A utility pole has a guy-wire attached to it 3 feet from the top of the pole. The wire is attached to the ground by a stake that is 100 feet from the base of the pole. The wire makes a 46° angle with the ground. Given this information, answer the following questions. 1. How long is the guy-wire? 2. What is the height of the pole? Complete your solution on separate paper and upload your final solution below. The solution should contain the following: diagrams that you drew calculations that you performed explanations written in complete sentences​

Answers

Answer 1

The length of the guy-wire is approximately 144.69 feet, and the height of the pole is approximately 44.69 feet.

In the diagram above, P represents the top of the utility pole, and S represents the stake in the ground. The guy-wire is represented by the line connecting P and S. We are given the following information:

The guy-wire is attached to the pole 3 feet from the top (point P).

The stake is located 100 feet from the base of the pole (point S).

The angle between the guy-wire and the ground is 46°.

Now, let's calculate the length of the guy-wire and the height of the pole.

Length of the guy-wire (x):

To find the length of the guy-wire, we can use trigonometry. In this case, we can use the cosine function since we know the adjacent side (100 ft) and the angle (46°).

Using the cosine function:

cos(46°) = adjacent / hypotenuse

cos(46°) = 100 ft / x

Rearranging the equation, we get:

x = 100 ft / cos(46°)

Height of the pole:

To find the height of the pole, we can subtract the distance from the base of the pole to the attachment point of the guy-wire (100 ft) from the length of the guy-wire (x).

Height of the pole = x - 100 ft

Now, let's calculate the values.

Length of the guy-wire (x):

x = 100 ft / cos(46°)

Height of the pole:

Height of the pole = x - 100 ft

Performing the calculations, we get:

Length of the guy-wire (x):

x ≈ 144.69 ft

Height of the pole:

Height of the pole ≈ 144.69 ft - 100 ft

Height of the pole ≈ 44.69 ft

As a result, the guy-wire's length is roughly 144.69 feet, and the pole's height is roughly 44.69 feet.

for such more question on length

https://brainly.com/question/20339811

#SPJ8

Question

A Utility Pole Has A Guy-Wire Attached To It 3 Feet From The Top Of The Pole. The Wire Is Attached To The Ground By A Stake That Is 100 Feet From The Base Of The Pole. The Wire Makes A 46° Angle With The Ground. Given This Information, Answer The Following Questions.How Long Is The Guy-Wire?What Is The Height Of The Pole?Draw A Diagram And Show Your Work And

A utility pole has a guy-wire attached to it 3 feet from the top of the pole. The wire is attached to the ground by a stake that is 100 feet from the base of the pole. The wire makes a 46° angle with the ground. Given this information, answer the following questions.

How long is the guy-wire?

What is the height of the pole?

Draw a diagram and show your work and calculations

A Utility Pole Has A Guy-wire Attached To It 3 Feet From The Top Of The Pole. The Wire Is Attached To

Related Questions

Water is flowing in a pipeline 600 cm above datum level has a velocity of 10 m/s and is at a gauge pressure of 30 KN/m2. If the mass density of water is 1000 kg/m3, what is the total energy per unit weight of the water at this point? Assume acceleration due to Gravity to be 9.81 m/s2.

Answers

The total energy per unit weight of the water at the specified point is determined by adding the kinetic energy per unit weight and the potential energy per unit weight of the fluid. According to the principle of conservation of energy, the total energy per unit weight of the fluid in a flow system is constant and is known as Bernoulli's equation.

The following formula can be used to determine the total energy per unit weight of the water at the specified point: T.E./w = P/w + V^2/2g + Z. Where, T.E./w = Total energy per unit weightP/w = Pressure energy per unit weightV = Velocity of the water, g = Acceleration due to gravity Z = Potential energy per unit weight of the water in the pipeline. Thus, putting all the given values into the equation, we get:T.E./w = 30 × 103/1000 + (10)2/(2 × 9.81) + 600/1000= 30 + 5.092 + 0.6= 35.692 m. Therefore, the total energy per unit weight of water at the given point is 35.692 m. Water flows through pipelines due to the pressure difference between two points, and the velocity of the fluid inside the pipeline is determined by the pressure and other factors, such as the diameter of the pipe, the roughness of the surface of the pipe, and the viscosity of the fluid. Bernoulli's equation is a fundamental principle of fluid mechanics that explains how the energy of a fluid changes as it flows along a pipeline or around a curve. It is the basic principle used to describe the behavior of fluids in motion. Bernoulli's equation can be used to calculate the total energy per unit weight of a fluid at a given point in the pipeline by adding the kinetic energy per unit weight and the potential energy per unit weight of the fluid. In this problem, water is flowing through a pipeline 600 cm above datum level, with a velocity of 10 m/s and a gauge pressure of 30 KN/m2, and the mass density of water is 1000 kg/m3. We have to calculate the total energy per unit weight of water at this point. Using Bernoulli's equation, we can obtain the following expression: T.E./w = P/w + V^2/2g + Z, Where, T.E./w = Total energy per unit weight P/w = Pressure energy per unit weight, V = Velocity of the water, g = Acceleration due to gravity, Z = Potential energy per unit weight of the water in the pipe line. Putting the given values into the equation, we get: T.E./w = 30 × 103/1000 + (10)2/(2 × 9.81) + 600/1000= 30 + 5.092 + 0.6= 35.692 m, Thus, the total energy per unit weight of water at the given point is 35.692 m.

In conclusion, the total energy per unit weight of water at a point 600 cm above datum level in a pipeline with a velocity of 10 m/s and a gauge pressure of 30 KN/m2, with a mass density of 1000 kg/m3, is 35.692 m.

Learn more about Bernoulli's equation visit:

brainly.com/question/29865910

#SPJ11

What is the volume of this cylinder?

Use ​ ≈ 3.14 and round your answer to the nearest hundredth.

The top of the cylinder is 14 meters
The side of the cylinder is 9 meters.

Give the answer in cubic meters and round to the nearest hundredth.

Answers

Answer:

1384.74

Step-by-step explanation:

The formula for finding volume is πr²h

π = 3.14

Diameter is 14 m. But r stands for radius.

Radius is 1/2 of diameter

Therefore; radius is 1/2 of 14 = 7

r = 7

Side of cylinder is equal to height(h)

Therefore h is 9m.

V = πr²h

V= 3.14 x7²x9

V=1384.74 meters.

Why is it important to never exceed an establishment's licensed maximum capacity?
a.Overcrowding can make the premises unsafe and is a violation of the LLA.
b.Overcrowding leads to lower tips.
c. Fire exits can be blocked.
d.Servers cannot safely monitor how much alcohol each guest is consuming

Answers

They are not as significant and directly related to the safety concerns associated with exceeding the licensed maximum capacity. The primary focus should be on ensuring the safety and well-being of patrons and staff within the establishment.

The correct answer is a. Overcrowding can make the premises unsafe and is a violation of the LLA (Liquor License Agreement).

It is important to never exceed an establishment's licensed maximum capacity due to several safety reasons:

Safety hazards: Overcrowding can lead to safety hazards such as difficulty in evacuating the premises during emergencies, increased risks of accidents, and limited access to emergency exits. In case of a fire or other emergencies, it is crucial to have enough space and clear pathways for people to exit the building safely.

Structural integrity: Buildings have a maximum capacity determined by their design and structural integrity. Exceeding this capacity can put excessive stress on the building's structure, which may lead to collapses or structural failures.

Compliance with regulations: Licensed establishments are required to adhere to the regulations set by local authorities, including the maximum capacity specified in their liquor license agreement. Violating the licensed maximum capacity is not only a safety concern but also a violation of legal requirements and can result in fines, penalties, or even the revocation of the establishment's license.

While options b, c, and d may have their own implications, such as lower tips, blocked fire exits, or difficulty in monitoring alcohol consumption, they are not as significant and directly related to the safety concerns associated with exceeding the licensed maximum capacity. The primary focus should be on ensuring the safety and well-being of patrons and staff within the establishment.

