx) = V_out1 * (R2 + Rx) + (V_out1 - V_out2) * Rx

V_in * Rx = V_out2 * Rx + V_out2 * R2

4. By rearranging these equations, we can isolate Rx:

V_in * Rx - V_out2 * Rx = V_out1 * (R2 + Rx) - (V_out1 - V_out2) * Rx

V_in * Rx - V_out2 * Rx = V_out1 * R2 + V_out1 * Rx - V_out1 * Rx + V_out2 * Rx

V_in * Rx - V_out2 * Rx = V_out1 * R2 + V_out2 * Rx

Rx * (V_in - V_out2) = V_out1 * R2

Rx = (V_out1 * R2) / (V_in - V_out2)

Therefore, the equation for the unknown resistor Rx in terms of the voltages and lengths on the Wheatstone bridge is:

Rx = (V_out1 * R2) / (V_in - V_out2)

To know more about the Wheatstone bridge circuit, refer here:

https://brainly.com/question/31777355#

#SPJ11

Determine the electrical resistance of a 20.0 m length of tungsten wire of radius 0.200 mm. The resistivity of tungsten is 5.6×10^ −8 Ω⋅m.

Answers

The electrical resistance of a 20.0 m length of tungsten wire of radius 0.200 mm, when the resistivity of tungsten is 5.6×10^-8 Ω⋅m can be determined using the following steps:

1: Find the cross-sectional area of the wire The cross-sectional area of the wire can be calculated using the formula for the area of a circle, which is given by: A

= πr^2where r is the radius of the wire. Substituting the given values: A

= π(0.0002 m)^2A

= 1.2566 × 10^-8 m^2given by: R

= ρL/A Substituting

= (5.6 × 10^-8 Ω⋅m) × (20.0 m) / (1.2566 × 10^-8 m^2)R

= 1.77 Ω

To know more about resistivity visit:

https://brainly.com/question/29427458

#SPJ11

Q3. A hanging platform has four cylindrical supporting cables of diameter 2.5 cm. The supports are made from solid aluminium, which has a Young's Modulus of Y = 69 GPa. The weight of any object placed on the platform is equally distributed to all four cables. a) When a heavy object is placed on the platform, the cables are extended in length by 0.4%. Find the mass of this object. (3) b) Poisson's Ratio for aluminium is v= 0.33. Calculate the new diameter of the cables when supporting this heavy object. (3) (6 marks)

Answers

The new diameter of the cable is 0.892 cm. Option (ii) is the correct answer.

Given: Diameter of supporting cables,

d = 2.5 cm Young's Modulus of aluminium,

Y = 69 GPa Load applied,

F = mg

Extension in the length of the cables,

δl = 0.4% = 0.004

a) Mass of the object placed on the platform can be calculated as:

m = F/g

From the question, we know that the weight of any object placed on the platform is equally distributed to all four cables.

So, weight supported by each cable = F/4

Extension in length of each cable = δl/4

Young's Modulus can be defined as the ratio of stress to strain.

Y = stress/strainstress = Force/areastrain = Extension in length/Original length

Hence, stress = F/4 / (π/4) d2 = F/(π d2)strain = δl/4 / L

Using Hooke's Law, stress/strain

= Yπ d2/F = Y δl/Ld2 = F/(Y δl/π L) = m g / (Y δl/π L)

On substituting the given values, we get:

d2 = (m × 9.8) / ((69 × 10^9) × (0.004/100) / (π × 2.5/100))d2 = 7.962 × 10^-5 m2

New diameter of the cable is:

d = √d2 = √(7.962 × 10^-5) = 0.00892 m = 0.892 cm

Therefore, the new diameter of the cable is 0.892 cm.

Hence, option (ii) is the correct answer.

To know more about diameter visit:

https://brainly.com/question/4771207

#SPJ11

A man standing on the top of a tower 60m high throws a ball with a velocity of 20m/s in the vertically u[wards direction.
(a) How long will it take the ball to pass the man moving in the downwards direction ?
(b) What is the maximum height attained by the ball ?
(c) How long will it take the ball to hit the ground ? ( Take g = 10 m/s^2 )

Answers

(a) It will take 2 seconds for the ball to pass the man moving in the downward direction.

(b) The maximum height attained by the ball is 20 meters.

(c) The ball will take 2+2\sqrt{2} seconds to hit the ground.

(a) How long will it take the ball to pass the man moving in the downward direction?

We can use the equation of motion:

v = u + at,

where:

v = final velocity (0 m/s since the ball will momentarily stop when passing the man),

u = initial velocity (20 m/s upwards),

a = acceleration (due to gravity, -10 m/s²),

t = time.

Substituting the known values we get:

0 = 20 - 10t.

Simplifying the equation:

10t = 20,

t = 20/10,

t = 2 seconds.

Therefore, it will take 2 seconds for the ball to pass the man moving in the downward direction.

(b) What is the maximum height attained by the ball?

To find the maximum height attained by the ball, we can use the following equation:

v² = u² + 2as,

where:

v = final velocity (0 m/s at the maximum height),

u = initial velocity (20 m/s upwards),

a = acceleration (acceleration due to gravity, -10 m/s²),

s = displacement.

The maximum height will be achieved when v = 0. Rearranging the equation, we get:

0 = (20)² + 2(-10)s.

Simplifying the equation:

400 = -20s.

Dividing both sides by -20:

s = -400/-20,

s = 20 meters.

Therefore, the maximum height attained by the ball is 20 meters.

(c) How long will it take the ball to hit the ground?

To find the time it takes for the ball to hit the ground, we can use the following equation:

s = ut + (1/2)at²,

where:

s = displacement (60 meters downwards),

u = initial velocity (20 m/s upwards),

a = acceleration (acceleration due to gravity, -10 m/s²),

t = time.

Rearranging the equation, we get:

-60 = 20t + (1/2)(-10)t².

Simplifying the equation:

-60 = 20t - 5t².

Rearranging to form a quadratic equation:

5t² - 20t - 60 = 0.

Dividing both sides by 5:

t² - 4t - 12 = 0.

Solving the equation using the quadratic formula, we get:

t = (4 ± sqrt(16 + 4 x 12)) / 2

t = (4 ± 4sqrt(2)) / 2

t = 2 ± 2sqrt(2)

Since time cannot be in negative terms, we ignore the negative value of t.  Therefore, the time it takes for the ball to hit the ground is:

t = 2 + 2sqrt(2) seconds

To read more on Newton's Law of Motion, click:

https://brainly.com/question/10187134

GiveN:-Height of Tower = 60 mInitial velocity [u] = 20 m/sFinal velocity [v] = 0 m/sAcceleration due to gravity [g] = 10 m/s²To finD :-(a) How long will it take the ball to pass the man moving in the downwards direction ?(b) What is the maximum height attained by the ball ?(c) How long will it take the ball to hit the ground ? ( Take g = 10 m/s^2 )SolutioN :-

[tex] \\[/tex]

(a) How long will it take the ball to pass the man moving in the downwards direction ?

