Adama rolls a die with faces labeled 1 through 10. If he rolls the die 40 times how many times would he expect it to land on a number less than 10?

Answers

Answer 1

Adama can expect the die to land on a number less than 10 about 36 times in 40 rolls.

What is probability?

Probability refers to potential. A random event's occurrence is the subject of this area of mathematics. The range of the value is 0 to 1. Mathematics has incorporated probability to forecast the likelihood of various events. The degree to which something is likely to happen is essentially what probability means.

The die has 10 faces, with numbers 1 through 10, but we are interested in the number of times it will land on a number less than 10. That means, there are 9 possible outcomes for each roll to be less than 10.

The expected number of times the die will land on a number less than 10 can be calculated by multiplying the probability of getting a number less than 10 on each roll by the total number of rolls.

The probability of getting a number less than 10 on each roll is 9/10, since there are 9 faces with numbers less than 10 out of the total of 10 faces.

Therefore, the expected number of times the die will land on a number less than 10 is:

E = (9/10) x 40 = 36

Therefore, Adama can expect the die to land on a number less than 10 about 36 times in 40 rolls.

Learn more about probability on:

https://brainly.com/question/13604758

#SPJ1

Answer 2

☆ 36 times.

— your in college ? im in seventh grade and got this question !


Related Questions

a pilot of an airplane flying at 12000 feet sights a water tower. the angle of depression to the base of the tower is 22 degrees. what is the length of the line of sight from the plane to tower

Answers

The length of the line of sight from the plane to the base of the water tower is approximately 19298 feet.

The length of the line of sight from the plane to the base of the water tower can be determined using trigonometry. We can use the tangent function, which relates the opposite side of a right triangle (in this case, the height of the water tower) to the adjacent side (the length of the line of sight), to find the length of the line of sight.

First, we can draw a diagram and label the relevant angles and sides:

       |\

       | \

12000 ft|  \ height of tower

       |   \

       |22°\

       -----

Let x be the length of the line of sight. Then, we can use the tangent function:

tan(22°) = height of tower / x

We know the height of the tower is not given, but we can set up a right triangle with the height of the tower as one of the legs and the distance from the tower to the point directly below the plane as the other leg. Since the angle of depression is 22 degrees, the angle between the two legs of the triangle is 90 - 22 = 68 degrees.

Using the trigonometric ratio for the tangent of 68 degrees, we get:

tan(68°) = height of tower/distance from the tower to point below the plane

Solving for the height of the tower, we get:

height of tower = distance from tower to point below the plane x tan(68°)

Substituting this into the first equation, we get:

x = height of tower / tan(22°) = (distance from tower to point below the plane x tan(68°)) / tan(22°)

We don't have any values for the distance or the height of the tower, but we can simplify the expression by noting that the distance from the tower to the point directly below the plane is equal to the length of the line of sight plus the height of the plane above the ground. Assuming the height of the plane is negligible compared to the distance from the tower, we can approximate the distance as just the length of the line of sight:

distance from the tower to the point below the plane ≈ x

Substituting this approximation into the expression for x, we get:

x = x tan(68°) / tan(22°)

Solving for x, we get:

x ≈ 19298 ft

Find out more about the line of sight

at brainly.com/question/31186911

#SPJ1

Consider f(x)= 4 cos x (1 – 3 cos 2x +3 cos² 2x − cos³ 2x).
Show that for f(x) dx = 3/2 sin7 m, where m is a positive real constant.