To know more about maximum visit

https://brainly.com/question/16696252

#SPJ11

Ethylene is produced by the dehydrogenation of ethane. If the feed includes 0.5 mole of steam (an inert diluent) per mole of ethane at 323 K, 1 bar and if the reaction reaches and equilibrium at 1100 K and 1 bar, determine the amount of heating needed or generated by assuming the complete dehydrogenation of ethane. Use the whole expansion of heat capacity values

Answers

The amount of heating needed or generated by assuming the complete dehydrogenation of ethane is 40%

Ethylene is produced by the dehydrogenation of ethane.

If the feed includes 0.5 mole of steam (an inert diluent) per mole of ethane at 323 K, 1 bar and if the reaction reaches and equilibrium at 1100 K and 1 bar,

Consider dehydrogenation r × n of ethane.

C₂H₆ ⇒ C₂H₄ + H₂

To determine the amount of heating needed or generated by assuming the complete dehydrogenation of ethane.

From the r × n 1 mol gm ethane gives 1 mol of ethane & 1 mol fuel includes 0.5 mole of steam (an inert diluent) per mole of ethane.

Therefore, total number of moles on side = 2.5 moles.

Total = 2.5 moles

% composition of ethane

= ethane/n total * 100

= 1/2.5 * 100 = 40%

Therefore, 40% the amount of heating generated complete dehydrogenation of ethane.

Learn more about dehydrogenation of ethane here;

https://brainly.com/question/33409739

#SPJ4

In the Lewis structure of the iodite ion,
IO2-, that satisfies the
octet rule, the formal charge on the central iodine atom is:

Answers

The formal charge on the central iodine atom in the Lewis structure of the iodite ion (IO₂⁻) that satisfies the octet rule is 0.

Formal charge can be defined as the electric charge on an atom if the electrons were distributed equally between the atoms in a compound. It can be calculated using the following formula:

FC = Valence electrons - Lone pair electrons - 1/2 Bonding electrons

In the Lewis structure of IO₂⁻, there are two oxygen atoms that each contain six valence electrons, and the central iodine atom has seven valence electrons. There are two single bonds between each oxygen atom and the central iodine atom, which account for four bonding electrons.

In the Lewis structure, there are also two lone pairs of electrons around each oxygen atom. Thus, by using the above formula, we can calculate the formal charge of the central iodine atom.

FC = 7 valence electrons - 0 lone pair electrons - 1/2 (4 bonding electrons)

FC = 7 - 0 - 2 = 5.

Thus, the formal charge on the central iodine atom is 0 since it owns the same number of valence electrons that it has in an isolated atom.

Learn more about formal charge here:

https://brainly.com/question/30459289

#SPJ11

Suppose that you made three purchases using your credit card during the month of January. - The first purchase was on January 8th for $492. - The second purchase was on January 19th for $292. - The third purchase was on January 24ti . If your average daily balance for January was $695, what was the dollar amount of your last purchase? Remember: - There are 31 days in January. - You made no purchases between January 1 st and January 7 th. - This question is not asking for the card's final January balance. Round your answer to the nearest dollar. Question 4 A $14,513 par value bond whose coupon rate is 4.9% is purchased. If the investment represents a current yield of 3.1%, compute the bond's market price at the time of the purchase. Round your answer to the nearest dollar.

Answers

Average Daily Balance:It is defined as the average balance for a day or a month in a credit account. The balance is calculated by adding the unpaid balance at the end of each day and dividing the total by the number of days in a month.  

According to the question, the average daily balance for January was $695. Therefore, the total balance for January was:$695 x 31 = $21,545.Let x be the last purchase amount. So, the balance after two transactions:$21,545 – $492 – $292 = $20,761.The third transaction would have made the balance equal to x + $20,761 as there are 31 days in January. Therefore, we can represent the equation as: x + $20,761 = $695 x 31.Since x is the last purchase amount, we must isolate it to find it: x + $20,761 = $21,545.Dividing both sides by 1, we get: x = $784. The question asks us to determine the amount of the last purchase, given three transactions and the average daily balance for January 2021. We begin by calculating the average daily balance for January 2021, which is $695. This is calculated by taking the balance at the end of each day and dividing it by the number of days in January 2021, which is 31. Therefore, the total balance for January 2021 is $695 x 31 = $21,545. We are given that the first purchase was $492 and the second purchase was $292, which means that the remaining balance after the second purchase is $20,761. We are asked to find the amount of the third purchase, which means that we need to add this amount to the remaining balance to get the total balance at the end of January 2021. We can set up an equation to solve for the third purchase amount. Let x be the amount of the third purchase. Therefore, x + $20,761 = $695 x 31. Solving for x, we get x = $784. Therefore, the amount of the last purchase was $784.

Therefore, the amount of the last purchase was $784, which was obtained by adding the remaining balance of $20,761 to the third purchase.

To learn more about Average Daily Balance visit:

brainly.com/question/31013957

#SPJ11

[5 marks] Determine the splitting field E of the polynomail x^3+2 over Q. (a) Write down the Galois group Gal(E/Q). (b) Write down all the subgroups of Gal(E/Q). (c) Down all the subfields L of E and their corresponding subgroups Gal(E/L) in Gal(E/Q).

Answers

(a) The Galois group Gal(E/Q) is isomorphic to the group of permutations of the three roots of the polynomial x^3+2.
(b) The subgroups of Gal(E/Q) are the identity subgroup, the subgroups generated by single transpositions, the subgroup generated by cyclic permutations, and the entire Galois group Gal(E/Q).
(c) The subfields L of E correspond to the fixed fields of the subgroups of Gal(E/Q), with Gal(E/E) = {identity}, Gal(E/L) corresponding to the subfield fixed by the corresponding subgroup.

To determine the splitting field E of the polynomial x^3+2 over Q, we need to find the field extension that contains all the roots of the polynomial.

To find the roots, we set the polynomial equal to zero and solve for x:

x^3 + 2 = 0

By factoring out a 2, we can rewrite the equation as:

x^3 = -2

Taking the cube root of both sides, we get:

x = -2^(1/3)

So, the roots of the polynomial are -2^(1/3), ω(-2)^(1/3), and ω^2(-2)^(1/3), where ω is a complex cube root of unity.

The splitting field E of the polynomial x^3+2 over Q is the smallest field extension of Q that contains all the roots of the polynomial. In this case, we can see that the roots of the polynomial are complex numbers, so the splitting field E is the field extension of Q that contains the complex numbers -2^(1/3), ω(-2)^(1/3), and ω^2(-2)^(1/3).


The Galois group Gal(E/Q) is the group of automorphisms of the splitting field E that fix the field Q. In this case, since E is a field extension of Q that contains complex numbers, the Galois group Gal(E/Q) is isomorphic to the group of permutations of the three roots of the polynomial x^3+2.

The subgroups of Gal(E/Q) can be obtained by considering the possible permutations of the three roots of the polynomial x^3+2. The subgroups of Gal(E/Q) are:

- The identity subgroup, which contains only the identity permutation.
- The subgroup generated by a single transposition, which switches two of the roots.
- The subgroup generated by a cyclic permutation, which cyclically permutes the three roots.
- The entire Galois group Gal(E/Q).


The subfields L of E can be obtained by considering the fixed fields of the subgroups of Gal(E/Q). The corresponding subgroups Gal(E/L) in Gal(E/Q) are:

- The fixed field of the identity subgroup is E itself, so Gal(E/E) = {identity}.
- The fixed field of the subgroup generated by a single transposition is the subfield of E that is fixed by that transposition.
- The fixed field of the subgroup generated by a cyclic permutation is the subfield of E that is fixed by that cyclic permutation.
- The fixed field of the entire Galois group Gal(E/Q) is Q itself.

To learn more about polynomial visit : https://brainly.com/question/1496352

#SPJ11

What is the % dissociation of an acid, HA 0.10 M, if
the solution has a pH = 3.50? a) 0.0032 b) 35 C) 0.32 d) 5.0 e) 2.9

Answers

The percentage dissociation of an acid HA 0.10 M, when the solution has a pH = 3.50 is 2.9%.Option (e) 2.9 is correct.