Using Equation of Motion:-

[tex] \large\bigstar \: \: \: { \underline { \overline{ \boxed{ \frak{v = u + at}}}}}[/tex]

where:-

→ v denotes final velocity→ u denotes initial velocity→ a denotes acceleration→ t denotes time

Plugging in Values:-

[tex] \large \sf \longrightarrow \: v = u + at[/tex]

[tex] \large \sf \longrightarrow \: 0 = 20 + ( - 10)t \: [/tex]

[tex] \large \sf \longrightarrow \: 0 - 20=( - 10)t \: [/tex]

[tex] \large \sf \longrightarrow \: - 10t = - 20\: [/tex]

[tex] \large \sf \longrightarrow \: t = \frac{ - 20}{ - 10} \\ [/tex]

[tex] \large \sf \longrightarrow \: t = 2 \: secs \\ [/tex]

Therefore, it will take 2 seconds for the ball to pass the man moving in the downward direction.

________________________________________

[tex] \\[/tex]

(b) What is the maximum height attained by the ball ?

→ To solve the given problem, we can use the equations of motion

Using Equation of Motion:-

[tex] \large\bigstar \: \: \: { \underline { \overline{ \boxed{ \frak{ {v}^{2} = {u}^{2} + 2as}}}}}[/tex]

where:

→ v denotes final velocity→ u denotes initial velocity→ a denotes acceleration→ s denotes displacement

Plugging in Values:-

[tex] \large \sf \longrightarrow \: {v}^{2} = {u}^{2} + 2as[/tex]

[tex] \large \sf \longrightarrow \: {(0)}^{2} = {(20)}^{2} + 2( - 10)s[/tex]

[tex] \large \sf \longrightarrow \: 0 = 400 + 2( - 10)s[/tex]

[tex] \large \sf \longrightarrow \: 400 + (- 20)s = 0[/tex]

[tex] \large \sf \longrightarrow \: 400 - 20 \: s = 0[/tex]

[tex] \large \sf \longrightarrow \: - 20 \: s = - 400[/tex]

[tex] \large \sf \longrightarrow \: \: s = \frac{ - 400}{ - 20} [/tex]

[tex] \large \sf \longrightarrow \: \: s = 20 \: metres[/tex]

Therefore, the maximum height attained by the ball is 20 meters.

________________________________________

[tex] \\[/tex]

(c) How long will it take the ball to hit the ground ?

Using Equation of Motion:-

[tex] \large\bigstar \: \: \: { \underline { \overline{ \boxed{ \frak{ s= ut + \frac{1}{2}a{t}^{2}}}}}}[/tex]

where:

→ s denotes Displacement → u denotes initial velocity→ a denotes acceleration→ t denotes time

Plugging in Values:-

[tex] \large \sf \longrightarrow \: s= ut + \frac{1}{2}a{t}^{2}[/tex]

[tex] \large \sf \longrightarrow \: -60= 20t + \frac{1}{2}(-10){t}^{2}[/tex]

[tex] \large \sf \longrightarrow \: -60= 20t + \frac{-10}{2}\times{t}^{2}[/tex]

[tex] \large \sf \longrightarrow \: -60= 20t + (-5)\times{t}^{2}[/tex]

[tex] \large \sf \longrightarrow \: -60= 20t-5\times{t}^{2}[/tex]

[tex] \large \sf \longrightarrow \: 20t-5{t}^{2}+60[/tex]

[tex] \large \sf \longrightarrow \: {t}^{2}-4t-12[/tex]

[tex] \large \sf \longrightarrow \: t=\frac{-b \pm\sqrt{{b}^{2}-4ac}}{2a} [/tex]

[tex] \large \sf \longrightarrow \: t=\frac{-(-4) \pm\sqrt{{(-4)}^{2}-4(1)(-12)}}{2(1)} [/tex]

[tex] \large \sf \longrightarrow \: t=\frac{4 \pm\sqrt{16-4(-12)}}{2} [/tex]

[tex] \large \sf \longrightarrow \: t=\frac{4 \pm\sqrt{16-(-48)}}{2} [/tex]

[tex] \large \sf \longrightarrow \: t=\frac{4 \pm\sqrt{16+48}}{2} [/tex]

[tex] \large \sf \longrightarrow \: t=\frac{4 \pm\sqrt{64}}{2} [/tex]

[tex] \large \sf \longrightarrow \: t=\frac{4 \pm 8}{2} [/tex]

[tex] \large \sf \longrightarrow \: t=\frac{4 + 8}{2} \qquad or \qquad t=\frac{4 - 8}{2} [/tex]

[tex] \large \sf \longrightarrow \: t=\frac{12}{2} \qquad or \qquad t=\frac{-4}{2} [/tex]

[tex] \large \sf \longrightarrow \: t=6 \qquad or \qquad t= -2 [/tex]

Since time cannot be negative , Therefore, it will take 6 secs to hit the ground!!

________________________________________

[tex] \\[/tex]

A parallel plate capacitor, in which the space between the plates is empty, has a capacitance of Co= 1.5μF and it is connected to a battery whose voltage is V = 2.7V and fully charged. Once it is fully charged, it is disconnected from the battery and without affecting the charge on the plates, the space between the plates is filled with a dielectric material of = 10.7. How much change occurs in the energy of the capacitor (final energy minus initial energy)? Express your answer in units of mJ (mili joules) using two decimal places.

Answers

The change in energy of the capacitor is 51.93 μJ (microjoules), which can be expressed as 0.05193 mJ (millijoules) when rounded to two decimal places.

To calculate the change in energy of the capacitor, we need to find the initial energy and the final energy and then take the difference.

The initial energy of the capacitor can be calculated using the formula E_initial = (1/2)C_oV^2, where C_o is the initial capacitance and V is the voltage. In this case, C_o = 1.5 μF and V = 2.7V. Plugging in these values, we get E_initial = (1/2)(1.5 μF)(2.7V)^2.

So, Initial energy, E_initial = (1/2)C_oV^2

Substituting C_o = 1.5 μF and V = 2.7V:

E_initial = (1/2)(1.5 μF)(2.7V)^2

E_initial = 6.1575 μJ (microjoules)

After the space between the plates is filled with a dielectric material, the capacitance changes. The new capacitance can be calculated using the formula C' = εC_o, where ε is the dielectric constant. In this case, ε = 10.7. Therefore, the new capacitance is C' = 10.7(1.5 μF).

So, New capacitance, C' = εC_o

Substituting ε = 10.7 and C_o = 1.5 μF:

C' = 10.7(1.5 μF)

C' = 16.05 μF

The final energy of the capacitor can be calculated using the formula E_final = (1/2)C'V^2, where C' is the new capacitance and V is the voltage. Plugging in the values, we get E_final = (1/2)(10.7)(1.5 μF)(2.7V)^2.

So, Final energy, E_final = (1/2)C'V^2

Substituting C' = 16.05 μF and V = 2.7V:

E_final = (1/2)(16.05 μF)(2.7V)^2

E_final = 58.0833 μJ (microjoules)

To find the change in energy, we subtract the initial energy from the final energy: ΔE = E_final - E_initial.

Therefore, Change in energy (ΔE):

ΔE = E_final - E_initial

ΔE = 58.0833 μJ - 6.1575 μJ

ΔE = 51.9258 μJ (microjoules)

So, the energy change is 51.9258 μJ  or 0.05193 mJ.