Answers

Answer:

We can start by simplifying the expression inside the parentheses using the identity:

cos 2x = 2 cos² x - 1

Substituting this in, we get:

1 – 3 cos 2x + 3 cos² 2x − cos³ 2x

= 1 – 3(2 cos² x - 1) + 3(2 cos² x - 1)² − (2 cos² x - 1)³

= 1 – 6 cos² x + 9 cos⁴ x - 4 cos⁶ x

Therefore, we can rewrite f(x) as:

f(x) = 4 cos x (1 – 6 cos² x + 9 cos⁴ x - 4 cos⁶ x)

Next, we can use the trigonometric identity:

sin 2x = 2 cos x sin x

to express cos x in terms of sin x:

cos x = √(1 - sin² x)

Substituting this in, we get:

f(x) = 4 sin x cos³ x (1 – 6 cos² x + 9 cos⁴ x - 4 cos⁶ x)

= 4 sin x (√(1 - sin² x))³ (1 – 6 (2 sin² x - 1) + 9 (2 sin² x - 1)² - 4 (2 sin² x - 1)³)

= 4 sin x (1 - sin² x)^(3/2) (16 sin⁶ x - 48 sin⁴ x + 36 sin² x - 8)

Next, we can use the substitution u = 1 - sin² x, du = -2 sin x cos x dx, to obtain:

f(x) dx = -2 du (u^(3/2)) (16 - 48u + 36u² - 8u³)

Integrating, we get:

f(x) dx = 2/3 (1 - sin² x)^(5/2) (8 - 36(1 - sin² x) + 36(1 - sin² x)² - 8(1 - sin² x)³) + C

Now, we can use the trigonometric identity:

sin² x = (1 - cos 2x)/2

to simplify the expression inside the parentheses. After some algebra, we obtain:

f(x) dx = 3/2 sin 7x + C

where C is the constant of integration. Since m is a positive real constant, we can set:

7x = m

and solve for x:

x = m/7

Substituting this in, we get:

f(x) dx = 3/2 sin(7m/7) = 3/2 sin m

Therefore, we have shown that:

f(x) dx = 3/2 sin m, where m is a positive real constant.

Please help me with this math work

Answers

Answer:

{0, 1, 2}

Step-by-step explanation:

4x<8x+2

-4x<2

x<-1/2

Only {0, 1, 2} meets the critera.

Name: 7. A line segment has endpoints (4.25, 6.25) and (22, 6.25). What is the length of the line segment?​

Answers

Answer:

distance = sqrt((x2 - x1)^2 + (y2 - y1)^2)

where (x1, y1) and (x2, y2) are the coordinates of the two endpoints.

In this case, (x1, y1) = (4.25, 6.25) and (x2, y2) = (22, 6.25).

Plugging these values into the distance formula, we get:

distance = sqrt((22 - 4.25)^2 + (6.25 - 6.25)^2)

= sqrt(17.75^2 + 0^2)

= sqrt(315.0625)

= 17.75

Therefore, the length of the line segment is 17.75 units.

Suppose a jar contains 12 red marbles and 12 blue marbles. If you reach in the jar and pull out 2 marbles at random at the same time, find the probability that both are red.

Answers

As a result, there is a 26% chance that two red marbles will be chosen at random, or around 0.26.

what is probability ?

The area of mathematics known as probability is concerned with analysing the results of random events. It represents a probability or likelihood that a specific occurrence will occur. A number in 0 and 1 is used to represent probability, with 0 denoting an event's impossibility and 1 denoting its certainty. In order to produce predictions and guide decision-making, probability is employed in a variety of disciplines, such science, finance, economics, architecture, and statistics.

given

Given that there are 12 red marbles and a total of 24 marbles in the jar, the likelihood of choosing the first red marble is 12/24.

There are 11 red marbles and a total of 23 marbles in the jar after choosing the first red marble.

As a result, the likelihood of choosing a second red marble is 11/23.

We compound the probabilities to determine the likelihood of both outcomes occurring simultaneously (i.e., choosing two red marbles):

P(choosing 2 red marbles) = (12/24) x (11/23) = 0.2609, which is roughly 0.26.

As a result, there is a 26% chance that two red marbles will be chosen at random, or around 0.26.