 

According to the Arrhenius concept, an acid is a compound that releases H+ ions in an aqueous solution. According to the Bronsted-Lowry theory, an acid is a substance that donates a proton. The equilibrium constant expression of an acid HA can be expressed as follows:

HA ⇌ H+ + A

Dissociation constant:

Ka = ([H+][A-])/[HA]pH = -log[H+]pH + pOH = 14[H+] = 10-pH

The dissociation of an acid can be calculated using the following formula:

α = ( [H+]/Ka + 1) × 100%Hence, the dissociation constant of an acid is calculated using the following formula:

Ka = [H+][A-]/[HA]

= (α2×[HA])/ (100-α)

α = ( [H+]/Ka + 1) × 100%10-pH/Ka

= ([H+][A-])/[HA]0.00406

= ([H+][A-])/[HA]

Let α be the percentage dissociation of the acid α, [H+]

= [A-], [HA]

= 0.10-α/100.

Hence,0.00406 = (α/100)2×0.10-α/100/ (1-α/100)On solving, α = 2.9%.

To know more about dissociation  visit:-

https://brainly.com/question/32501023

#SPJ11

A large block of aluminium is loaded to a stress of 405 MPa. If the fracture toughness KIc is 39 MPa√m, determine
(i) the critical length of a crack at 35° angle and
(ii) the critical radius of a buried penny-shaped crack

Answers

i). The critical length of a crack at 35° angle is approximately equal to 312m.

ii). The critical radius of a buried penny-shaped crack is approximately equal to 3.3m.

Given data:

Stress (σ) = 405 MPa

Fracture toughness (KIC) = 39 MPa √m

Crack angle (θ) = 35°

(i) The critical length of a crack at 35° angle

From the formula,

we know that the critical crack length is given by:

KIc = σ √(πa) × f (θ) …… (1)

where f (θ) is a geometry factor,

which is a function of the crack angle (θ).

Assuming f (θ) = 1.12 (for 35° angle)

KIc = 39 MPa √mσ

= 405 MPa

Putting these values in equation (1),

39 × 10⁶

= 405 × √(πa) × 1.1239 × 10⁶/(405 × 1.12) = √(πa)

31284.82 = √(πa)

πa = (31284.82)²

πa = 980,870,794.19

a = 311.99 m≈ 312m

Therefore, the critical length of a crack at 35° angle is approximately equal to 312m.

(ii) The critical radius of a buried penny-shaped crack

From the formula, we know that the critical radius is given by:

KIc = (2σ)²/(πa)

KIc = 39 MPa √mσ

= 405 MPa

Putting these values in the above equation,

39 × 10⁶ = (2 × 405)²/πa39 × 10⁶

= (2 × 405)²/πr²

(πr²) = (2 × 405)²/39 × 10⁶

πr² = 33.264

r² = 33.264/π

r² = 10.59

r = √10.59

r = 3.26 m≈ 3.3m

Therefore, the critical radius of a buried penny-shaped crack is approximately equal to 3.3m.

To know more about critical radius, visit:

https://brainly.com/question/33176751

#SPJ11

The specific gravity of the liquid passing through the 1 cm diameter pipe shown in the figure is (y) = 10 K/N3 and the dynamic viscosity (mu) is 3*10^-3Pa.s.
Calculate whether the liquid will be stationary, upstream or downstream, within the framework of the conservation of energy principles.
Also find the average velocity (V) of the liquid in the pipe.
I couldn't upload the shape unfortunately, but its features are as follows
elevation=0m , p=200 KpA elevation=10m p=110 kpA

Answers

The liquid will be flowing downstream in the pipe and the average velocity of the liquid in the pipe is 11.54 m/s.

As we know that the flow of the liquid is driven by the difference in pressure and it always flows from higher pressure to lower pressure.
The specific gravity of the liquid passing through the 1 cm diameter pipe is given as y = 10 kN/m³ and the dynamic viscosity is given as μ = 3 × 10⁻³ Pa·s.

Calculation:The pressure difference between the two points is given byΔp = 200 - 110 = 90 kPaNow, the Reynolds number can be calculated by using the formula below:Re = (ρVD)/μWhere;V is the velocity of the fluid,D is the diameter of the pipeρ is the density of the fluid.

The formula for Bernoulli's principle for incompressible fluids is given by:P1 + 1/2 ρV1^2 + ρgy1 = P2 + 1/2 ρV2^2 + ρgy2Let us consider the two points, one at the top and another at the bottom of the tube.

Let point 1 be at the top, and point 2 be at the bottomPoint 1: P1 = 200 kPa, V1 = 0, y1 = 0Point 2: P2 = 110 kPa, y2 = 10 m, V2 = ?.

Substitute the given values into Bernoulli's equation, we get:

P1 + 1/2ρV₁² + ρgy1 = P2 + 1/2ρV₂² + ρgy2.

By substituting the values given in the problem, we get:

200 × 103 + 1/2 × 10 × V₁² + 0 = 110 × 103 + 1/2 × 10 × V₂² + 10 × 10 × 10 × 10.

As V1 is equal to zero, we can solve the above equation for V2 and we get:

V2 = 11.54 m/sBy using the formula of Re, we get;Re = (ρVD)/μ,

Where;

V = 11.54 m/s,

D = 0.01 mμ,

0.01 mμ = 3 × 10⁻³ Pa.s,

ρ = 10 kN/m3

10 kN/m3 = 10000 kg/m3,

Re = (10000 × 11.54 × 0.01)/ (3 × 10^-3),

Re = 3.85 × 10⁵.

As the Reynolds number is greater than 4000, the flow is turbulent.As the Reynolds number is greater than 4000, the flow is turbulent.

Hence, the liquid will be flowing downstream in the pipe.As per the conclusion we can say that the liquid will be flowing downstream in the pipe and the average velocity of the liquid in the pipe is 11.54 m/s.

From the above analysis, we can conclude that the liquid will be flowing downstream in the pipe and the average velocity of the liquid in the pipe is 11.54 m/s. This can be explained using Bernoulli's principle and Reynolds number.

To know more about Bernoulli's principle visit:

brainly.com/question/13098748

#SPJ11

Your family is considering investing $10,000 in a stock and made this graph to track Its growth over time. It is estimated it will grow 7% per year. Write the function that represents the exponential growth of the investment.

Answers

The function representing the exponential growth of the investment is:

A(t) = $10,000 * (1 + 0.07)^t

To represent the exponential growth of the investment, we can use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where:

A = the final amount after time t

P = the principal amount (initial investment)

r = annual interest rate (as a decimal)

n = number of times interest is compounded per year

t = time in years

In this case, the initial investment is $10,000, and the growth rate is 7% per year (0.07 as a decimal). We'll assume the interest is compounded annually, so n = 1.

The investment's exponential growth function is represented by the:

A(t) = 10000(1 + 0.07)^t

Simplifying further:

A(t) = 10000(1.07)^t

This function shows how the investment will grow over time, with the value of t representing the number of years.

for such more question on exponential growth

https://brainly.com/question/19961531

#SPJ8

It is necessary to determine the area of a basin (in m?) On a map with a scale of 1:10,000. The average reading in the Planimeter is 6.43 revolutions for the basin. To calibrate the planimeter, a rectangle is drawn with Dimensions of 5 cm×5 cm, it is traced with the planimeter and the reading in it is 0.568 revolutions.

Answers

we can use the average reading of 6.43 revolutions for the basin to calculate its area.
Area of basin = (Planimeter reading x K) / Map scal
Area of basin = (6.43 revolutions x 44.01 cm²/rev) / 10,000 cm²/m²
Area of basin = 0.0282 m²

Yes, it is necessary to determine the area of a basin on a map with a scale of 1:10,000. The scale 1:10,000 implies that one unit of measurement on the map is equal to 10,000 units of measurement in the real world.

Therefore, the area of the basin is 0.0282 square meters.

In order to determine the area of the basin in square meters, we need to use the reading from the planimeter.

First, we need to calibrate the planimeter. To do this, a rectangle with dimensions of 5 cm x 5 cm is drawn and traced with the planimeter. The reading in it is 0.568 revolutions. We can use this reading to determine the planimeter constant (K) as follows:

K = Area of calibration rectangle / Planimeter reading
[tex]K = (5 cm x 5 cm) / 0.568[/tex] revolutions
[tex]K = 44.01 cm²/rev[/tex]

Now

To know more about determine visit:

https://brainly.com/question/29898039

#SPJ11

Do you see a scenario where the FDA merges with other authority bodies such as the USDA and in turn have better oversight and control over issues within the dietary supplement industry?