Learn more about capacitance here:

brainly.com/question/28991342

#SPJ11

"A 68.0 kg skater moving initially at 3.57 m/s on rough
horizontal ice comes to rest uniformly in 3.99 s due to friction
from the ice.
What force does friction exert on the skater?

Answers

The force does friction exert on the skater is 107 N. The magnitude of the frictional force. f = 60.86 N

What is friction?

Friction is the force exerted between two objects when they come in contact with each other, which resists motion. The magnitude of the frictional force is determined by the nature of the surfaces in contact and the normal force acting perpendicular to the surfaces.

values are,m = 68.0 kg

u = 3.57 m/s

s = 3.99 s

Formula used: v = u + at

u = initial velocity

v = final velocity

a = acceleration

t = time taken to come to rest

s = distance moved by the object

a = (-u)/t = (-3.57)/3.99

= -0.895 m/s²

This acceleration is considered negative because it acts opposite to the direction of velocity of the object. Here the velocity is in the positive direction and so acceleration is in the negative direction.

Forces acting on the object:

Weight of the object, W = m*g,

where g is acceleration due to gravity = 9.8 m/s²

Normal force acting on the object, N

Frictional force acting on the object, f

Here, f = m × a, according to second law of motion.

f = m × a

= 68.0 × (-0.895)

= -60.86 N

The negative sign indicates that the frictional force acts opposite to the direction of velocity of the object.

Therefore, we must use the magnitude of the frictional force.f = 60.86 N The force does friction exert on the skater is 107 N.

Learn more about frictional force :

brainly.com/question/24386803

#SPJ11

A circuit consists of an 110- resistor in series with a 5.0-μF capacitor, the two being connected between the terminals of an ac generator. The voltage of the generator is fixed. At what frequency is the current in the circuit one-half the value that exists when the frequency is very large? Note: The ac current and voltage are rms values and power is an average value unless indicated otherwise

Answers

The peak value of the current supplied by the generator is approximately 2.07 Amperes.

To determine the peak value of the current supplied by the generator, we can use the relationship between voltage, current, and inductance in an AC circuit.

The peak current (I_peak) can be calculated using the formula:

I_peak = V_rms / (ω * L),

where:

V_rms is the root mean square (RMS) value of the voltage (in this case, 9.0 V),

ω is the angular frequency of the AC signal (in radians per second), and

L is the inductance of the inductor (in henries).

To convert the given frequency (690 Hz) to angular frequency (ω), we can use the formula:

ω = 2πf,

where:

f is the frequency.

Substituting the values into the formula, we have:

ω = 2π * 690 Hz ≈ 4,335.48 rad/s.

Now, let's calculate the peak current:

I_peak = (9.0 V) / (4,335.48 rad/s * 10 × 10^(-3) H).

Simplifying the expression:

I_peak ≈ 2.07 A.

Therefore, the peak value of the current supplied by the generator is approximately 2.07 Amperes.

To learn more about current, refer below:

brainly.com/question/13076734

#SPJ4

At a point a distance r=1.10 m from the origin on the positive x-axis, find the magnitude and direction of the magnetic field. (a) magnitude of the magnetic field (in T ) T (b) direction of the magnetic field +x-direction −x-direction +y-direction −y-direction +z-direction -z-direction ​ At a point the same distance from the origin on the negative y-axis, find the magnitude and direction of the magnetic field. (c) magnitude of the magnetic field (in T ) At a point a distance r=1.10 m from the origin on the positive x-axis, find the magnitude and direction of the magnetic field. (a) magnitude of the magnetic field (in T ) T (b) direction of the magnetic field +x-direction −x-direction +y-direction −y-direction +z-direction −z-direction ​ At a point the same distance from the origin on the negative y-axis, find the magnitude and direction of the magnetic field. (c) magnitude of the magnetic field (in T) T (d) direction of the magnetic field +x-direction

Answers

(a) The magnitude of the magnetic field at a point a distance r=1.10 m from the origin on the positive x-axis is 0.063 T.

(b) The direction of the magnetic field is +x-direction.

(c) The magnitude of the magnetic field at a point the same distance from the origin on the negative y-axis is 0.063 T.

(d) The direction of the magnetic field is −y-direction.

The magnetic field at a point due to a current-carrying wire is given by the Biot-Savart law:

B = µo I / 2πr sinθ

where µo is the permeability of free space, I is the current in the wire, r is the distance from the wire to the point, and θ is the angle between the wire and the line connecting the wire to the point.

In this case, the current is flowing in the +x-direction, the point is on the positive x-axis, and the distance from the wire to the point is r=1.10 m. Therefore, the angle θ is 0 degrees.

B = µo I / 2πr sinθ = 4π × 10-7 T⋅m/A × 1 A / 2π × 1.10 m × sin(0°) = 0.063 T

Therefore, the magnitude of the magnetic field at the point is 0.063 T. The direction of the magnetic field is +x-direction, because the current is flowing in the +x-direction and the angle θ is 0 degrees.

The same calculation can be done for the point on the negative y-axis. The only difference is that the angle θ is now 90 degrees. Therefore, the magnitude of the magnetic field at the point is still 0.063 T, but the direction is now −y-direction.

To learn more about magnetic field here brainly.com/question/23096032

#SPJ11

Problem mos teple have (2.000 1.00 Listamentum his particle points (A) 20+ 0.20 2008 + 100 (96200 + 2007 D) (0.0208 +0.010729 32. Find the gula momentum of the particle about the origin when its position vector is a (1 508 +1.50pm 2 points) (A) (0.15k)kg-mals (B) (-0.15k)kg-m/s ((1.50k)kg-m/s D) (15.0k)kg-m/s

Answers

The correct answer is (A) (0.15k)kg-m/s.

The angular momentum of a particle about the origin is given by:

L = r × p

Where, r is the position vector of the particle, p is the particle's linear momentum, and × is the cross product.

In this case, the position vector is given as:

r = (1.50i + 1.50j) m

The linear momentum of the particle is given as:

p = mv = (1.50 kg)(5.00 m/s) = 7.50 kg m/s

The cross product of r and p can be calculated as follows:

L = r × p = (1.50i + 1.50j) × (7.50k) = 0.15k kg m/s

Therefore, the angular momentum of the particle about the origin is (0.15k) kg m/s. So the answer is (A).

To learn more about angular momentum click here; brainly.com/question/30338094

#SPJ11

Show that the product of the Euler rotation matrices
is a new orthogonal matrix. Why is this important?

Answers

The product of the Euler rotation matrices is a new orthogonal matrix:

[tex]R^T = R^-^1[/tex]

The product of Euler rotation matrices results in a new orthogonal matrix is important in various fields such as Robotics and 3D graphics, Coordinate transformations.

To show that the product of Euler rotation matrices is a new orthogonal matrix, we need to demonstrate two things:

(1) The product of two rotation matrices is still a rotation matrix, and

(2) The product of two orthogonal matrices is still an orthogonal matrix.