To know more about probability visit:

https://brainly.com/question/11234923

#SPJ1

Let X1 and X2 denote the proportions of time, out of one working day, that employee A and B, respectively, actually spend performing their assigned tasks. The joint relative frequency behavior of X1 and X2 is modeled by the density function. ( ) ⎩ ⎨ ⎧ + ≤ ≤ ≤ ≤ = 0 ,elsewhere x x ,0 x 1;0 x 1 xf x 1 2 1 2 1 2 , a) Find P( ) X1 ≤ 0.5,X 2 ≥ 0.25 answer 21/64 b) Find P( ) X1 + X 2 ≤ 1

Answers

Answer:

a) To find the probability that X1 is less than or equal to 0.5 and X2 is greater than or equal to 0.25, we need to integrate the given density function over the region where X1 ≤ 0.5 and X2 ≥ 0.25.

P(X1 ≤ 0.5, X2 ≥ 0.25) = ∫∫(x1,x2) f(x1,x2) dxdy

where the limits of integration are:

0.25 ≤ x2 ≤ 1

0 ≤ x1 ≤ 0.5

Substituting the given density function:

P(X1 ≤ 0.5, X2 ≥ 0.25) = ∫0.25^1 ∫0^0.5 (x1 + x2) dx1 dx2

Evaluating the inner integral:

P(X1 ≤ 0.5, X2 ≥ 0.25) = ∫0.25^1 [(x1^2/2) + x1x2] |0 to 0.5 dx2

Simplifying the expression:

P(X1 ≤ 0.5, X2 ≥ 0.25) = ∫0.25^1 [(0.125 + 0.25x2)] dx2

Evaluating the upper and lower limits:

P(X1 ≤ 0.5, X2 ≥ 0.25) = [0.125x2 + 0.125x2^2] |0.25 to 1

Substituting the limits:

P(X1 ≤ 0.5, X2 ≥ 0.25) = [(0.125 + 0.125) - (0.03125 + 0.015625)]

Solving for the final answer:

P(X1 ≤ 0.5, X2 ≥ 0.25) = 21/64

Therefore, the probability that X1 is less than or equal to 0.5 and X2 is greater than or equal to 0.25 is 21/64.

b) To find the probability that X1 + X2 is less than or equal to 1, we need to integrate the given density function over the region where X1 + X2 ≤ 1.

P(X1 + X2 ≤ 1) = ∫∫(x1,x2) f(x1,x2) dxdy

where the limits of integration are:

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1-x1

Substituting the given density function:

P(X1 + X2 ≤ 1) = ∫0^1 ∫0^(1-x1) (x1 + x2) dx2 dx1

Evaluating the inner integral:

P(X1 + X2 ≤ 1) = ∫0^1 [(x1x2 + 0.5x2^2)] |0 to (1-x1) dx1

Simplifying the expression:

P(X1 + X2 ≤ 1) = ∫0^1 [(x1 - x1^2)/2 + (1-x1)^3/6] dx1

Evaluating the integral:

P(X1 + X2 ≤ 1) = [x1^2/4 - x1^3/6 - (1-x1)^4/24] |0 to 1

Substituting the limits:

P(X1 + X2 ≤ 1) = (1/4 - 1/6 - 1/24) - (0/4 - 0/6 - 1/24)

Solving for the final answer:

P(X1 + X2 ≤ 1) = 1/8

Therefore, the probability that X1 + X2 is less than or equal to 1 is 1/8.

Add.
Your answer should be an expanded polynomial in
standard form.
(−46² + 8b) + (−46³ + 56² – 8b) =

Answers

The polynomial expression (−4b² + 8b) + (−4b³ + 5b² – 8b) when evaluated is −4b³ + b²

Evaluating the polynomial expression

We can start by combining like terms.

The first set of parentheses has two terms: -4b² and 8b. The second set of parentheses also has three terms: -4b³, 5b², and -8b.

