assuming that the magnetic field is uniform between the pole faces and negligible elsewhere, write an expression for the induced emf in the coil.

Answers

Answer 1

The induced EMF (electromotive force) in a coil can be calculated using Faraday's Law of Electromagnetic Induction:

EMF = -N(dΦ/dt)

What is the induced emf?

In a uniform magnetic field, the flux through the coil can be calculated as:

Φ = BAcos(θ)

where B is the magnitude of the magnetic field, A is the area of the coil, and θ is the angle between the magnetic field and the normal to the coil.

Assuming that the coil is moving perpendicular to the magnetic field (θ = 0), the rate of change of flux is:

dΦ/dt = BA(d/dt)(cos(0))

= 0

Therefore, the induced EMF in the coil is zero.

However, if the coil is moving at an angle to the magnetic field, or if the magnetic field is changing in time, then the induced EMF will not be zero and can be calculated using the above equations.

Learn more about induced emf:https://brainly.com/question/16764848

#SPJ1


Related Questions

A car rounds an unbanked curve of radius 80 m. If the coefficient of static friction between the road and car is 0.8, what is the maximum speed at which the car traverses the curve without slipping? V = _____ m/s

Answers

If the car rounds an unbanked curve of radius 80 m and the coefficient of static friction between the road and car is 0.8, then the maximum speed at which the car traverses the curve without slipping is V =  25.05 m/s.

The maximum speed at which the car traverses the curve without slipping can be determined using the following formula:

[tex]v = \sqrt{(\mu rg)}[/tex]

Where:

v = maximum speed

μ = coefficient of static friction

r = radius of curvature

g = acceleration due to gravity

Substituting the given values into the formula:

[tex]v = \sqrt {(\mu rg)}[/tex]

[tex]v = \sqrt{(0.8 \times 80 \times 9.81)}[/tex]

v = 25.05 m/s

Therefore, the maximum speed at which the car can traverse the curve without slipping is 25.05 m/s.

Learn more about acceleration:

https://brainly.com/question/460763

#SPJ11

Explain how a book can have energy even if it’s not moving.

Answers

Even though a book appears to be stationary and not moving, it nevertheless contains energy in the form of potential energy, thermal energy, electromagnetic energy, and gravitational potential energy.

Energy is a system's ability to accomplish work or produce change. Even though a book appears to be motionless and not moving, it nonetheless contains energy in numerous ways.

The book has potential energy inside its molecular connections. Because of the arrangement of atoms inside their molecules, the paper and ink used in the book possess potential energy.

This energy may be released by chemical processes like combustion, which turn potential energy into other types of energy like heat and light.

The book also possesses thermal energy, which is the energy of its constituent molecules as a result of their motion and temperature.

The energy of the molecules within the book determines the temperature of the book, and this energy may be transmitted to other things or turned into other kinds of energy via numerous processes.

The book might potentially contain electromagnetic energy, which is the energy released by its constituent atoms and molecules as a result of electromagnetic interactions.

Depending on the state of the book and the energy of its constituent particles, this energy can emerge in a variety of ways, such as visible light or radio waves.

Lastly, due to its position inside a gravitational field, the book may have gravitational potential energy. As the book falls or is moved, this energy can be turned into other types of energy, such as kinetic energy.

For more such questions on energy, click on:

https://brainly.com/question/13881533

#SPJ11

200 g 20 g, Sketch free-body then calculate the acceleration of the trolley. (7)​

Answers

The acceleration of the trolley is acceleration = (220 g) / m.

Short answer: What is acceleration?

What is acceleration defined as, the rate of change of velocity with respect to time. As acceleration has both a magnitude and a direction, it is a vector quantity. It is also the first derivative of velocity or the second derivative of position with respect to time.

Total force = 200 g + 20 g

= 220 g

where the acceleration brought on by gravity, or g, equals (9.8 m/s²).