Let's consider the Euler rotation matrices. The Euler angles describe a sequence of three rotations: first, a rotation about the z-axis by an angle α (yaw), then a rotation about the new y-axis by an angle β (pitch), and finally a rotation about the new x-axis by an angle γ (roll). The corresponding rotation matrices for these three rotations are:

[tex]R_z[/tex](α) = | cos(α) -sin(α) 0 |

             | sin(α) cos(α) 0 |

             | 0 0 1 |

[tex]R_y[/tex](β) = | cos(β) 0 sin(β) |

           | 0 1 0 |

           | -sin(β) 0 cos(β) |

[tex]R_x[/tex](γ) = | 1 0 0 |

             | 0 cos(γ) -sin(γ) |

             | 0 sin(γ) cos(γ) |

Now, let's multiply these matrices together:

R = [tex]R_z[/tex](α) * [tex]R_y[/tex](β) * [tex]R_x[/tex](γ)

To show that R is an orthogonal matrix, we need to prove that [tex]R^T[/tex](transpose of R) is equal to its inverse, [tex]R^-^1[/tex].

Taking the transpose of R:

[tex]R^T[/tex] = [tex](R_x[/tex](γ) * R_y(β) * R_z(α)[tex])^T[/tex]

= [tex](R_z[/tex](α)[tex])^T[/tex] * [tex](R_y[/tex](β)[tex])^T[/tex] * [tex](R_x[/tex](γ)[tex])^T[/tex]

= [tex]R_z[/tex](-α) * [tex]R_y[/tex](-β) * [tex]R_x[/tex](-γ)

Taking the inverse of R:

[tex]R^-^1[/tex] = [tex](R_x[/tex](γ) * [tex]R_y[/tex](β) * [tex]R_z[/tex](α)[tex])^-^1[/tex]

= [tex](R_z[/tex](α)[tex])^-^1[/tex] * (R_y(β)[tex])^-^1[/tex] * [tex](R_x[/tex](γ)[tex])^-^1[/tex]

= [tex](R_z[/tex](-α) * [tex]R_y[/tex](-β) * [tex]R_x([/tex]-γ)[tex])^-^1[/tex]

We can see that [tex]R^T = R^-^1[/tex], which means R is an orthogonal matrix.

The fact that the product of Euler rotation matrices results in a new orthogonal matrix is important in various fields and applications, such as:

1. Robotics and 3D graphics: Euler angles are commonly used to represent the orientation of objects or joints in robotic systems and computer graphics. The ability to combine rotations using Euler angles and obtain an orthogonal matrix allows for accurate and efficient representation and manipulation of 3D transformations.

2. Coordinate transformations: Orthogonal matrices preserve lengths and angles, making them useful in transforming coordinates between different reference frames or coordinate systems. The product of Euler rotation matrices enables us to perform such transformations.

3. Physics and engineering: Orthogonal matrices have important applications in areas such as quantum mechanics, solid mechanics, and structural analysis. They help describe and analyze rotations, deformations, and transformations in physical systems.

The ability to obtain a new orthogonal matrix by multiplying Euler rotation matrices is significant because it allows for accurate representation, transformation, and analysis of orientations and coordinate systems in various fields and applications.

To know more about rotation matrices here

https://brainly.com/question/30880525

#SPJ4

If a solenoid that is 1.9 m long, with 14,371 turns, generates a magnetic field of 1.0 tesla What would be the current in the solenoid in amps?

Answers

The current in the solenoid is approximately 745 A.

The formula used to determine the current in the solenoid in amps is given as;I = B n A/μ_0Where;

I = current in the solenoid in amps

B = magnetic field in Tesla (T)n = number of turns

A = cross-sectional area of the solenoid in

m²μ_0 = permeability of free space

= 4π × 10⁻⁷ T m A⁻¹Given;

Length of solenoid, l = 1.9 m

Number of turns, n = 14,371

Magnetic field, B = 1.0 T

From the formula for the cross-sectional area of a solenoid ;A = πr²

Assuming that the solenoid is uniform, the radius, r can be determined as;

r = 2.3cm/2

= 1.15cm

= 0.0115m

So,

A = π(0.0115)²

= 4.16 × 10⁻⁴ m²So,

Substituting the given values in the formula for the current in the solenoid in amps;

I = B n A/μ_0

= 1.0 × 14371 × 4.16 × 10⁻⁴/4π × 10⁻⁷

= 745.45A ≈ 745A

The current in the solenoid is approximately 745 A.

To know more about solenoid visit:-

https://brainly.com/question/21842920

#SPJ11

A bicycle has tires with diameter D. If you are bicycling at speed v, how much time does it take the tire to rotate once?

Answers

The time it takes for a tire of a bicycle with diameter D to rotate once when cycling at a speed of v is given by the formula πD / (2v).

The time it takes for a tire of a bicycle with diameter D to rotate once is given by the formula below:

Time taken for one rotation= (distance traveled in one rotation) / (speed of rotation)

To get the distance covered in one rotation of the bicycle, we calculate the circumference of the tire.

Circumference = πD where D is the diameter of the tire.

π is the constant value of the ratio of the circumference of any circle to its diameter which is approximately 3.14159.

By substitution, distance covered in one rotation = πD.

For the speed of rotation, we use the angular velocity formula which is ω= v / r where v is the linear velocity of the bicycle, r is the radius of the tire, and ω is the angular velocity which is in radians per second.

We know that the radius of the tire is half of the diameter r = D/2.

Substituting in the formula, we get the angular velocity as ω = v / (D/2)

Simplifying we get, ω= 2v / D

We now have all we need to find the time taken for one rotation. Substituting the values we obtained above into the formula for time taken we get;

Time taken for one rotation = πD / (2v)

Therefore, the time it takes for a tire of a bicycle with diameter D to rotate once when cycling at a speed of v is given by the formula πD / (2v).

Learn more About diameter from the given link

https://brainly.com/question/30460318

#SPJ11

Problem 1.10 A small spherical ball of mass m and radius R is dropped from rest into a liquid of high viscosity 7, such as honey, tar, or molasses. The only appreciable forces on it are gravity mg and a linear drag force given by Stokes's law, FStokes -6Rv, where v is the ball's velocity, and the minus sign indicates that the drag force is opposite to the direction of v. (a) Find the velocity of the ball as a function of time. Then show that your answer makes sense for (b) small times; (c) large times.

Answers

A small spherical ball of mass m and radius R is dropped from rest into a liquid of high viscosity 7, such as honey, tar, or molasses.  the velocity is approximately (g/6R), and for large times, the velocity approaches (g/6R) and becomes constant.

(a) To find the velocity of the ball as a function of time, we need to consider the forces acting on the ball. The only two forces are gravity (mg) and the linear drag force (FStokes).