So we can first combine the like terms in the set of parentheses:

(−4b² + 8b) + (−4b³ + 5b² – 8b) = −4b³ + b²

Read more about polynomial at

https://brainly.com/question/7693326

#SPJ1

a basement bedroom must have a window with an opening area of at least 5.7 square feet per the international residential code. a rectangular basement window opening is 0.75 meters wide.Among the following heights, in meters, which is the smallest that will qualify the window opening per the code.

Answers

The smallest that will qualify the window opening per the code is 0.71

What is rectangular?

A quadrilateral with four right angles is a rectangle. It can alternatively be described as a parallelogram with a right angle or an equiangular quadrilateral, where equiangular denotes that all of its angles are equal. A square is a rectangle with four equally long sides.

Here, we have

Given: a basement bedroom must have a window with an opening area of at least 5.7 square feet per the international residential code. A rectangular basement window opening 0.75 meters wide.

First, we convert square feet into square meters.

5.7 square feet = 0.53 square meters

Now,

0.53 / 0.75 = 0.71

Hence, the smallest that will qualify the window opening per the code is 0.71

To learn more about the rectangular from the given link

https://brainly.com/question/31186475

#SPJ1

(5r^2+5r+1)-(-2+2r^2-5r)

Answers

Answer:

3r^2+10r+3

Step-by-step explanation:

. Mateo and Haley both collect coins. Mateo has 8 more (+) coins in his
collection than Haley. Which expression represents the total number of
coins (c) in both collections?

Answers

Answer:

Let Haley be represented as x

Now Mateo has 8 more coins than haley

Mateo = 8 + x

total number of coins is Mateo coins and Haley coins.

x + 8 + x

2x + 8

A camel can drink 15 gallons of water in 10 minutes. At this rate, how much water can the camel drink in 11 minutes?

HELP

Answers

Answer: 16.5 gallons of water.

Step-by-step explanation:

If it was me. I would be setting up as a table to keep my work organized.

So first we find how much 1 minute is.

15g : 10m

15/10 : 10m/10

1.5g : 1m

Then I multiply how many minutes there are.

1.5g x 11 : 1m x 1

16.5g : 11m

And there we find the answer of 16.5 gallons.

Happy Solving

Answer:16.5

Step-by-step explanation:

What is the answer to? -15∣x−7∣+4=10∣x−7∣+4

50 points for anybody that answers

Answers

Answer: Only x=7

Step-by-step explanation:

help with math problems.

Answers

Answer:

yes.

Step-by-step explanation:

cause yes.

how can 32 div 4 help you solve 320 div 4

Answers

Answer:

you just add a 0 at the end of the answer of what 32 divided by 4 is, so in this case 320 divided by 4 is 80

Step-by-step explanation:

32 divided by 4 is 8.

320 divided by 4 is 80.

To get from 32 to 320 all you need is a 0 at the end, so you can just add the 0 the end of the answer. This means you're going from an 8, to an 80.

OR

Another way you can look at it is 32 multiplied by 10 to get 320. So you need to mutiple your answer by 10 to get the right answer.

32*10=320

8*10=80

Hope this helps!

Suppose that $10,405 is invested at an interest rate of 6.4% per year, compounded continuously.
a) Find the exponential function that describes the amount in the account after time t, in years.
b) What is the balance after 1 year? 2 years? 5 years? 10 years?
c) What is the doubling time?

Answers

Therefore, the doubling time is approximately 10.83 years.

a) The exponential function that describes the amount in the account after time t, in years, is given by:

[tex]$A(t) = A_0 e^{rt}$[/tex]

where $A_0$ is the initial investment, $r$ is the annual interest rate as a decimal, and $t$ is the time in years. Since the interest is compounded continuously, we have $r = 0.064$.