Answers

In the realm of regulatory possibilities, it is conceivable that the FDA could potentially collaborate or merge with other authority bodies such as the USDA to enhance oversight and control over issues within the dietary supplement industry.

Such a scenario could lead to improved coordination and enforcement efforts. However, the feasibility and desirability of such a merger would depend on various factors, including legal considerations, administrative challenges, and policy objectives. It is important to note that any potential changes in the organizational structure and authority of regulatory bodies would require careful evaluation and consideration of their potential impact on public health and safety.

To know more about dietary supplement industry,

https://brainly.com/question/29800602

#SPJ11

A steel that has 0.151% C is subjected to a carburizing treatment. Under operating conditions, the carbon content on the surface reaches 1.1% C. The temperature at which the process is carried out is 996 °C, where the material is FCC, (D0 = 0.23 cm2/s, Q = 32900 Cal/mol°K, R =1.987 cal/mol).
Estimate the carbon content at a depth of 57 microns from the surface, (1mm=1000 microns), after 7 hours of treatment.
Suppose that the function erf(Z) can be approximately evaluated by the following equation: erf (2) = -0.3965Z2 + 1.24952 -0.0063

Answers

The estimated carbon content at a depth of 57 microns from the surface after 7 hours of treatment is approximately 0.00436949 or 0.437% C.

To estimate the carbon content at a depth of 57 microns from the surface after 7 hours of carburizing treatment, we can use the diffusion equation.

The diffusion equation is given by:
C = Co + (Cs - Co) * [1 - erf((D * t)/(2 * sqrt(Q * t)))]

Where:
C = Carbon content at a certain depth after a given time
Co = Initial carbon content
Cs = Carbon content on the surface
D = Diffusion coefficient
t = Time

Given:
Initial carbon content (Co) = 0.151% = 0.00151
Carbon content on the surface (Cs) = 1.1% = 0.011
Diffusion coefficient (D) = D0 * exp(-Q/RT)

D0 = 0.23 cm^2/s
Q = 32900 Cal/mol*K
R = 1.987 cal/mol*K
T = 996 °C = 996 + 273 = 1269 K

We can calculate the diffusion coefficient (D):
D = D0 * exp(-Q/RT)
D = 0.23 * exp(-32900/(1.987 * 1269))
D ≈ 0.23 * exp(-25.897)
D ≈ 0.23 * 2.748e-12
D ≈ 6.317e-13 cm^2/s

Now, let's calculate the carbon content at a depth of 57 microns (0.057 mm) after 7 hours (t = 7 * 3600 seconds):
C = 0.00151 + (0.011 - 0.00151) * [1 - erf((6.317e-13 * (7 * 3600))/(2 * sqrt(32900 * (7 * 3600))))]

Using the given approximation equation:
erf(2) = -0.3965Z^2 + 1.24952 - 0.0063

Substituting the values:
erf((6.317e-13 * (7 * 3600))/(2 * sqrt(32900 * (7 * 3600)))) = -0.3965 * ((6.317e-13 * (7 * 3600))/(2 * sqrt(32900 * (7 * 3600))))^2 + 1.24952 - 0.0063

Simplifying the equation:
erf((6.317e-13 * (7 * 3600))/(2 * sqrt(32900 * (7 * 3600)))) ≈ 0.699

Substituting this value back into the diffusion equation:
C ≈ 0.00151 + (0.011 - 0.00151) * [1 - 0.699]
C ≈ 0.00151 + (0.011 - 0.00151) * 0.301
C ≈ 0.00151 + 0.00949 * 0.301
C ≈ 0.00151 + 0.00285949
C ≈ 0.00436949

Therefore, the estimated carbon content at a depth of 57 microns from the surface after 7 hours of treatment is approximately 0.00436949 or 0.437% C.

Know more about estimated carbon here:

https://brainly.com/question/24233481

#SPJ11

A refrigerator is powered by a 4.90-horsepower motor.
(1 hp=746 watts). You want to keep the inside of the fridge at
2.43◦C and the room temperature is 34.15◦C. determine the value
of qc to watts. Assume that ηr is 50% of the maximum value.

Answers

A refrigerator is powered by a 4.90- horse power motor. (1 hp=746 watts). You want to keep the inside of the fridge at 2.43◦C and the room temperature is 34.15◦C. determine the value of qc to watts. Assume that ηr is 50% of the maximum value

One horsepower is equal to 746 watts and the motor used is 4.90 horsepower. Room temperature is 34.15◦C, and fridge temperature should be maintained at 2.43◦C. Efficiency ηr is 50% of the maximum value. To determine the value of qc to watts, we can use the formula: qc = W/m. Where W = power consumed by the refrigerator and m = mass of the refrigerant. For air conditioning or refrigeration systems, the following formula can be used to calculate the required refrigeration capacity (W):W = Q / h we. Where Q = heat load or cooling capacity in watts,h we = enthalpy of the refrigerant flowing through the evaporator. T he heat load can be calculated as follows: Q = mc ΔtWhere m = mass of the refrigerant, c = specific heat of the refrigerant, Δt = temperature difference or degree of cooling required. Now, to calculate qc, we need to calculate W and m. Here, we are given the power consumed by the motor, which is 4.90 horsepower or 3653.4 watts. Since the efficiency ηr is 50% of the maximum value, the power consumed by the refrigerator would be half of the motor power, which is: W = (1/2) x 3653.4 = 1826.7 watts. To calculate the mass of the refrigerant, we can use the following formula: m = Q / (c Δt)Here, c = specific heat of air, which is approximately 1 kJ/kg °C, and Δt = (34.15 - 2.43) = 31.72°C. Substituting the values, we get: m = Q / (c Δt) = (1826.7) / (1 x 31.72) = 57.54 kg.  Now that we have both W and m, we can calculate qc as follows: qc = W/m = 1826.7 / 57.54 = 31.73 watts/kg. Therefore, the value of qc to watts is 31.73 watts/kg.

In this question, we were required to calculate the value of qc to watts for a refrigerator powered by a 4.90-horsepower motor. We used the formulas for refrigeration capacity, heat load, and mass of the refrigerant to arrive at the answer. We found that the value of qc to watts is 31.73 watts/kg, which represents the cooling capacity of the refrigerator per unit mass of the refrigerant.

learn more about temperature visit:

brainly.com/question/7510619

#SPJ11

A school purchased sand to fill a sandbox on its playground. The dimensions of the sandbox in meters and the total cost of the sand in dollars are known. Which units would be most appropriate to describe the cost of the sand?

Answers

The most appropriate units to describe the cost of the sandbox would indeed be dollars.

When describing the cost of an item or service, it is essential to use the unit that represents the currency being used for the transaction. In this case, the total cost of the sand for the school's sandbox is given in dollars. To maintain consistency and clarity, it is best to express the cost in the same unit it was provided.

Using dollars as the unit for the cost allows for clear communication and understanding among individuals involved in the transaction or discussion. Dollars are widely recognized as the standard unit of currency in many countries, including the United States, where the dollar sign ($) is commonly used to denote monetary values.

Using meters, the unit for measuring the dimensions of the sandbox, to describe the cost would be inappropriate and could lead to confusion or misunderstandings. Mixing units can cause ambiguity and hinder effective communication.

Therefore, it is most appropriate to describe the cost of the sand in dollars, aligning with the unit of currency provided and commonly used in financial transactions. This ensures clarity and facilitates accurate comprehension of the cost associated with the sand purchase for the school's sandbox.

for similar questions on sandbox.

https://brainly.com/question/31290675

#SPJ8

A proposed mechanism for the decomposition of N₂O is given below: Which species is the catalyst? NO + N₂O-> N₂ + NO₂ 10₂ NO₂ -> NO + O NO ON₂ O NO₂ ON₂0 Page 7 of 35 Activate Windows 841 PM.

Answers

A proposed mechanism for the decomposition of N₂O is given below: NO + N₂O -> N₂ + NO₂10₂ NO₂ -> NO + O NO ON₂ O NO₂ ON₂0

The species that acts as a catalyst in the proposed mechanism for the decomposition of N₂O is NO.  NO is the catalyst in this reaction.