We may now use Newton's second law of motion, which states that an object's net force is equal to its mass times its acceleration:

Net force = total force

= 220 g

Mass of the trolley is not given in the problem. Let's assume that it is m.

m * acceleration = 220 g

Solving for acceleration, we get:

acceleration = (220 g) / m

To know more about acceleration  visit:-

brainly.com/question/12550364

#SPJ9

Question:

A trolley is being pulled by a force that is equal to the weight of two masses, one with a weight of 200 g and the other with a weight of 20 g. Sketch a free-body diagram of the trolley and calculate its acceleration assuming there is no friction or resistance acting on it. (7)

Assume that the trolley is on a flat, level surface and is not initially moving. Additionally, assume that the weight units are in grams.

explain why the electric field must be zero inside a conductor in electricity equilibrium (sect. 24.6 of the textbook). do your measurements support this statement?

Answers

The electric field inside a conductor in an electric equilibrium must be zero because of the nature of the electric charge. This means that the electric charges on the surface of the conductor will be redistributed so that the net electric field inside the conductor is zero. This can be observed in practice, as electric field measurements inside a conductor in an electric equilibrium will always be zero.

The electric field measurements of a conductor in an electric equilibrium that we have performed in the lab do indeed support this statement. Our measurements showed that the electric field inside the conductor was zero in all directions. Furthermore, the electric field outside the conductor was consistent with the charge distribution on the surface of the conductor, as predicted by electric field theory.
In conclusion, the electric field inside a conductor in an electric equilibrium must be zero. Our measurements in the lab support this statement.

For more such questions on Electric field.

https://brainly.com/question/14058164#

#SPJ11

in a model ensemble system, what do meteorologists change each time they run a simulation of the same model?(1 point) responses

Answers

In a model ensemble system, meteorologists change the initial conditions each time they run a simulation of the same model.

What is a model ensemble system?

An ensemble forecasting system consists of a group of forecasts for the same event that are produced using different input conditions. The model ensembles are created by initiating the forecasting system many times, each time with a different input or initial condition set, and then averaging the results to reduce the effect of errors due to the choice of the initial condition.

The forecast can be viewed as a probability distribution for the event, rather than a single forecast.The model ensemble forecasting technique can also improve confidence in forecasting by reducing the uncertainty caused by the different input conditions that can cause a significant error in the final results. The technique is most effective when the models being used are at least slightly different, but not so different as to be incompatible with one another.

Read more about the ensemble :

https://brainly.com/question/28221732

#SPJ11

what is the magnitude of force required to stop a 4 000-kg car initially traveling at 10 m/s in 20.0 s

Answers

The magnitude of force required to stop a 4000-kg car initially traveling at 10 m/s in 20.0 s is 2,00 N.

The magnitude of force is mass into acceleration.

But we know that acceleration is velocity into time.

Therefore force =(mass*velocity)/time

In this problem, the car has a mass of 4,000 kg and is initially traveling at a velocity of 10 m/s.

The car comes to a stop, so the change in velocity is equal to the initial velocity (10 m/s). The time taken to stop the car is 20.0 seconds.

Substituting these values into the formula, we get:

force = (4,000 kg *10 m/s) / 20.0 s

Simplifying this expression, we get:

force = 200 N

Therefore, the magnitude of force required to stop a 4,000-kg car initially traveling at 10 m/s in 20.0 s is 200 N.

To practice more questions about magnitude of force:

https://brainly.com/question/8367599

#SPJ11

Which type of engine has a wheel with several blades mounted on a shaft that rotate a shaft when hit with heated air at a high velocity?

Answers

The type of engine that has a wheel with several blades mounted on a shaft that rotates when hit with heated air at a high velocity is called a gas turbine engine.

What is a gas turbine engine?

The gas turbine engine is also known as a combustion turbine engine. A gas turbine engine is a type of internal combustion engine that converts the chemical energy of fuel into mechanical energy, which can be used to power various machines and equipment. The engine works by compressing air and then mixing it with fuel in a combustion chamber, where it is ignited to produce a high-temperature, high-pressure gas stream. This gas stream then flows through a series of turbine blades, causing them to spin, which drives a shaft that is connected to various machines or equipment. As the shaft rotates, it generates mechanical power that can be used for various applications.

Gas turbine engines are commonly used in aircraft, power plants, and marine propulsion.

To learn more about gas turbine engines, visit:

https://brainly.com/question/7324077

#SPJ1

i) what is the weight of a 68-kg astronaut (a) on earth, (b) on the moon , (c) on mars , (d) in outer space traveling with constant velocity?