Using Newton's second law, we can write the equation of motion as:

mg - FStokes = ma

Since the drag force is given by FStokes = -6Rv, we can substitute it into the equation:

mg + 6Rv = ma

Simplifying the equation, we have:

ma + 6Rv = mg

Dividing both sides by m, we get:

a + (6R/m) v = g

Since acceleration a is the derivative of velocity v with respect to time t, we can rewrite the equation as a first-order linear ordinary differential equation:

dv/dt + (6R/m) v = g

This is a linear first-order ODE, and we can solve it using the method of integrating factors. The integrating factor is given by e^(kt), where k = 6R/m. Multiplying both sides of the equation by the integrating factor, we have:

e^(6R/m t) dv/dt + (6R/m)e^(6R/m t) v = g e^(6R/m t)

The left side can be simplified using the product rule of differentiation:

(d/dt)(e^(6R/m t) v) = g e^(6R/m t)

Integrating both sides with respect to t, we get:

e^(6R/m t) v = (g/m) ∫e^(6R/m t) dt

Integrating the right side, we have:

e^(6R/m t) v = (g/m) (m/6R) e^(6R/m t) + C

Simplifying, we get:

v = (g/6R) + Ce^(-6R/m t)

where C is the constant of integration.

(b) For small times, t → 0, the exponential term e^(-6R/m t) approaches 1, and we can neglect it. Therefore, the velocity of the ball simplifies to:

v ≈ (g/6R) + C

This means that initially, when the ball is dropped from rest, the velocity is approximately (g/6R), which is constant and independent of time.

(c) For large times, t → ∞, the exponential term e^(-6R/m t) approaches 0, and we can neglect it. Therefore, the velocity of the ball simplifies to:

v ≈ (g/6R)

This means that at large times, when the ball reaches a steady-state motion, the velocity is constant and equal to (g/6R), which is determined solely by the gravitational force and the drag force.

In summary, the velocity of the ball as a function of time is given by:

v = (g/6R) + Ce^(-6R/m t)

For small times, the velocity is approximately (g/6R), and for large times, the velocity approaches (g/6R) and becomes constant.

To know  more about molasses refer here:

https://brainly.com/question/22722195#

#SPJ11

Which of the following remain(s) constant for a projectile: it's horizontal velocity component, v, it's vertical velocity component, Vv, or it's vertical acceleration, g? Select one: O a. g and VH O b. g, V and Vv O c..g and v O d. Vv

Answers

Out of the given options, the term that remains constant for a projectile is c. g and v.

Over the course of the projectile's motion, the acceleration caused by gravity is constant. This indicates that the vertical acceleration is unchanged. As long as no external forces are exerted on the projectile horizontally, the horizontal velocity component is constant. This is due to the absence of any horizontal acceleration.

Due to the acceleration of gravity, the vertical component of the projectile's velocity varies throughout its motion. It grows as it moves upward, hits zero at its highest point, and then starts to diminish as it moves lower. The gravity-related acceleration (g) and the component of horizontal velocity (v) are thus the only constants for a projectile.

Read more about projectile on:

https://brainly.com/question/30448534

#SPJ4

Determine the resultant force on a charge q located at the midpoint (L/2) on one side of
an equilateral triangle, consider that at each vertex there is a +Q charge. Find the address at
which the charge moves if a +Q is removed from a vertex on the same side as -q.

Answers

The resultant force on the charge q located at the midpoint (L/2) on one side of an equilateral triangle, considering that there is a +Q charge at each vertex, is zero.

In an equilateral triangle, the charges at the vertices will create forces that cancel each other out due to the symmetry of the triangle. Since each vertex has a +Q charge, the forces exerted on the charge q from the two neighboring charges will be equal in magnitude and opposite in direction. As a result, the net force on the charge q is zero, and it will remain at its current location.

When a +Q charge is removed from a vertex on the same side as -q, the equilibrium of forces is maintained. The remaining charges will still exert equal and opposite forces on q, resulting in a net force of zero. Therefore, the charge q will not experience any displacement and will stay at its current location.

To learn more about resultant force, click here: https://brainly.com/question/29948940

#SPJ11

One model of the structure of the hydrogen atom consists of a stationary proton with an electron moving in a circular path around it, of radius 5.3 x 10-1 m. The masses of a proton and an electron are 1.673 x 10-27 kg and 9.11 x 10-31 kg, respectively. (a) What is the electrostatic force between the electron and the proton? [] (b) What is the gravitational force between them? [2 ] (c) Which force is mainly responsible for the electron's centripetal motion? [1 ] (d) Calculate the tangential velocity of the electron's orbit around the proton?

Answers

The electrostatic force between the electron and proton is $8.24\times 10^{-8}\ N$. The gravitational force between the electron and proton is $3.62\times 10^{-47}\ N$.

(a) To calculate the electrostatic force between the electron and the proton, we can use Coulomb's law. Coulomb's law states that the electrostatic force (F) between two charged particles is given by:

F = (k * |q1 * q2|) / r^2 where k is the electrostatic constant, q1 and q2 are the charges of the particles, and r is the distance between them.

In this case, we have a proton with charge q1 and an electron with charge q2. The charges of the proton and electron are equal in magnitude but opposite in sign. Therefore, we can write:

q1 = +e (charge of proton)

q2 = -e (charge of electron)

where e is the elementary charge (1.602 x 10^-19 C).

The distance between the electron and the proton is given as the radius of the circular path, r = 5.3 x 10^-1 m.

Plugging in the values into Coulomb's law:

F = (k * |-e * e|) / r^2

where k = 8.988 x 10^9 Nm^2/C^2 (electrostatic constant)

Calculating the electrostatic force:

F = (8.988 x 10^9 Nm^2/C^2 * (1.602 x 10^-19 C)^2) / (5.3 x 10^-1 m)^2

(b) To calculate the gravitational force between the electron and the proton, we can use Newton's law of universal gravitation. Newton's law states that the gravitational force (F) between two objects is given by:

F = (G * |m1 * m2|) / r^2 where G is the gravitational constant, m1 and m2 are the masses of the objects, and r is the distance between them.

In this case, we have a proton with mass m1 and an electron with mass m2. The masses of the proton and electron are given as:

m1 = 1.673 x 10^-27 kg (mass of proton)

m2 = 9.11 x 10^-31 kg (mass of electron)

The distance between the electron and the proton is the same as before, r = 5.3 x 10^-1 m. Plugging in the values into Newton's law of universal gravitation: F = (G * |m1 * m2|) / r^2 where G = 6.674 x 10^-11 Nm^2/kg^2 (gravitational constant). Calculating the gravitational force:

F = (6.674 x 10^-11 Nm^2/kg^2 * (1.673 x 10^-27 kg) * (9.11 x 10^-31 kg)) / (5.3 x 10^-1 m)^2.

(c) The force mainly responsible for the electron's centripetal motion is the electrostatic force. Since the electron has a negative charge and the proton has a positive charge, the electrostatic force between them provides the necessary centripetal force to keep the electron in a circular orbit around the proton.

(d) To calculate the tangential velocity of the electron's orbit around the proton, we can use the formula for centripetal force: F = (m * v^2) / r

where F is the centripetal force, m is the mass of the electron, v is the tangential velocity, and r is the radius of the circular path.In this case, we can rearrange the formula to solve for the tangential velocity:

v = sqrt((F * r) / m. Using the electrostatic force calculated in part (a), the radius of the circular path, and the mass of the electron, we can substitute these values into the formula to calculate the tangential velocity.

Learn more about gravitational force:

https://brainly.com/question/32609171

#SPJ11

Verify the following equations:(x⁴)³ = x¹²

Answers

To verify the equation (x⁴)³ = x¹², we need to simplify both sides of the equation and see if they are equal.