The proposed mechanism for the decomposition of N₂O can be explained as follows:

Step 1: N₂O is oxidized by NO to form N₂ and

NO₂.NO + N₂O → N₂ + NO₂

Step 2: The NO₂ produced in step 1 is broken down to NO and O.10₂

NO₂ → NO + O NO

Step 3: The O produced in step 2 reacts with N₂ to form NO and N₂O. ON₂ O + NO → NO₂ + N₂O

Step 4: In step 3, N₂O is recycled and goes back to step 1.

NO is the catalyst in this reaction because it is consumed in step 2 but produced again in step 3, allowing the reaction to continue.

For more information on catalyst  visit:

brainly.com/question/24430084

#SPJ11

In the proposed mechanism for the decomposition of N₂O, NO acts as the catalyst by facilitating the reaction between N₂O and N₂, and it is regenerated in the process.

The proposed mechanism for the decomposition of N₂O is given as follows:

1. NO + N₂O -> N₂ + NO₂
2. 10₂ NO₂ -> NO + O
3. NO + N₂O -> N₂ + NO₂

In this mechanism, the species that acts as the catalyst is NO. A catalyst is a substance that speeds up a chemical reaction without being consumed in the process. It lowers the activation energy required for the reaction to occur, allowing the reaction to proceed at a faster rate.

In the given mechanism, NO appears in the first and third steps. It reacts with N₂O to form N₂ and NO₂, and then it is regenerated in the third step by reacting with N₂O again. This shows that NO is not consumed in the overall reaction and plays a role in facilitating the reaction between N₂O and N₂.

Learn more about decomposition

https://brainly.com/question/14843689

#SPJ11

What is the equilibrium constant for a reaction at temperature 56.1 °C if the equilibrium constant at 22.7 °C is 46.3?
Express your answer to at least two significant figures.
For this reaction, ΔrH° = -0.5 kJ mol-1 .
Remember: if you want to express an answer in scientific notation, use the letter "E". For example "4.32 x 104" should be entered as "4.32E4".

Answers

The equilibrium constant for a reaction at temperature 56.1 °C can be calculated using the equation:
K2 = K1 * e^(-ΔrH°/R * (1/T2 - 1/T1))

where K2 is the equilibrium constant at 56.1 °C, K1 is the equilibrium constant at 22.7 °C (given as 46.3), ΔrH° is the enthalpy change of the reaction (-0.5 kJ mol-1), R is the gas constant (8.314 J mol-1 K-1), T2 is the temperature in Kelvin (56.1 + 273.15), and T1 is the temperature in Kelvin (22.7 + 273.15).

Plugging in the values, we get:
K2 = 46.3 * e^(-0.5/(8.314) * (1/(56.1 + 273.15) - 1/(22.7 + 273.15)))

Simplifying the equation, we find that the equilibrium constant at 56.1 °C is approximately 19.32.

Know more about equilibrium constant here:

https://brainly.com/question/28559466

#SPJ11

Construct a proof for the following argument.
~(∃x)(Ax • Bx)
~((x)(Bx ⊃ Cx)
(x) ((~Ax • Dx) ⊃ ~Bx)
/Δ ~(x) (Bx ⊃ Dx)

Answers

The argument to be proven is Δ: ~(x)(Bx ⊃ Dx). This can be demonstrated using a proof by contradiction, assuming the negation of Δ and deriving a contradiction.

To prove Δ: ~(x)(Bx ⊃ Dx), we will use a proof by contradiction. We assume the negation of Δ, which is ((x)(Bx ⊃ Dx)). By double negation, this can be simplified to (x)(Bx ⊃ Dx).

Next, we will introduce a new assumption, let's call it γ, which states (∃x)(Bx • ~Dx). We will aim to derive a contradiction from this assumption.

By using the existential elimination (∃E) rule, we can introduce a specific variable, say c, such that (Bc • ~Dc) holds.

Now, we can apply the universal elimination (∀E) rule to the assumption (x)(Bx ⊃ Dx) using the variable c, which gives us Bc ⊃ Dc.

Using modus ponens, we can combine Bc ⊃ Dc with Bc • ~Dc to derive a contradiction, which negates the assumption γ.

Having derived a contradiction, we can conclude that the negation of Δ: ~(x)(Bx ⊃ Dx) is true, leading to the validity of Δ itself: ~(x)(Bx ⊃ Dx).

Learn more about  Contradiction proof: brainly.com/question/30459584

#SPJ11

The argument to be proven is Δ: ~(x)(Bx ⊃ Dx). This can be demonstrated using a proof by contradiction, assuming the negation of Δ and deriving a contradiction.

To prove Δ: ~(x)(Bx ⊃ Dx), we will use a proof by contradiction. We assume the negation of Δ, which is ((x)(Bx ⊃ Dx)). By double negation, this can be simplified to (x)(Bx ⊃ Dx).

Next, we will introduce a new assumption, let's call it γ, which states (∃x)(Bx • ~Dx). We will aim to derive a contradiction from this assumption.

By using the existential elimination (∃E) rule, we can introduce a specific variable, say c, such that (Bc • ~Dc) holds.

Now, we can apply the universal elimination (∀E) rule to the assumption (x)(Bx ⊃ Dx) using the variable c, which gives us Bc ⊃ Dc.

Using modus ponens, we can combine Bc ⊃ Dc with Bc • ~Dc to derive a contradiction, which negates the assumption γ.

Having derived a contradiction, we can conclude that the negation of Δ: ~(x)(Bx ⊃ Dx) is true, leading to the validity of Δ itself: ~(x)(Bx ⊃ Dx).

Learn more about Contradiction proof: brainly.com/question/30459584

#SPJ11

Which of the following matches the answers you put for product on each of the word problems (check all that is correct) (equilibrium)
(Economics)
Automobiles
Televisions
Crude oil
Oranges
Pepsi

Answers

We can fill up the result of each of the events as follows:

If the local union in an automobile market negotiates a 20% pay raise in the market, the supply of cars might reduce because of an increase in production costs but the productivity of employees might increase and cause improved production If the president signs a bill to have the IRS send a refund in taxes to all Americans, the television market will experience a boom. If OPEC passes an agreement to restrict crude oil production, there will be a sharp spike in the gasoline market.If an unexpected winter storm damages the Florida orange crop, the market for orange juice will experience a decline and a lack of patronage.If Coca-Cola decides to drop the price of its can from 50 to 30 cents then the market will experience an increase in sales volume.How to fill up the chart

To fill up the chart, you have to carefully consider the events happening and determine whether they would impact the organization positively or negatively.

In the first instance, we are told that the automobile market increases the wages of its workers. First, this might cause an increase in their cost of production, thus reducing the revenue made. Also, the employees might experience more satisfaction and improve their productivity.

Also, if Coca-Cola drops the price of its can from 50 to 30 cents, then it might experience an increase in sales volume.

Learn more about economics here:

https://brainly.com/question/17996535

#SPJ1

A sorting algorithm takes two operations to sort an array with one item in it. Increasing the number of items in the array from n to n + 1 requires at least n + 2 more. Prove by induction that the number of operations required to sort an array with n items requires at least 1 2 n(n + 3) operations

Answers

Given that: A sorting algorithm takes two operations to sort an array with one item in it. Increasing the number of items in the array from n to n + 1 requires at least n + 2 more.

The proof is by induction. Base case: For n = 1, the number of operations required to sort an array with one item = 2. Using 12n(n + 3), the number of operations required = 12(1)(4) = 4. The value of 4 is greater than the required 2. The base case holds.

The number of operations required to sort an array with k+1 items require at least.

[tex]12(k+1)[(k+1) + 3] = 12(k+1)(k+4)[/tex]

Using the inductive hypothesis, the number of operations required to sort an array with k+1 items is at least:

[tex]12k(k + 3) + k + 3= 12k² + 13k + 3[/tex]

Using

[tex]12(k+1)(k+4), 12k² + 49k + 48.[/tex]

The number of operations required to sort an array with k+1 items is at least.

12(k+1)(k+4) for k ≥ 1.

The proof is complete.