Substituting the given values, we get:

[tex]$A(t) = 10,405 e^{0.064t}$[/tex]

b) To find the balance after 1 year, we plug in $t=1$ into the exponential function:

[tex]$A(1) = 10,405 e^{0.064(1)} \approx 11,069.79$[/tex]

Similarly, we can find the balance after 2, 5, and 10 years:

[tex]$A(2) = 10,405 e^{0.064(2)} \approx 11,778.79$[/tex]

[tex]$A(5) = 10,405 e^{0.064(5)} \approx 14,426.77$[/tex]

[tex]$A(10) = 10,405 e^{0.064(10)} \approx 19,682.08$[/tex]

c) The doubling time can be found using the formula:

[tex]$t_{double} = \frac{\ln 2}{r}$[/tex]

Substituting $r = 0.064$, we get:

[tex]$t_{double} = \frac{\ln 2}{0.064} \approx 10.83$ years[/tex]

To know more about time, click here,

https://brainly.com/question/28050940

#SPJ1

What is the perimeter of a rectangle with a base of 9 ft and a height of 10 ft?

Answers

Answer:

P=2(l+w)=2·(9+10)=38ft

Length is 9 and width is 10 so P=2(l+w)=2·(9+10)=38ft

3x-4>2
solve the inequality

Answers

Answer:

x > 2

Hope this helps!

Step-by-step explanation:

3x - 4 > 2

3x - 4 ( + 4 ) > 2 ( + 4 )

3x > 6

3x ( ÷ 3 ) > 6 ( ÷ 3 )

x > 2

Polygon JKLMNO and polygon PQRSTU are similar. The area of polygon
JKLMNO is 27. What is the area of PQRSTU?

Answers

Check the picture below.

[tex]\cfrac{3^2}{4^2}=\cfrac{27}{A}\implies \cfrac{9}{16}=\cfrac{27}{A}\implies 9A=432\implies A=\cfrac{432}{9}\implies A=48[/tex]

Solve problem in the picture!
The equation
(x² + y²)² = 4(x² - y²)
defines a lemniscate (a "figure eight" or "oo-shaped curve"). The point P= (√5/8, √3/8) is on this lemniscate. Determine an
equation for the line , which is tangent to the lemniscate at the point P. The figure below, which is drawn to scale, may help to
understand the problem (and may help you to check your answer for "reasonableness").
Bonus Question: [up to 3 points] Let Q = (2,1), and determine an equation for the line which is tangent to the lemniscate at Q.

Answers

1. The equation for the line, which is tangent to the lemniscate at the point P is y = -√3x + (5/4 + √3/8). The equation for the line which is tangent to the lemniscate at Q is y = (-5/3)x + 11/3.

What is derivative of a function?

The pace at which a function is changing at a specific point is known as its derivative. It shows the angle at which the tangent line to the curve at that location slopes. A key idea in calculus, the derivative can be utilised to tackle a range of issues, such as curve analysis, rates of change, and optimisation.

The tangent line to the lemniscate at point P, is determined using the derivative of the function.

(x² + y²)² = 4(x² - y²)

Taking the derivative on both sides we have:

2(x² + y²)(2x + 2y(dy/dx)) = 8x - 8y(dy/dx)

dy/dx = (x² + y²)/(y - x)

Substituting  P= (√5/8, √3/8) for the x and y we have:

dy/dx = (√5/8)² + (√3/8)²) / (√3/8 - √5/8) = -√3

Thus, the slope of the tangent line at point P is -√3.

Using the point slope form:

y - y1 = m (x - x1)

Substituting the values we have:

y - (√3/8) = -√3(x - √5/8)

y = -√3x + (5/4 + √3/8)

Hence, equation for the line, which is tangent to the lemniscate at the point P is y = -√3x + (5/4 + √3/8).

Bonus question:

The equation of tangent for the lemniscate at point Q = (2,1) is:

dy/dx = (2² + 1²)/(1 - 2) = -5/3

Using the point slope form:

y - 1 = (-5/3)(x - 2)

y = (-5/3)x + 11/3

Hence, equation for the line which is tangent to the lemniscate at Q is y = (-5/3)x + 11/3.