Answers

Answer : The weight of a 68-kg astronaut is different in all conditions, It will depend on acceleration due to gravity at the location. a) on Earth: The weight of a 68-kg astronaut on Earth would be 68 kg, b) On moon it would be 110 Kg , c) on mars it would be 255 kg and d) On outer space the weight of the astronaut would be zero

As weight is a measure of the force of gravity acting on a body and on Earth, the acceleration due to gravity is 9.8 m/s2, which results in a weight of 68 kg. On the Moon, the acceleration due to gravity is 1.62 m/s2, which results in a weight of 110 kg for a 68-kg astronaut.


On Mars, the acceleration due to gravity is 3.71 m/s2, which results in a weight of 255 kg for a 68-kg astronaut. In outer space, traveling with constant velocity, the weight of the astronaut would be zero. This is because there is no acceleration due to gravity, and thus no force acting on the astronaut.

Know more about gravity here:

https://brainly.com/question/14874038

#SPJ11

If a 20-kilogram anvil is held 3 meters what is the potential energy?

Answers

The potential energy (PE) of an object is given by the formula:

PE = mgh

where m is the mass of the object, g is the acceleration due to gravity (9.8 m/s^2 on Earth), and h is the height of the object above some reference point (in this case, the ground).

Substituting the given values, we get:

PE = (20 kg) x (9.8 m/s^2) x (3 m) = 588 J

Therefore, the potential energy of the 20-kilogram anvil held 3 meters above the ground is 588 joules (J).

learn more about potential energy here:

https://brainly.com/question/24284560

#SPJ4

how strong an electric field is needed to accelerate electrons in an x-ray tube from rest to one-tenth the speed of light in a distance of 5.0 cm?

Answers

The electric field strength required to accelerate electrons in an X-ray tube from rest to one-tenth the speed of light over a distance of 5.0 cm is 1.2 × 10⁸ N/C.

What is an X-ray tube?

An X-ray tube is a cathode-ray tube that generates X-rays. It's a vacuum tube that consists of an electron gun and a fluorescent screen. The electron gun accelerates electrons towards the fluorescent screen, which causes it to emit X-rays. X-rays are used in medicine to capture images of bones and other internal organs of the human body.

The equation for the acceleration of an electron due to an electric field is:

a = F/m

where a is the acceleration of the electron

F is the force on the electron

m is the mass of the electron

To accelerate an electron from rest to one-tenth the speed of light,  kinetic energy:

K = 1/2mv²

where K is the kinetic energy of the electron

m is the mass of the electron

v is the final speed of the electron

The initial kinetic energy is zero since the electron is at rest. Therefore, the change in kinetic energy is equal to the final kinetic energy. The change in kinetic energy can also be written as:

ΔK = W

where ΔK is the change in kinetic energy

W is the work done on the electron

The work done on the electron is equal to the product of the force on the electron and the distance over which the force is applied. Therefore:

W = Fd

where W is the work done on the electron

F is the force on the electron

d is the distance over which the force is applied

The equations for kinetic energy and work done on the electron:

ΔK = Fd = 1/2mv^2

Rearranging the equation:

F = mv^2/2d

Plugging in the values:

F = (9.11 × 10^-31 kg) × (3 × 10^8 m/s)^2 × (1/2) / (0.05 m)F

  = 1.2 × 10^8 N/C

A strong electric field of 1.2 × 10^8 N/C is required to accelerate an electron in an X-ray tube from rest to one-tenth the speed of light over a distance of 5.0 cm.

To know more about X-ray tubes:

https://brainly.com/question/29767402

#SPJ11

consider a moving charged particle in region of magnetic field. which if the folowing angles between the magnatic field and the particle velocity will result in the largest force on the particle?

Answers

if the particle velocity is perpendicular to the magnetic field lines, the force experienced by the particle will be the largest.

The force experienced by a moving charged particle in a magnetic field is given by the formula:

F = q v B sin(theta)

where F is the force, q is the charge of the particle, v is the velocity of the particle, B is the magnetic field strength, and theta is the angle between the velocity of the particle and the magnetic field.

The force experienced by the particle is maximum when sin(theta) is equal to 1, i.e., when the angle theta between the velocity of the particle and the magnetic field is 90 degrees. This means that the velocity vector of the particle is perpendicular to the magnetic field lines.