To know more about number visit:

https://brainly.com/question/3589540

#SPJ11

A stack 130 m tall (physical stack height) emits 910 g of pollutant per minute. It is a clear night. The wind speed measured at a height of 10 m is 3.1 m/sec. Plume rise is 50 m. Estimate the pollutant concentration at ground-level at a distance of 800 m downwind, 80 m away from the centerline. Terrain is urban. Provide the answer in ug/m3. Please show all calculations

Answers

Physical Stack height = 130m Pollutant emitted per minute = 910 gWind Speed at height of 10m = 3.1 m/sec Plume rise = 50m Distance downwind (x) = 800m Distance away from centerline (y)

= 80mFormula used to calculate pollutant concentration is C = Q/(2πw * u * h) * e ^[-y * (1 + h/w)]

Effective stack width (W) = (1.57 * h) + (0.5 * Wp)

= 195mW

= (1.57 * 130) + (0.5 * 195)

= 301.55

= 11.84 m/s

Exponent = -y * (1 + h/w)

= -80 * (1 + 130/301.55)

= -58.32 Finally, calculate the concentration using the formula mentioned above.μg/m³C = Q/(2πw * u * h) * e^[Exponent] = 15.16/(2 * 3.14 * 301.55 * 11.84 * 130) * e^-58.32

= 0.200 μg/m³ (approx) Hence, the answer is 0.200 μg/m³

To know more about Distance , visit:

https://brainly.com/question/32043377

#SPJ11

The pollutant concentration at ground-level at a distance of 800 m downwind, 80 m away from the centerline is 0.200 μg/m³

Physical Stack height = 130m

Pollutant emitted per minute = 910 g

Wind Speed at height of 10m = 3.1 m/sec

Plume rise = 50m

Distance downwind (x) = 800m

Distance away from centerline (y)

= 80m

Formula used to calculate pollutant concentration is

C = Q/(2πw * u * h) * e ^[-y * (1 + h/w)]

Effective stack width (W) = (1.57 * h) + (0.5 * Wp)

= 195mW

= (1.57 * 130) + (0.5 * 195)

= 301.55

= 11.84 m/s

Exponent = -y * (1 + h/w)

= -80 * (1 + 130/301.55)

= -58.32

Finally, calculate the concentration using the formula mentioned above.

μg/m³C = Q/(2πw * u * h) * e^[Exponent]

= 15.16/(2 * 3.14 * 301.55 * 11.84 * 130) * e^-58.32

= 0.200 μg/m³ (approx)

Hence, the answer is 0.200 μg/m³

To know more about Distance , visit:

brainly.com/question/32043377

#SPJ11

Consider the following matrix:
G=[369 12:48 12 16; 369 12]
What Octave command will you use obtain the following matrix: [4,8;3,6]

Answers

We can use the Octave command G_new = G(1:2, 2:3). This command selects rows 1 to 2 and columns 2 to 3 from the matrix G and assigns the resulting matrix to G_new.

To obtain the matrix [4,8;3,6] from the given matrix G=[369 12:48 12 16; 369 12], you can use the following Octave command:

M = G(1:2, 4:5) / 12

G(1:2, 4:5) selects the submatrix of G consisting of the first two rows (1:2) and the fourth and fifth columns (4:5).

/ 12 performs element-wise division by 12 to obtain the desired matrix [4,8;3,6].

After executing the command, the variable M will store the matrix [4,8;3,6].

Learn more about matrix here:

https://brainly.com/question/29132693

#SPJ11

A 1.44-g sample of an unknown gas has a volume of 573 mL and a pressure of 809mmHg at 44.8∘C. Calculate the molar mass of this compound. g/m0l

Answers

The molar mass of the unknown compound is 73.8 g/mol.

Given: Mass (m) = 1.44 g

  Volume (V) = 573 mL

   Pressure (P) = 809 mmHg

      Temperature (T) = 44.8 ∘C

The Ideal Gas Law is defined as

                            PV = nRT where P = pressure V = volume R = gas constant T = temperature n = moles of gas.

The first step is to convert the given volume into liters because the value of R used in the ideal gas law has units of      

                                        L•atm/mol•K.1 m

                                          L = 0.001 L573 m

                                          L = 0.573 L

Let's convert the temperature from degrees Celsius to Kelvin by adding 273.150.15 K = 318.95 K

Now the Ideal Gas Law can be written as:

                                     PV = nRTn = (PV)/(RT)

Substitute the given values: n = (0.809 atm x 0.573 L)/((0.0821 L•atm/mol•K) x 318.15 K)

                                            n = 0.0195 mol

Let's use the formula of molar mass.

                                     Molar mass = mass/moles

Substitute the given values. molar mass = 1.44 g/0.0195 mol

                                      molar mass = 73.8 g/mol

Therefore, the molar mass of the unknown compound is 73.8 g/mol. This is the required answer.

Learn more about Ideal Gas Law

brainly.com/question/30458409

#SPJ11

(a) Show that y= Ae²+ Be, where A and B are constants, is the general solution of the differential equation y"+y'-6y=0. Hence, find the solution when y(1)=2e²-e and y(0) = 1.

Answers

Consider the differential equation y'' + y' - 6y = 0. Let us assume the solution as y = e^(mx), where m is a constant. Differentiating the equation with respect to x, we get: [tex]y' = me^(mx),[/tex] [tex]y'' = m²e^(mx).[/tex]

Substituting these values into equation (1),

we get: [tex]m²e^(mx) + me^(mx) - 6e^(mx) = 0[/tex]

Simplifying further, we have:

[tex](m² + m - 6)e^(mx) = 0[/tex]

This equation can be factored as:

[tex](m + 3)(m - 2)e^(mx) = 0[/tex]

Setting each factor equal to zero, we find two possible values for m:

[tex]m = -3 and m = 2.[/tex]

The general solution of the differential equation [tex]y'' + y' - 6y = 0 is:y = Ae^(2x) + Be^(-3x)          ...(2)[/tex]

where A and B are constants.

To find the solution when [tex]y(1) = 2e² - e and y(0) = 1[/tex], we substitute x = 1 into equation (2) and equate it to 2e² - e. We also substitute x = 0 into equation (2) and equate it to 1.

Solving these equations, we can determine the values of A and B.

Finally, substituting the values of A and B back into equation (2), we obtain the required solution:[tex]y = (7e^(2x) + 2e^(-3x))/5[/tex].

To know more about differential equation visit:

https://brainly.com/question/29657983

#SPJ11

Calculate the perimeter of this right-angled triangle.
Give your answer in metres (m) to 1 d.p.
7m
19 m

Answers

Answer:

The perimeter is 37.4 meters.

Step-by-step explanation:

Here's the plan:

use Pythagorean Theorem to calculate the unmarked side, then add up all three sides.

First, use Pythagorean Theorem.

7^2 + x^2 = 16^2

49 + x^2 = 256

subtract 49

x^2 = 207

square root both sides.

x = 14.3874945699

Add up all three sides, because the perimeter is the distance all the way around the outside of the shape.

Perimeter =

14.387494 + 7 + 16

= 37.387494

round to the nearest tenth (one d.p. means one decimal place)

Perimeter = 37.4

The perimeter is 37.4 meters.

Which among the following statements is true? Every differential equation has at least one solution. A single differential equation can serve as a mathematical model for many different phenomena. Every differential equation has a unique solution. None of the mentioned

Answers

Every differential equation has a unique solution.

What is the nature of solutions for a given differential equation?

Differential equations describe the relationships between a function and its derivatives. The nature of solutions for a given differential equation depends on the specific equation and its initial or boundary conditions.

The statement "Every differential equation has a unique solution" is true. According to the existence and uniqueness theorem for ordinary differential equations, if a differential equation is well-posed, meaning it satisfies certain conditions, then there exists a unique solution that satisfies the equation and the given initial or boundary conditions.

While it is true that a single differential equation can serve as a mathematical model for many different phenomena, this does not imply that every differential equation has multiple solutions. Each differential equation has its own set of solutions, and the uniqueness of these solutions is determined by the initial or boundary conditions imposed.