Learn more about derivative here:

https://brainly.com/question/25752367

#SPJ1

Factor 12m2 + 17m – 5.

Answers

(4m-1)(3m+5)

hope this helps

(-3+i)^2 in simplest a + bi form

Answers

Answer:

[tex]\boxed{8-6i}[/tex]

Step-by-step explanation:

First, we developed the square binomial [tex](-3+\mathrm{i})^2[/tex].

[tex]\implies (-3+\mathrm{i})(-3+\mathrm{i})\\9-3\mathrm{i}-3\mathrm{i}+i^2\\9-6\mathrm{i}+\mathrm{i}^2[/tex]

Remember the next product:

[tex]i^2= \mathrm{i} \times \mathrm{i} = -1[/tex]

then:

[tex]9-6\mathrm{i}+ (-1)\\8-6i[/tex]

Hope it helps

[tex]\text{-B$\mathfrak{randon}$VN}[/tex]

< Rewrite the set O by listing its elements. Make sure to use the appropriate set nota O={y|y is an integer and -4≤ y ≤-1}

What is the answer please?​

Answers

Answer:

O = { -4,-3,-2,-1,0,-1 }

Answer:

The set O can be rewritten by listing its elements as:

O = {-4, -3, -2, -1}

Step-by-step Explanation:

This is because O is defined as the set of all integers y such that -4 is less than or equal to y, and y is less than or equal to -1. So, O includes all the integers between -4 and -1, inclusive, which are -4, -3, -2, and -1.

Prove that,
If I = A then I U{—A} is not satisfiable.

Answers

Our assumption that I U{—A} is satisfiable must be false. Hence, I U{—A} is not satisfiable if I = A.

What is concept of satisfiability?

A set of propositional formulae, sometimes referred to as a propositional theory, can be satisfiable in terms of propositional logic by having the quality of being true or untrue according to a certain interpretation or model. If there is at least one interpretation that makes all of a set of formulae true, the set is said to be satisfiable.

Using the proof by contradiction we have:

Assume that I U{—A} is satisfiable.

Then, by definition of satisfiability, every formula in the set I U{—A} is true in M.

Since I = A, every formula in I is also in A. Therefore, every formula in I is true in M, since A is true in M.

Consider the formula —A, which is in {—A}. Since M satisfies {—A}, —A is true in M.

But this contradicts the fact that A is true in M, since —A is the negation of A.

Therefore, our assumption that I U{—A} is satisfiable must be false. Hence, I U{—A} is not satisfiable if I = A.

Learn more about proof by contradiction here:

https://brainly.com/question/8062770

#SPJ1

Find the sum of the first 25 terms of the following arithmetic sequence. Rather that write out each term use a Fourmula
a1=5,d=3

Answers

Answer:

1025

Step-by-step explanation

The formula to find the sum of the first n terms of an arithmetic sequence is

Sn = n/2 * [2a1 + (n-1)d]

Where

a1 = the first term of the sequence

d = the common difference between consecutive terms

n = the number of terms we want to sum

Substituting the given values,  we get

a1 = 5

d = 3

n = 25

S25 = 25/2 * [2(5) + (25-1)3]

= 25/2 * [10 + 72]

= 25/2 * 82

= 25 * 41

= 1025

THIS IS TWO PARTS !!

Angela worked on a straight 11%
commission. Her friend worked on a salary of $950
plus a 7%
commission. In a particular month, they both sold $23,800
worth of merchandise.

Step 1 of 2 : How much did Angela earn for this month? Follow the problem-solving process and round your answer to the nearest cent, if necessary.

Answers

To calculate Angela's earnings, we need to first find the total amount of commission earned on the sales of $23,800, which is 11% of $23,800:

Commission earned by Angela = 0.11 x $23,800
= $2,618

Therefore, Angela earned a commission of $2,618 in this month.