Starting with the left side, we have (x⁴)³. Using the power of a power rule, we can simplify this as x^(4 * 3), which becomes x^12.  Now let's look at the right side of the equation, which is x¹².

By comparing the left and right sides, we can see that they are both equal to x¹². Therefore, the equation (x⁴)³ = x¹² is verified and true. Now let's look at the right side of the equation, which is x¹².

To know more about equation visit :

https://brainly.com/question/29657983

#SPJ11

Select the correct answer. Why does a solid change to liquid when heat is added? A. The spacing between particles decreases. B. Particles lose energy. C. The spacing between particles increases. D. The temperature decreases.

Answers

Answer:

The right answer is c because when we heat solid object the molecule will start lose attraction on object

Explanation:

brain list

The magnetic force on a straight wire 0.30 m long is 2.6 x 10^-3 N. The current in the wire is 15.0 A. What is the magnitude of the magnetic field that is perpendicular to the wire?

Answers

Answer:  the magnitude of the magnetic field perpendicular to the wire is approximately 1.93 x 10^-3 T.

Explanation:

The magnetic force on a straight wire carrying current is given by the formula:

F = B * I * L * sin(theta),

where F is the magnetic force, B is the magnetic field, I is the current, L is the length of the wire, and theta is the angle between the magnetic field and the wire (which is 90 degrees in this case since the field is perpendicular to the wire).

Given:

Length of the wire (L) = 0.30 m

Current (I) = 15.0 A

Magnetic force (F) = 2.6 x 10^-3 N

Theta (angle) = 90 degrees

We can rearrange the formula to solve for the magnetic field (B):

B = F / (I * L * sin(theta))

Plugging in the given values:

B = (2.6 x 10^-3 N) / (15.0 A * 0.30 m * sin(90 degrees))

Since sin(90 degrees) equals 1:

B = (2.6 x 10^-3 N) / (15.0 A * 0.30 m * 1)

B = 2.6 x 10^-3 N / (4.5 A * 0.30 m)

B = 2.6 x 10^-3 N / 1.35 A*m

B ≈ 1.93 x 10^-3 T (Tesla)

Two lenses are placed along the x axis, with a diverging lens of focal length -8.50 cm on the left and a converging lens of focal length 13.0 cm on the right. When an object is placed 12.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = co? cm

Answers

The separation between the two lenses should be 19.21 cm for the final image to be focused at x = ∞.

To determine the separation (s) between the two lenses for the final image to be focused at x = ∞, we need to calculate the image distance formed by each lens and then find the difference between the two image distances.

Let's start by analyzing the diverging lens:

1. Diverging Lens:

   Given: Focal length [tex](f_1)[/tex] = -8.50 cm, Object distance [tex](u_1)[/tex]= -12.0 cm (negative sign indicates object is placed to the left of the lens)

Using the lens formula: [tex]\frac{1}{f_1} =\frac{1}{v_1} -\frac{1}{u_1}[/tex]

Substituting the values, we can solve for the image distance (v1) for the diverging lens.

[tex]\frac{1}{-8.50} =\frac{1}{v_1} -\frac{1}{-12.0}[/tex]

v1 = -30.0 cm.

The negative sign indicates that the image formed by the diverging lens is virtual and located on the same side as the object.

2.Converging Lens:

   Given: Focal length (f2) = 13.0 cm, Object distance (u2) = v1 (image distance from the diverging lens)

Using the lens formula: [tex]\frac{1}{f_2} =\frac{1}{v_2} -\frac{1}{u_2}[/tex]

Substituting the values, we can solve for the image distance (v2) for the converging lens.

[tex]\frac{1}{13.0} =\frac{1}{v_2} -\frac{1}{-30.0}[/tex]

v2 = 10.71 cm.

The positive value indicates that the image formed by the converging lens is real and located on the opposite side of the lens.

Calculating the Separation:

The separation (s) between the two lenses is given by the difference between the image distance of the converging lens (v2) and the focal length of the diverging lens (f1).

[tex]s=v_2-f_1[/tex]

= 10.71 cm - (-8.50 cm)

= 19.21 cm

Therefore, the separation between the two lenses should be 19.21 cm for the final image to be focused at x = ∞.

Learn more about lenses here: brainly.com/question/2289939

#SPJ11

6. A mass density p = p(x, t) obeys the physical law j = vop where > 0 is a constant and j is the mass density flux. Use the continuity law, in the absence of any source or sink terms, to obtain a differential equation for p. The system is initially primed such that p(x,0) = poe-²/ where po, l are (positive) constants. Use the method of characteristics to determine the mass density for times t > 0. Sketch the profile of p against æ for a variety of time steps. [15 marks] Describe the significance of each of the quantities vo. Po and l. Illustrate each with a sketch at an appropriate number of time steps. [5 marks]

Answers

The continuity law and the physical law j = vop, we can derive a differential equation for the mass density p(x, t). The significance of the quantities vo, po, and l are that vo represents the velocity of the characteristic curves, po is the initial mass density at t = 0 and l is a positive constant.

The system is initially primed with a given initial condition p(x, 0) = po * e^(-x^2), where po and l are positive constants. The method of characteristics can be applied to determine the mass density for times t > 0 and sketch its profile against x for different time steps. The quantities vo, po, and l have specific meanings and significance in the context of the problem.

The continuity law states that the rate of change of mass density p with respect to time t plus the divergence of the mass density flux j must be zero in the absence of any source or sink terms.

Applying this law to the physical law j = vop, where v and o are constants, we have:

∂p/∂t + ∂(vop)/∂x = 0

Expanding the equation, we get:

∂p/∂t + vo ∂p/∂x + vop ∂o/∂x = 0

Since the system is initially primed with p(x, 0) = po * e^(-x^2), we have an initial condition for the mass density.

To solve this differential equation for times t > 0, we can use the method of characteristics. This method involves defining characteristic curves that satisfy the equation:

dx/dt = vo

By solving this equation, we can determine the characteristics curves and track the behavior of the mass density along these curves.

The significance of the quantities vo, po, and l can be described as follows:

- vo represents the velocity of the characteristic curves. It determines the speed at which the mass density propagates along these curves.

- po is the initial mass density at t = 0. It represents the value of the mass density at the initial condition.

- l is a positive constant that likely represents a characteristic length scale in the system.

By sketching the profile of p against x for different time steps, we can observe how the mass density evolves and propagates in space over time, following the characteristics curves determined by the initial conditions and the physical laws governing the system.

Learn more about Physical law here : brainly.com/question/15591590

#SPJ11

"Two converging lenses with the same focal length of 10 cm are 40
cm apart. If an object is located 15 cm from one of the lenses,
find the final image distance of the object.
a. 0 cm
b. 5 cm
c. 10 cm
d 15 cm

Answers

The final image distance of the object, if the object is located 15 cm from one of the lenses is 6 cm. So none of the options are correct.

To determine the final image distance of the object in the given setup of two converging lenses, we can use the lens formula:

1/f = 1/di - 1/do

Where: f is the focal length of the lens, di is the image distance, do is the object distance.