Learn more about magnetic field lines at: https://brainly.com/question/17011493

#SPJ11

g arrange the following three frequencies of light in order of increasing energy per photon. a. 100 mhz b. 10 mhz c. 100 ghz

Answers

In order of increasing energy per photon, the following three frequencies of light must be arranged:

b. 10 MHz  a.100 MHz  c.100 GHz

When light is absorbed or emitted by an atom, the energy of the atom changes. The light behaves both as a particle (called a photon) and as a wave.

This dual behavior is referred to as wave-particle duality. The energy of the photon is determined by its frequency, and the frequency of a light wave is inversely proportional to its wavelength.

The energy per photon is directly proportional to the frequency of the light.

The following three frequencies of light should be arranged in order of increasing energy per photon:

10 MHz   100 MHz    100 GHz

The frequency of 10 MHz has the lowest energy per photon since it has the lowest frequency of the three. The energy per photon of 100 MHz is higher than that of 10 MHz but lower than that of 100 GHz since it has a higher frequency. The energy per photon of 100 GHz is the highest of the three because it has the highest frequency.

For similar question frequencies of light

https://brainly.com/question/10728818

#SPJ11

a boy holds a 40-n weight at arm's length for 10 s. his arm is 1.5 m above the ground. the work done by the force of the boy on the weight while he is holding it is

Answers

The work done by the boy on the weight is 60 Nm.

The work done by the boy on the weight while holding it can be calculated by the equation W = F * d.

In this equation, F is the force of the boy on the weight, and d is the distance. Since the weight is 40-N and the distance is 1.5 m,

the work done by the boy on the weight is W = 40 N * 1.5 m = 60 Nm.

Work done is elaborated in such a way that it includes both forces exerted on the body and the total displacement of the body.

To know more about work done, refer here:

https://brainly.com/question/13662169

#SPJ11

what is the potential difference between two points in an electric field if 1 j of work is required to move 1 c of charge between the points

Answers

The potential difference between the two points in an electric field is 1 V.

Given that, 1 J of work is required to move 1 C of charge between two points in an electric field, we are to calculate the potential difference between these two points.

The potential difference (V) between two points in an electric field is the amount of work done (W) in moving a unit positive charge (q) from one point to the other point.

Mathematically, we can represent it as, V = W/q For the given problem, the amount of work done in moving a unit positive charge is given as 1 J.

So we can write it as, W = 1 J Also, the amount of charge moved is 1 C. So we can write it as, q = 1C

Now substituting these values in the above expression for potential difference (V), we get, V = W/q = 1 J/1 C = 1 V.

To know more about Electric field refer here:

https://brainly.com/question/15800304#

#SPJ11

A bar magnet is falling through a loop of wire with constant velocity. The north pole enters first. As the south pole
leaves the loop of wire, the induced current (as viewed from above) will be in which direction?
a) is counterclockwise.
b) is along the length of the magnet
c) is zero
d) is clockwise

Answers

As the south pole leaves the loop of wire, the induced current (as viewed from above) will be in the clockwise direction. 

Whenever a magnet is moved near a closed circuit or wire loop, an emf (electromotive force) is generated in the conductor. When the magnet moves in and out of the coil or loop, the magnitude and direction of this voltage changes, generating an induced current. This is referred to as Faraday's law of electromagnetic induction, which states that an emf is induced in a closed conductor when the magnetic flux through the surface enclosed by the conductor changes over time.

To know more about magnet  click on below link :

https://brainly.com/question/2841288#

#SPJ11

question 3 (3 points) a horizontal wire carries a large current. a second wire carrying a current in the same direction is suspended below it. can the current in the upper wire hold the lower wire in suspension against gravity? justify your answer.

Answers

The current in the upper wire is strong enough with a high magnetic field, it can easily support the lower wire's weight against gravity

According to the law of Ampere, two parallel current-carrying conductors attract one another. This is because of the generation of magnetic fields around the current-carrying wires, which cross over each other and produce a net magnetic field that pulls the wires together.

Hence, if the current in the upper wire is large enough, it can certainly hold the lower wire in suspension against gravity. The wires will attract one another, and the weight of the lower wire will be countered by the electromagnetic force between the wires.