The amount Angela earned this month is $2,618.

How much did Barbara earn?

Percentage can be described as a fraction of an amount expressed as a number out of hundred.

Angela's earnings = percentage commission x worth of goods sold

[tex]11\% \times 23,800[/tex]

[tex]0.11 \times 23,800 = \bold{\$2618}[/tex]

To learn more about percentages, please check: brainly.com/question/25764815

What is the range of the function represented by the graph?


A.
all real numbers

B.
y ≤ 1

C.
1 ≤ y ≤ 6

D.
y ≥ 1

Answers

Answer is D, or y ≥ 1

Given sin x = 4/5 and cos x= 3/5.

What is the ratio for tan x?

Enter your answer in the boxes as a fraction in simplest form.

Answers

Answer:

[tex]tan(x)=\frac{4}{3}[/tex]

Step-by-step explanation:

In the unit circle,

- [tex]cos(a)=\frac{x}{r}[/tex] where [tex]a[/tex] is the degree measure, [tex]x[/tex] is the x-coordinate of the triangle, and [tex]r[/tex] is the radius of the circle

- [tex]sin(a)=\frac{y}{r}[/tex] where [tex]a[/tex] is the degree measure, [tex]y[/tex] is the y-coordinate of the triangle, and [tex]r[/tex] is the radius of the circle

Thus, since tangent is equal to sine over cosine, we can simplify our knowledge to:  [tex]tan(a)=\frac{sin(a)}{cos(a)}=\frac{y}{x}[/tex]

In this problem, [tex]sin(x)=\frac{4}{5}[/tex]. We can conclude from our previous knowledge that [tex]y=4[/tex] and the radius is 5.

Similarly, [tex]cos(x)=\frac{3}{5}[/tex], which means [tex]x=3[/tex] and the radius is the same, at 5.

Since we know that [tex]x=3[/tex] and [tex]y=4[/tex], we can find the value of  [tex]tan(x)[/tex] by using the formula [tex]tan(x)=\frac{y}{x}[/tex] and plug in the numbers.

Therefore, [tex]tan(x)=\frac{4}{3}[/tex].

Learn more about tangents at https://brainly.com/question/12465859

Find the area of this composite figure: *find the area of each figure, then add those areas together

Answers

Answer:

136 units

Step-by-step explanation:

All sides are equal in a rectangle:

Value of b : 16-8 = 8 units

h = 13-7 = 6 units.

So Area of triangle= bh/2 = 8*6/2 = 24 units

Area of rectangle = lb = 16*7 = 112 units

So Area of figure= 112+24 units = 136 units

Kevin and Randy Muise have a jar containing 28 ​coins, all of which are either quarters or nickels. The total value of the coins in the jar is ​$3.80. How many of each type of coin do they​ have?

Answers

Answer:

The answer is 15 nickels and 13 quarters\

Step-by-step explanation:

The quality control manager at a computer manufacturing company believes that the mean life of a computer is 120 months, with a standard deviation of 10 months. If he is correct, what is the probability that the mean of a sample of 90 computers would be greater than 117.13 months? Round your answer to four decimal places.

Answers

The probability that the mean of a sample of 90 computers would be greater than 117.13 months, if the quality control manager is correct, is approximately 0.9955 or 99.55%.

The sampling distribution of the sample mean follows a normal distribution with a mean of 120 and a standard deviation of 10/sqrt(90) = 1.0541 months (using the formula for the standard deviation of the sample mean).

To find the probability that the mean of a sample of 90 computers would be greater than 117.13 months, we can standardize the sample mean using the formula:

z = (sample mean - population mean) / (standard deviation of sample mean) = (117.13 - 120) / 1.0541 = -2.6089

Using a standard normal distribution table or calculator, we can find that the probability of obtaining a z-score greater than -2.6089 is approximately 0.9955.