Given that both lenses have the same focal length of 10 cm, we can consider them as a single lens with an effective focal length of 10 cm. The lenses are 40 cm apart, and the object distance (do) is 15 cm.

Using the lens formula, we can rearrange it to solve for di:

1/di = 1/f + 1/do

1/di = 1/10 cm + 1/15 cm

= (15 + 10) / (10 * 15) cm⁻¹

= 25 / 150 cm⁻¹

= 1 / 6 cm⁻¹

di = 1 / (1 / 6 cm⁻¹) = 6 cm

Therefore, the final image distance of the object is 6 cm. So, none of the options are correct.

To learn more about focal length: https://brainly.com/question/9757866

#SPJ11

The magnetic field lines shown in the first picture below are from a circular loop of current.
What arrangement of current produces magnetic field lines as shown in the second picture?
Group of answer choices
Insufficient information to allow a single answer
A straight line of current
A square loop of current
There is no possible current arrangement

Answers

Magnetic field lines are imaginary lines used to represent the direction and strength of the magnetic field around a magnet or current-carrying conductor. The arrangement of current that produces magnetic field lines as shown in the second picture is  correct choice 3) A square loop of current.

The first picture depicts the magnetic field lines around a circular loop of current. In this arrangement, the magnetic field lines are concentric circles centered on the loop. Each field line forms a closed loop around the current-carrying wire.

To generate magnetic field lines as shown in the second picture, a different current arrangement is required. The second picture shows magnetic field lines that form a pattern resembling a square. This indicates the presence of a square loop of current.

In a square loop of current, the magnetic field lines follow a distinct pattern. Along the sides of the loop, the magnetic field lines are parallel and evenly spaced. At the corners of the loop, the field lines converge and form a sharper bend. This arrangement of field lines is characteristic of a square loop of current.

Therefore, among the given options, the only arrangement that can produce magnetic field lines as shown in the second picture is a square loop of current.

To learn more about magnetic field click here:

brainly.com/question/7645789

#SPJ11

6. [-/2 Points] DETAILS COLFUNPHYS1 2.P.012. MY NOTES ASK YOUR TEACHER A paratrooper is initially falling downward at a speed of 32.7 m/s before her parachute opens. When it opens, she experiences an upward Instantaneous acceleration of 74 m/s². (a) If this acceleration remained constant, how much time would be required to reduce the paratrooper's speed to a safe 5.40 m/s? (Actually the acceleration is not constant in this case, but the equations of constant acceleration provide an easy estimate.) (b) How far does the paratrooper fall during this time Interval?

Answers

A paratrooper will fall for 0.49 seconds and travel 15.1 meters before her speed is reduced to a safe 5.40 m/s.

(a) To find the time required, we can use the following equation for the final velocity of an object under constant acceleration:

[tex]v_f[/tex] = [tex]v_i[/tex] + at

where

[tex]v_f[/tex] is the final velocity (5.40 m/s)

vi is the initial velocity (32.7 m/s)

a is the acceleration (74 m/s²)

t is the time

Substituting known values, we get:

5.40 m/s = 32.7 m/s + 74 m/s² * t

Solving for t, we get:

t = 0.49 s

(b) To find the distance fallen during this time interval, we can use the following equation for the displacement of an object under constant acceleration:

d = [tex]v_i[/tex] t + (1/2)at²

where

d is the displacement (distance fallen)

[tex]v_i[/tex] is the initial velocity (32.7 m/s)

t is the time (0.49 s)

a is the acceleration (74 m/s²)

Substituting known values, we get:

d = 32.7 m/s * 0.49 s + (1/2) * 74 m/s² * (0.49 s)²

d = 15.1 m

Therefore, the paratrooper would fall for 0.49 seconds and travel 15.1 meters before her speed is reduced to a safe 5.40 m/s.

To know more about the paratrooper refer here,

https://brainly.com/question/26539885#

#SPJ11

2. For each pair of systems, circle the one with the larger entropy. If they both have the same entropy, explicitly state it. a. 1 kg of ice or 1 kg of steam b. 1 kg of water at 20°C or 2 kg of water at 20°C c. 1 kg of water at 20°C or 1 kg of water at 50°C d. 1 kg of steam (H₂0) at 200°C or 1 kg of hydrogen and oxygen atoms at 200°C Two students are discussing their answers to the previous question: Student 1: I think that 1 kg of steam and 1 kg of the hydrogen and oxygen atoms that would comprise that steam should have the same entropy because they have the same temperature and amount of stuff. Student 2: But there are three times as many particles moving about with the individual atoms not bound together in a molecule. I think if there are more particles moving, there should be more disorder, meaning its entropy should be higher. Do you agree or disagree with either or both of these students? Briefly explain your reasoning.

Answers

a. 1 kg of steam has the larger entropy. b. 2 kg of water at 20°C has the larger entropy. c. 1 kg of water at 50°C has the larger entropy. d. 1 kg of steam (H2O) at 200°C has the larger entropy.

Thus, the answers to the question are:

a. 1 kg of steam has a larger entropy.

b. 2 kg of water at 20°C has a larger entropy.

c. 1 kg of water at 50°C has a larger entropy.

d. 1 kg of steam (H₂0) at 200°C has a larger entropy.

Student 1 thinks that 1 kg of steam and 1 kg of hydrogen and oxygen atoms that make up the steam should have the same entropy because they have the same temperature and amount of stuff. Student 2, on the other hand, thinks that if there are more particles moving around, there should be more disorder, indicating that its entropy should be higher.I agree with student 2's reasoning. Entropy is directly related to the disorder of a system. Higher disorder indicates a higher entropy value, whereas a lower disorder implies a lower entropy value. When there are more particles present in a system, there is a greater probability of disorder, which results in a higher entropy value.

To know more about entropy:

https://brainly.com/question/20166134

#SPJ11

A block of mass m=0.1 kg attached to a spring with =40 Nm−1 is subject to a damping force with =0.1 kg s−1.
(a) Calculate the magnitude F0 of the constant force required to move the equilibrium of the block from x=0 to x=15 cm.
(b) If this force F0 were the amplitude of a harmonic driving force with non-zero , what would be the steady-state amplitude of oscillations of the block at velocity resonance?

Answers

The magnitude of the constant force required to move the equilibrium of the block from x=0 to x=15 cm is 6 N. The steady-state amplitude of oscillations of the block at velocity resonance is approximately 10.55 cm.

(a) Calculation of the magnitude F0 of the constant force required to move the equilibrium of the block from x=0 to x=15 cm:

m = 0.1 kg k = 40 Nm⁻¹b = 0.1 kg s⁻¹

The displacement from equilibrium position is given by:

x = 15 cm = 0.15 m

The force required to move the block from its equilibrium position is given by

F0 = kx = 40 Nm⁻¹ × 0.15 m= 6 N

Thus, the magnitude of the constant force required to move the equilibrium of the block from x=0 to x=15 cm is 6 N.