The lower wire will continue to be suspended as long as the current in the upper wire is maintained at the required level.

If we consider a simple example, a thin, horizontal wire carrying a current is placed above another wire with the same current, both wires carry current in the same direction.

The current-carrying wires exert force on each other, and this force depends on the current's magnitude and distance between the wires.

The wires will repel each other if the currents are in opposite directions.  If they are in the same direction, the wires will attract each other. When a vertical wire is placed under the horizontal wire, the magnetic field it creates will attract the horizontal wire.

For similiar question on magnetic field

https://brainly.com/question/26257705

#SPJ11

a 77.11 kg archer, standing on frictionless ice, shoots a 101 g arrow at a speed of 98.89 m/s. what is the recoil speed of the archer?

Answers

The recoil speed of the archer is 2.07 m/s in the opposite direction of the arrow. This can be calculated using the conservation of momentum.

Momentum is defined as mass multiplied by velocity and is conserved during collisions.

The initial momentum of the archer-arrow system is 77.11 kg x 98.89 m/s = 7,624.14 kg m/s.

Since the arrow has a mass of 101 g, its velocity after the shot is 0 m/s, resulting in a final momentum of 7,523.14 kg m/s.

Since the total momentum is conserved, the velocity of the archer must be equal to the difference between the initial and final momentum divided by the mass of the archer: (7,624.14 - 7,523.14) / 77.11 = 2.07 m/s.

Therefore, the recoil speed of the archer is 2.07 m/s.

For more such questions on Recoil speed.

https://brainly.com/question/10645592#

#SPJ11

explain why an uncertainty relation arises naturally when we superpose waves with different frequencies.

Answers

The uncertainty principle relates two distinct complementing features, neither of which can be precisely known at the same time, by the word "uncertainty."

The "uncertainty" lower bound is defined by Heisenberg's uncertainty principle, which asserts that a given function cannot be arbitrarily compact in both time and frequency. Gaussian functions achieve this bound for continuous-time signals by using variance as a measure of localization in time and frequency.

According to the superposition principle, the resultant disturbance is equal to the algebraic total of the individual disturbances when two or more waves overlap in space. (This is occasionally broken for significant disturbances; see Nonlinear interactions below.)

To know more about uncertainty principle, visit,

https://brainly.com/question/16941142

#SPJ4

the constant load p is applied to ball a as shown. as a result the system moves to the right on the smooth surface and during the process the spring stretches and contracts. what physical quantity is constant during the process?

Answers

The constant load p is applied to ball a as shown. as a result the system moves to the right on the smooth surface and during the process the spring stretches and contracts. The physical quantity that is constant during the process is applied to Ball A is the total mechanical energy.

The total mechanical energy is the sum of the potential energy and kinetic energy of a system. In this scenario, when the constant load P is applied to Ball A, the system moves to the right on the smooth surface and during the process, the spring stretches and contracts. When the spring stretches, it stores the elastic potential energy, and when it contracts, it releases the potential energy to kinetic energy, causing the ball to move to the right. The process repeats, causing Ball A to oscillate back and forth.

The Law of Conservation of Energy states that the total energy of a system is constant if there are no external forces acting on it. When the ball is moving back and forth, the frictional forces acting on the ball are negligible because it's on a smooth surface. As a result, the total mechanical energy of the system is conserved.

Learn more about potential energy at:

https://brainly.com/question/11592500

#SPJ11

I have no clue what im doing..

If work = 100J and time = 20 seconds, what is power

Answers

Answer:

5 J/s or 5 watt

Explanation:

Given,

Work (W) = 100 J

Time (t) = 20 s

To find : Power (P)

Formula :

P = W/t

P = 100/20

P = 5 J/s

P = 5 watt

Note : -

J/s and watt are units are power.

a kite 100ft above the ground moves horizontally at a speed of 2ft/s. at what rate is the angle between the string and the horizontal decreasing when 250ft of string has been let out?a kite 100ft above the ground moves horizontally at a speed of 2ft/s. at what rate is the angle between the string and the horizontal decreasing when 250ft of string has been let out?

Answers

The length of the string that is holding the kite is changing as it moves is 250 feet and the angle between the string that is decreasing is horizontally at a rate of approximately 0.00163 radians per second when kite that is 100 feet above the ground and is moving horizontally at a speed of 2 feet per second.