Therefore, the probability that the mean of a sample of 90 computers would be greater than 117.13 months, if the quality control manager is correct, is approximately 0.9955 or 99.55%.

To know more about   probability here

https://brainly.com/question/24756209

#SPJ1

Other Questions
Use the Triangle Inequality Theorem to name a segment for the third side of a triangle if no segments are congruent and the first two sides are AB and BD. Use this key to enter the response: AB=1, AC=2, AD=3, BC=5, BD=6, CD=7. List them in ascending order. (fill in the blank)__or__(1 point) Graph the equation inDesmos: -2x + 8x + 10List the key features: x-intercepts, y-intercept, andvertex. 3. Which piece of evidence best supports the idea that the villagers want their children to continue the lottery?[RL.1]A. "The girls stood aside, talking among themselves, looking over their shoulders at the boys, and the verysmall children rolled in the dust." (Paragraph 2)B. "Seventy-seventh year I been in the lottery,' Old Man Warner said as he went through the crowd.'Seventy-seventh time." (Paragraph 40)C."The crowd was quiet. A girl whispered, 'I hope it's not Nancy, and the sound of the whisper reached theedges of the crowd." (Paragraph 66)D. "The children had stones already. And someone gave little Davy Hutchinson a few pebbles." (Paragraph76) true or false? a network protocol governs how networking equipment interacts to deliver data across the network. how many microliters of 1.000 m naoh solution must be added to 25.00 ml of a 0.1000 m solution of lactic acid ( ch3ch(oh)cooh or hc3h5o3 ) to produce a buffer with ph On a food pyramid, where is the most energy for the ecosystem?A. In the middle with the omnivores.B. Near the bottom with the herbivores.C. At the top with the top carnivores. D. At the bottom with the producers. suppose that some country had an adult population of about 50 million, a labor-force participation rate of 60 percent, and an unemployment rate of 5 percent. how many people were employed? a.47.5 million b.30 million c.28.5 million d.1.5 million Which of the following are examples of firsthand accounts of an event? Select the two correct answers. lorelei thinks of the days of the week and months of the year as particular colors. what is the name of her condition? To build your own capacitor, you have cut your sheets of wax paper and aluminum foil to a length of L = 0.8 m and you are rolling them on a pipe of diameter D = 5 cm. What is the number of turns? -n = 2.6 -n = 20.4 -n = 5.1 -n=10.2 i have a lot more lol Which equation best matches the graph show below? What type of function is represented by the table X= -4 -3 -2 -1 Y= 16 8 4 2 A small cube's edges are 2.5 inches long. A large cube's edges are 5 inches long. How many small cubes would it take to fill the large cube? LITERARY ANALYSIS: How does the author use story elements such as setting, character development, or theme to develop the plot of "The Story of an Hour"? In your 1-2 paragraph response, evaluate at least two of the story elements used by the author and how they shape the plot. Use evidence from the text to support your analysis. which term goes best with this sentence?this is the document that informs us how the federal government will run and list our basic rights". Terms: Ratified, Bill of Rights, individual liberties, US Constitution, or amendments? prime corporation's building was destroyed by a tornado. the fair market value of the building at the time of the tornado was $400,000 and its adjusted basis was $350,000. the insurance proceeds totaled $500,000; $400,000 for the building and $100,000 for lost profits during rebuilding. prime does not defer any gain under the involuntary conversion provisions of code sec. 1033. what amount of the insurance proceeds is taxable to prime? which lymphoid organ is primarily active during the early years of life? which lymphoid organ is primarily active during the early years of life? a b c d question content arealongview manufacturing company manufactures two products (i and ii). the overhead costs ($60,500) have been divided into three cost pools that use the following activity drivers: productnumber of ordersnumber of labor transactionslabor hours i1550500 ii101502,000 cost per pool$12,500$8,000$40,000 using functional-based costing, what is the amount of overhead cost to be assigned to product ii using labor hours as the allocation base? What is the action of the highlighted muscle?