Learn more about: solution

brainly.com/question/1616939

#SPJ11

The Ash and Moisture Free analysis of coal used as fuel in a power plant is as follows:
Sulfur = 3.24% Hydrogen = 6.21% Oxygen = 4.87%
Carbon = 83.51% Nitrogen = 2.17%
Calculate the Volume Flow Rate of the Wet Gas in m3/s considering a 15.4% excess air, the mass of coal is 8788 kg/hr, the Rwg = 0.2792 kJ/kg-K, the ambient pressure is 100 kPa, and the temperature of the Wet Gas is 303 0C.
Note: Use four (4) decimal places in your solution and answer.

Answers

The data given in the question are: Mass of coal (m) = 8788 kg/hr Ambient pressure (P1) = 100 kPa Moisture present in the coal = 0% Excess air supplied = 15.4% Oxygen (O) in flue gas = 4.87% Carbon dioxide (CO2) in flue gas = 15.25% Nitrogen (N2) in flue gas = 79.58%

The volume flow rate of the wet gas is given as, Q = V x ? Where, V = Volume of the wet gas, and ? = Density of the wet gas. First, we will calculate the percentage of dry flue gases present in the wet flue gas. The percentage of wet flue gases is calculated as,

Total flue gases = Oxygen (O) + Carbon dioxide (CO2) + Nitrogen (N2) + Sulfur (S) + Moisture Total flue gases = 4.87 + 15.25 + 79.58 + 3.24 + 0 = 103.94%

Dry flue gases = Total flue gases - Moisture Dry flue gases = 103.94 - 0 = 103.94%The percentage of excess air supplied is given as 15.4%. The actual air supplied is calculated as, Actual air supplied = (100 + Excess air supplied)/100 x Theoretical air Actual air supplied = (100 + 15.4)/100 x 6.21/2.67Actual air supplied = 3.4654 kg/kg of coal Theoretical air = 6.21/2.67 kg/kg of coal The mass of flue gas is calculated as follows:

Mass of flue gas = Mass of coal x Air-fuel ratio x (1 + Moisture in fuel)

Mass of flue gas = 8788 x 3.4654 x (1 + 0)

Mass of flue gas = 106780.57 kg/hr

The volume flow rate of the wet gas is calculated as follows: Q = V x ?V = Q / ?Where the density of the wet gas is given by,

? = 0.3568 [(P1 x Mw) / (Rwg x (Tg + 273.15))]

The molecular weight of flue gas (Mw) = 28.98 kg/kmol (taken as the average molecular weight of flue gas)

The gas constant of flue gas (Rwg) = 0.2792 kJ/kg-K

The temperature of flue gas (Tg) = 303 + 273.15 = 576.15 K

The density of the wet gas,

? = 0.3568 [(100 x 28.98) / (0.2792 x 576.15)]? = 2.431 kg/m3

Now, we can calculate the volume flow rate of the wet gas as follows:

V = Q / ?106780.57 / (2.431)

= 43967.53 m3/hrQ

= 12.2138 m3/s

The volume flow rate of the wet gas in m3/s can be calculated using the formula, Q = V x ?, where V is the volume of the wet gas and ? is the density of the wet gas. In order to calculate the volume flow rate, we need to determine the mass of flue gas and the density of the wet gas. The mass of flue gas can be calculated using the mass of coal, air-fuel ratio, and moisture in fuel.

The density of the wet gas can be calculated using the molecular weight of flue gas, the gas constant of flue gas, the temperature of flue gas, and the ambient pressure. Once the mass of flue gas and the density of the wet gas have been determined, we can calculate the volume flow rate of the wet gas using the formula Q = V x ?.

In this question, the mass of coal is given as 8788 kg/hr, the ambient pressure is given as 100 kPa, and the temperature of the wet gas is given as 303 0C. The excess air supplied is given as 15.4%, and the Rwg is given as 0.2792 kJ/kg-K.

The moisture present in the coal is given as 0%. Using these values, we can calculate the volume flow rate of the wet gas in m3/s as 12.2138 m3/s. Therefore, the answer is 12.2138 m3/s.

Thus, we can conclude that the volume flow rate of the wet gas in m3/s is 12.2138 m3/s.

To learn more about Ambient pressure visit:

brainly.com/question/33544108

#SPJ11

3. What is the diameter change of a 50-ft spherical tank made of ½" steel plate due to internal pressure of 100 psi? Assume that the tank may be considered as "thin-walled" and that the steel remains elastic and has the properties Elastic modulus Poisson's ratio Internal pressure Thickness steel Diameter = = 11 30,000,000 psi 0.3 100 psi ½" 50 ft

Answers

The diameter change of the 50-ft spherical tank due to internal pressure of 100 psi is approximately 0.0214 inches.

To calculate the diameter change of the spherical tank, we can use the formula for the change in diameter due to internal pressure in a thin-walled sphere:

ΔD = (4 * E * ΔP * D) / (3 * (1 - ν^2) * t)

where:

ΔD is the change in diameter

E is the elastic modulus of the steel (30,000,000 psi)

ΔP is the internal pressure (100 psi)

D is the original diameter of the tank (50 ft)

ν is the Poisson's ratio of the steel (0.3)

t is the thickness of the steel plate (0.5 inches)

Plugging in the given values into the formula, we have:

ΔD = (4 * 30,000,000 * 100 * 50) / (3 * (1 - 0.3^2) * 0.5)

Simplifying the equation, we get:

ΔD = 0.0214 inches

Therefore, the diameter change of the 50-ft spherical tank due to the internal pressure of 100 psi is approximately 0.0214 inches.

Learn more about diameter

brainly.com/question/32968193

#SPJ11

Create a word problem with a topic Matheson Formula and
Double Decllining Balance
Show your solution and provide
illustrations/diagrams

Answers

One method of calculating depreciation is known as the double-declining balance method. In this technique, an asset's value is decreased by twice the straight-line depreciation rate in the initial year.

Let's consider an example to understand the calculation with the help of Matheson Formula.Ms. Lee has a photocopier that cost her $10,000. She wants to keep the machine for five years before selling it. Calculate the depreciation for each year by using the double-declining balance method. If the Matheson Formula is applied for the first year. Assuming that the machine has no salvage value at the end of its useful life.

Using the Matheson formula:

Depreciation rate = 1 - (salvage value / cost of asset) ^ (1/ useful life)

Depreciation rate = 1 - (0 / 10,000) ^ (1/5)

Depreciation rate = 1 - (0)

Depreciation rate = 1

Depreciation for the first year = Depreciation rate * 2 * straight-line depreciation percentage

Depreciation percentage for straight-line = 100% / useful life

Depreciation percentage for straight-line = 100% / 5

Depreciation percentage for straight-line = 20%

Depreciation for the first year = 1 * 2 * 20%

Depreciation for the first year = 40% * $10,000

Depreciation for the first year = $4,000

After the first year, we must compute the remaining asset's value.

The asset's worth is decreased by 40% for the first year ($4,000) and has a remaining value of $6,000.

As a result, we can use the same method to calculate the next year's depreciation. We multiply the remaining value of $6,000 by 40% to get a $2,400 depreciation in the second year, leaving us with $3,600 of the asset's worth to be depreciated in the following year.

This technique is repeated for the remainder of the asset's useful life until the scrap value is reached or until the end of the asset's useful life.

The word problem with a topic Matheson Formula and double declining balance and solution  is provided and also provided illustrations /diagrams

Word Problem: Let's consider a scenario where a company purchases a delivery truck for $40,000. The truck has a useful life of 8 years and a salvage value of $5,000. The company decides to use the Matheson Formula and Double Declining Balance method to calculate the depreciation expense each year.

Solution:

Step 1: Determine the depreciable cost of the truck.

The depreciable cost is the initial cost minus the salvage value.

Depreciable cost = $40,000 - $5,000

= $35,000.

Step 2: Calculate the annual depreciation rate.

The annual depreciation rate using the Double Declining Balance method is twice the straight-line rate.

Straight-line rate = 1 / Useful life

= 1 / 8

= 0.125

Double Declining Balance rate = 2 * 0.125

= 0.25 or 25%.

Step 3: Calculate the annual depreciation expense for each year.

Year 1: Depreciation expense = Depreciable cost * Depreciation rate

= $35,000 * 25%

= $8,750.