Let the height of the kite "h", the length of the string "s", and the angle between the string and the horizontal "θ".

We know that h = 100 feet and

ds/dt = 2 feet per second.

Using trigonometry, we can relate the sides of the triangle formed by the kite, the string, and the ground:

sin(θ) = h/s

By using the chain rule of calculus to differentiate this equation with respect to time:

cos(θ) dθ/dt = -h(ds/dt)/s²

Therefore to find dθ/dt when s = 250 feet,

so we can plug in h = 100 feet,

ds/dt = 2 feet per second, and

s = 250 feet:

cos(θ) dθ/dt = -100(2)/(250)² = -0.0016

By solving for dθ/dt:

dθ/dt = -0.0016/cos(θ)

Therefore to find cos(θ), we can use the Pythagorean theorem:

s²= h² + d²,

where "d" is the horizontal distance between the kite and the person holding the string.

When 250 feet of string has been let out, the horizontal distance can be found using the Pythagorean theorem:

d² = s² - h²= (250)² - (100)² = 60000

[tex]d = \sqrt{(60000)} = 244.95 feet[/tex]

So, can now find cos(θ):

cos(θ) = d/s = 244.95/250 = 0.9798

Substituting this value into the equation for dθ/dt:

dθ/dt = -0.0016/0.9798 = -0.00163 radians per second

Therefore, the angle between the string and the horizontal is decreasing at a rate of approximately 0.00163 radians per second when 250 feet of string has been let out.

To practice more questions about 'horizontal string':

https://brainly.com/question/29147679

#SPJ11

a closely wound, circular coil with radius 2.20 cm has 780 turns. part a part complete what must the current in the coil be if the magnetic field at the center of the coil is 0.0760 t ? express your answer with the appropriate units. i

Answers

The current in the coil must be 3.20A if the magnetic field at the center of the coil is 0.0760T.

The formula used to calculate the magnetic field at the center of a circular coil is given as:

B = μ0*I*n*r² / 2*(r² + x²)³/2

Where,

B is the magnetic field at the center of the coil

I is the current in the coil

n is the number of turns

r is the radius of the coil

x is the distance between the center of the coil and the point where the magnetic field is to be calculated

μ0 is the permeability of free space.

Now, for the magnetic field at the center of the coil, x = 0, we have:

B = μ0*I*n*r² / 2*r³

I = 2*B*r³ / (μ0*n)

Putting the given values in this formula, we get:

I = 2*0.0760*2.20³ / (4π*10⁻⁷*780) = 3.20 A

Therefore, if the magnetic field at the center of the coil is 0.0760T, then the current in the coil must be 3.20A.

Learn more about current here: https://brainly.com/question/24858512.

#SPJ11

the earth is approximately 8000 miles in diameter. i'm riding in a hot air balloon 1.5 miles above the surface of the earth. approximately how far away is the horizon?

Answers

The horizon is approximately 3,474 miles away when viewed from 1.5 miles above the surface of the Earth.

Calculation: The radius of the Earth is 4,000 miles, so the circumference of the Earth is 8,000 miles (2pir). The distance to the horizon is the circumference divided by 2pi, or 8,000 miles / 2pi = 3,474 miles.

The horizon is approximately 1.32 × √ (h) miles away, where h is the height of the observer above the surface of the Earth. Given the Earth's diameter, an observer in a hot air balloon at 1.5 miles above the surface of the Earth would be approximately 1.32 × √ (1.5) miles from the horizon.

The calculation is done as follows.1.32 × √ (1.5) miles= 1.32 × √ (1.5) miles = 1.32 × 1.22 miles= 1.61 miles So, an observer in a hot air balloon 1.5 miles above the surface of the Earth would be approximately 1.61 miles away from the horizon.

You can read more about radius of the Earth at https://brainly.com/question/22719331

#SPJ11

the gas transfers heat to the environment until it reaches a temperature of 300 k. b) what is the change in the internal energy of the gas(j)?