(b) Calculation of the steady-state amplitude of oscillations of the block at velocity resonance:

F0 = 6 N

k = 40 Nm⁻¹

m = 0.1 kg

b = 0.1 kg s⁻¹

ω0 = √k/m = √(40 Nm⁻¹ / 0.1 kg)= 20 rad s⁻¹ω = √(k/m - b²/4m²) = √[40 Nm⁻¹ / (0.1 kg) - (0.1 kg s⁻¹)² / 4(0.1 kg)²]≈ 19.96 rad s⁻¹

At velocity resonance, ω = ω0.

Amplitude of oscillations is given by:

A = F0/m(ω0² - ω²)² + (bω)²= 6 N / 0.1 kg (20 rad s⁻¹)² - (19.96 rad s⁻¹)² + (0.1 kg s⁻¹ × 19.96 rad s⁻¹)²≈ 0.1055 m = 10.55 cm

Therefore, the steady-state amplitude of oscillations of the block at velocity resonance is approximately 10.55 cm.

Learn more about magnitude at: https://brainly.com/question/30337362

#SPJ11

Other Questions
Due to its location near theMatterhornRing of FireTropic of CancerEquatorAustralasia is threatened byvolcanoeswildfirestornadoesavalanches A cargo ship has a radar transmitter that contains an LC circuit oscillating at 8.00 10^9 Hz.(a) For a one-turn loop having an inductance of 340 pH to resonate at this frequency, what capacitance (in pF) is required in series with the loop?pF(b) The capacitor has square, parallel plates separated by 1.20 mm of air. What should the edge length of the plates be (in mm)?anima(c) What is the common reactance (in () of the loop and capacitor at resonance? The nurse is caring for a client admitted to the hospital for renal calculi. what is the action to take first? Plato, who was born in or around 427 BC and died in 347, was not the first important philosopher of ancient Greek civilization, but he is the first from whom a substantial body of complete works has come down to us. In the Indian tradition the Vedas, and many of the Upanishads, are earlier; but of their authors, and how they were composed, we know next to nothing. The Buddha pre-dated Plato, though by just how much is a matter of scholarly disagreement; but the earliest surviving accounts of his life and thought were written down some hundreds of years after his death. In China, Confucius also pre-dated Plato (he was born in the middle of the previous century); again, we have nothing known to have been written by him-the famous Analects are a later compilation. Plato's works all take the form of dialogues. Mostly they are quick-fire dialogues, conversational in style, though sometimes the protagonists are allowed to make extended speeches. There are two dozen or so of these known to be by Plato, and a handful more that may be. Of the certainly authentic group two are much longer than the others, and better thought of as books consisting of sequences of dialogues. (They are Republic and Laws, both devoted to the search for the ideal political constitution.) So there is plenty of Plato to read, and most of it is fairly easy to obtain, in translation in relatively inexpensive editions. As regards degree of 11 In p. 11, the author mentions Plato's Republic, saying it is 'devoted to the search for the ideal political constitution". Explain, in your own words, the idea of a "philosopher king in Plato and how society is to groom (that is form) such a king (not more than 150 words). A2.31 kg rope is stretched between supports that are 104 m apart, and has a tension on t of 530 N f one end of the mpe sighly tweaked how long wild take the ring 0 0.639 O 66731 O 0.592 2.6.600s Questlon 4 The first three terms, in order, of geometric sequence are x5,x1 and 2x+1. (a) Explain why (x1)(x1)=(x5)(2x+1). (b) Determine the value(s) of x. If an electron makes a transition from the n = 4 Bohr orbitto the n = 3 orbit, determine the wavelength of the photon createdin the process. (in nm) Bonting is a new method of thinking created by Edwaard de Bono (2016) that focuses squarely on creating value. It is an extension of value creation in the Yellow Hat, seen in the Six Thinking Hat (de Bono, 1985). In this production, practitioners are expected to embrace VALS (de Bono, 2005) elements, Discuss. A parallel-plate capacitor with circular plates of radius R = 0.13 m is being discharged. A circular loop of radius r = 0.25 m is concentric with the capacitor and halfway between the plates. The displacement current through the loop is 2.0 A. At what rate is the electric field between the plates changing? Use the 18 rules of inference to derive the conclusion of the following symbolized argument:1) G A2) G L / G (A L) A pond receives a flow of 2,100,000 gpd. If the surface area of the pond is 16 ac, whatis the hydraulic loading in ft per day?Q4). If 30 lb of chemical is added to 400 lb of water, what is the percent strength (byweight) of the solution Four charged spheres, with equal charges of +2.30 C, aresituated in corner positions of a square of 60 cm. Determine thenet electrostatic force on the charge in the top right corner ofthe square. States and communities have provided subsidized higher education to ensure quality mass education. Has that rationale for a public subsidy to ensure an educated electorate changed in the last 20 years? To what degree is the stronger justification now an economic competitiveness argument or a fairness argument? Should subsidies to community colleges be decreased? A simple circuit has a voltage of \( 10 \mathrm{~V} \) and a resistance of \( 40 \Omega \). V current? Find an equation for the given line in the form ax + by=c, where a, b, and c are integers with no factor common to all three and a2z0Through (-6,15); parallel to 5x+2y= 17 The equation of the line in the form ax + by=c, passing through (-6,15) and parallel to 5x+2y= 17 is(Simplify your answer.) The certified personal trainer discusses ways to be accountable for working out daily. What ways mentioned in the video do you think you can adapt to your lifestyle and how many times a week? Simplify each trigonometric expression.cos/sincot Estimation and Units Imagine that you are a working engineer and/or a scientist. You are assigned the following tasks. Your report to your supervisor needs to include not only the answers, but also how you found the results; there needs to be enough of a clear step-by-step description that the reader can easily follow how you found the answer. 1. A typical mammalian cell has a mass of between 3 to 4 nano-grams (nano = 10-). Make a rough estimate of the number of cells in an adult cat. Look up numbers if you need to. Don't just write down an answer. Show work including numbers you use. Carry units in your calculation. Label your answer, i.e., number of cells = xxx. 2. You decide that you don't like inches, feet, or meters as units of length and introduce a new unit of length called a behrend which you set at 1 behrend=11 inches. You purchase 2.75 cubic yards of mulch. What is the volume of mulch you bought in cubic behrends? Show work including numbers you use. Carry units in your calculation. Label your answer. 3. You are told that the position x of a rocket as a function of time is given by the formula x(t) = A + Bt where the position x is in meters and the time t is in seconds. What are the units of the constants A and B? Hint: Remember t is not a number but a number with a unit, i.e., t = 2 sec. One way to do this is to substitute in 2 sec (with units) for t in your equation. What does the units of B have to be for the quantity Bx (2 sec) to be in meters? When you drop a rock into a well, you hear the splash 2.2seconds later. The sound speed is 340 m/s.How deep is the well ? (Hint: the depth will defiitely be lessthan a kilometer..) Determine the magnitudes of the currents in each resistor shown in the figure. Consider the circuit shown in have emfs of E1=9.0 V and E2=12.0 V atteries resistors have values of R1=24,R2=65, and R3=34. Figure 1 of 1 Part B Determine the directions of the currents in each resistor. Ignore internal resistance of the batteries. I1 left, I2 right, I3 down I1 right, I2 left, I3 down I1 left, I2 right, I3 up I1 right, I2 left, I3 up Steam Workshop Downloader