Year 2: Depreciation expense

= (Depreciable cost - Year 1 depreciation) * Depreciation rate

= ($35,000 - $8,750) * 25%

= $6,562.50.

Year 3: Depreciation expense = (Depreciable cost - Year 1 depreciation - Year 2 depreciation) * Depreciation rate

= ($35,000 - $8,750 - $6,562.50) * 25%

= $4,921.88.

And so on for the remaining years.

Illustration:

Here is a diagram illustrating the depreciation expense for each year using the Double Declining Balance method:

Year 1: $8,750Year 2: $6,562.50Year 3: $4,921.88Year 4: $3,691.41Year 5: $2,768.56Year 6: $2,076.42Year 7: $1,557.31Year 8: $1,167.98

By following the steps and calculations explained above, we can determine the annual depreciation expense using the Matheson Formula and Double Declining Balance method for the given scenario.

Learn more about depreciation methods here:

https://brainly.com/question/27971176

#SPJ4

Other Questions
Question: The aluminum alloy with a diameter of 0.505 in. and initial length of 2 in. is subjected to a tensile test. After failure, the final length is observed to be 2.195 in. and the final diameter is 0.398 in. at the fracture surface. Calculate the ductility of this alloy. Determine the poison's ratio. Q1.Given the data bits D = 1010101010 and the generator G = 10001. Generate the CRC bits at the sender host by using binary division modulo 2. What is the pattern of bits that will be sent to the receiving host? Please note that the most significant bit is the leftmost bit Read this quote from the article, "Critical thinking teaches usto think intellectually, ethically, and creatively." How can youinterpret this?What is the meaning of art? You are in charge of scheduling for computer science classes that meet either on MW or MWF. There are five classes to schedule and three professors who will be teaching these classes. You are constrained by the fact that each professor can only teach one class at a time. The classes are: Class 1 - CS 65 meets from 2:00pm-3:15pm MW Class 2 - CS 66 meets from 3:00-3:50pm MWF Class 3 - CS 143 meets from 3:30pm-4:45 pm MW Class 4 - CS 167 meets from 3:30pm-4:45 pm MW Class 5 - CS 178 meets from 4:00pm-4:50pm MWF The professors are: Professor A, who is available to teach Classes 1, 2, 3, 4, 5. Professor B, who is available to teach Classes 2, 3, 4, and 5. Professor C, who is available to teach Classes 3 and 4. (i) (3 pts) Formulate this problem as a CSP in which there is one variable per class, stating the domains of each variable, and constraints on the variables. Find the sub network address of the following: 4 IP Address: 200.34.22.156 Mask: 255.255.255.240 What are the desirable properties of secure communication? 4 Which of the following kinds of learning involives the acquisition of a reflex (beyond a person's control)? Classical conditioning. Operant conditioning. Cognitive learning. Observational learning. Zoey is standing on the fifth floor of her office buiding, 16 metres above ground, She secs her mother, Ginit, standing on the strect at a distance of 20 metres from the base of the buildimg. What is the arigle of clevation from where Gina is standing to Zoey?. Determine whether a cylinder of diameter 20cm, height 30cm, and weight of 19.6N can float in a deep pool of water of weight density 980 dynes/cm. If electric field of an EM wave propagating in a dielectric medium relative permittivity , = 2.56 is (z,t) = 10 cos(67 x 10t kz) the expression for corresponding magnetic field (z, t) for this wave. - Attach File what volume of 0.250m h2so4 solution is required to react completely with 25ml of 1.50m naoh solution 2naoh+h2so4=naso4+2h202.a 35ml portion of 0.200m nitric acid solution is mixed with 15.0ml of water ,what is the final concentration in molarity of the nitric acid solution ?assume the final volume is additive a) Some capacitors are marked 45micro farad save working voltage 25V. On a circuit diagram show how a number of these capacitors may be connected to show a capacitor of capacitance: 1. 45 microfarads safe working voltage of 50 vols. IL 75 microfarads safe working voltage of 25 volts. 3 Major Topic Capacitors Bloom Designation Score b) A transformer is used to reduce the voltage of a supply from 120V a.c to 12V a.c. Explain how a transformer works. Your answer should include an operation of how the transformer would not work with a d.c. supply voltage. Score Major Tople Induction Blooms Designation AN 7 c) Briefly differentiate between a full wave rectification and a half wave rectification Major Tople Score looms Designation Electronics Create an array of integers with the following values [0, 3, 6, 9]. Use the Array class constructor. Print the first and the last elements of the array. Example output: The first: 0 The last: 9 2 The verification of program output does not account for whitespace characters like "\n", "\t" and " Write the first trigonometric function in terms of the second for in the given quadrant. csc(),cot(); in Quadrant II please solve these questions. When moving on level ground, cross-country skiers slide their skis along the snow surface to stay moving. The coefficients of friction for a given set of skis and given snow conditions can be modified by various types of waxes. Part A In order to move across the snow as fast as possible should you choose a wax that makes the coefficient of static friction between skis and snow as high as possible or as low as possible? O Choose wax that makes the coefficient of static friction between skos and snow as low as possible Choose wax that makes the coefficient of static friction between skis and snow as high as possible. Submit Request Answer Part B Should you choose a wax that makes the coefficient of kinetic friction between these two surfaces as high as possible or as low as possible? O Choose wax that makes the coefficient of kinetic friction between these two surfaces as high as possible. O Choose wax that makes the coefficient of kinetic friction between these two surfaces as low as possible A particle is moving toward the origin along the positive direction of the X axis. The displacement of this particle is negative. O it depends on the speed. O positive. O it depends on the frame of reference. A college student borrows $10,000 at the beginning of the school year at the end of August. The student graduates at the end of May and must begin paying off the loans 9 months after graduation. Interest accrues at a rate of 6% compounding monthly beginning from when the money is borrowed, how much will the student's monthly payments be if he pays off the loans in 15 years after his first payment which of the following is in L((01)(01)(10)) ? A. 01010101 B. 10101010 C. 01010111 D. 00000010 nE. one of the above The following information relates to the 2017 debt and cquity investment transactions of Wildcat Ltd., a pubiicly accountable Canadian corporation. All of the investments were acquired for trading purposes and accounted for using the FV.NI model, with all transaction costs being expensed. No investments were held at December 31,2016 , and the company prepares financial statements only annually, each December 31, following IFRS 9. Dividend and interest income are not recorded or reported separately from other investment income accounts. 1. On February 1, the company purchased Williams Corp. 12\% bonds, with a par value of 5500,000, at 106.5 plus accrued interest to yield 10%. Interest is payable April 1 and October 1 . 2. On April 1, semi-annual interest was received on the Williams bonds. 3. On July 1,9% bonds of Saint Inc, were purchased. These bonds, with a par value of $200,000, were purchased at 101 plus accrued interest to yield 8.5%. Interest dates are June 1 and December 1. 4. On August 12, 3.000 shares of Scotia Corp, were acquircd at a cost of \$59 per share. A 19 commission was paid. 5. On September 1 , Williams Corp, bonds with a par value of $100,000 were sold at 104 plus accrued interest. 6. On September 28, a dividend of $0.50 per share was received on the Scotia Corp. shares. 7. On October 1, semi-annual interest was received on the reraaining Williams Corp. bonds. 8. On December 1, semi-annual interest was received on the Saint Ine, bonds. 9. On December 28, a dividend of 50.52 per share was received on the Scotia Corp. shares. 10. On December 31, the following fair values were determined: Williams Corp. bonds 101.75; Saint Ine, bonds 97 ; and Scotia Corp, shares $60,50. instructions (a) Prepare all 2017 journal entries necessary to properly account for the investment in the Williams Corp. bonds. (b) Prepare all 2017 journal entries necessary to properly account for the imvestment in the Saint Inc. bonds. (c) Prepare all 2017 journal entries necessary to properly account for the investment in the Scotia Corp. shares. (d) Assume that there were trading investments on hand at December 31, 2016, accounted for using the FV-NI model. and that they consisted of shares with a cost of $400,000 and a fair value of $390,000. These non-dividend-payin shares were sold early in 2017 and their original cost was recovered exactly. What effect would this transaction have on 2017 net income? What you intended to do with Dollar Tree's strategic objectivesfor about 5 years? Make a list.