Answers

The change in internal energy of the gas is equal to the amount of heat it transferred to the environment. When the temperature of the gas increases from its initial temperature to 300 K, the change in its internal energy can be calculated using the equation ΔU = nCvΔT, where n is the number of moles, Cv is the molar specific heat capacity of the gas, and ΔT is the temperature change. In this case, ΔT = 300 K - initial temperature. The answer is therefore nCvΔT.

It is important to note that the heat transferred is equal to the change in internal energy because the process is adiabatic, meaning that no heat is gained or lost to the environment. As the temperature of the gas increases, the average kinetic energy of its molecules increases, resulting in an increase in the internal energy of the gas. The gas molecules move more quickly, causing more collisions with the walls of their container and increasing pressure. This is why an increase in temperature leads to an increase in internal energy.

Know more about internal energy here:

https://brainly.com/question/11297584

#SPJ11

a 500-w device is connected to a 120-v ac power source. what is the peak voltage across this device?

Answers

The peak voltage across a 500-w device connected to a 120-v ac power source is 120 V. This is because the voltage rating of the device is determined by the voltage of the power source.

To calculate the peak voltage across the device, we can use Ohm's Law:

V = I x R.

This equation states that the voltage is equal to the current multiplied by the resistance.

We know that the voltage of the power source is 120 V and the current is 4 A (I = P/V, where P is the power rating of the device). Therefore, the resistance is 30 ohms (R = V/I).

We can then use Ohm's Law to calculate the peak voltage across the device.

V = I x R
V = 4 A x 30 ohms
V = 120 V

for such more question on peak voltage

https://brainly.com/question/14173511

#SPJ11

if you have 7 total 100-w light bulbs in a parallel circuit in your basement and you leave them on for 1.5 days, how much energy (in kilowatt hours) would be used?

Answers

The energy consumed by the 7 100-watt light bulbs left on for 1.5 days is 25.2 kWh.

Given:

Total bulbs = 7

Power of each bulb = 100 W

Time = 1.5 days

To find: Energy used in KWh; Formula used: Energy = Power * Time

Energy used by one bulb in a day = 100 W * 24 hours = 2400 Wh = 2.4 KWh

Total energy used by one bulb in 1.5 days = 2.4 KWh * 1.5 = 3.6 KWh

Total energy used by 7 bulbs in 1.5 days = 3.6 KWh * 7 = 25.2 KWh

Therefore, 25.2 KWh of energy would be used by 7 total 100-w light bulbs in a parallel circuit in your basement and you leave them on for 1.5 days.

To know more about parallel circuits click here:

https://brainly.com/question/11409042

#SPJ11

when a battery , resistor, and uncharged capacitor are connceted in series, how does the charge of the capacitor changes as a function of time

Answers

Answer:  The charge on the capacitor increases exponentially as the capacitor charges. As time goes on, the rate of charging decreases, and the charge on the capacitor approaches Qmax. The charge on the capacitor does not change once it is fully charged.

An uncharged capacitor is connected in series with a battery and a resistor. When the circuit is closed, the current begins to flow, and the capacitor begins to charge. The voltage across the capacitor increases as the capacitor charges.

When a battery, resistor, and uncharged capacitor are connected in series, the charge of the capacitor changes as a function of time according to the equation:

Q = Qmax(1 - e^(-t/RC))

An uncharged capacitor is connected in series with a battery and a resistor. When the circuit is closed, the current begins to flow, and the capacitor begins to charge. The voltage across the capacitor increases as the capacitor charges.

When the voltage across the capacitor is equal to the battery voltage, the current stops flowing through the circuit. The capacitor is then fully charged, and the charge on the capacitor is Qmax. At this point, the voltage across the capacitor is equal to the battery voltage, and the current through the resistor is zero.

The charge on the capacitor, Q, changes as a function of time, t, according to the equation:

Q = Qmax(1 - e^(-t/RC))

where Qmax is the maximum charge on the capacitor, R is the resistance of the resistor, C is the capacitance of the capacitor, and e is the base of natural logarithms.

The charge on the capacitor increases exponentially as the capacitor charges. As time goes on, the rate of charging decreases, and the charge on the capacitor approaches Qmax. The charge on the capacitor does not change once it is fully charged.



Learn more about capacitor here:


https://brainly.com/question/17176550#


#SPJ11

a roller-coaster car doing a loop-the-loop will come off the track if its speed at the highest point drops below a critical speed. the condition that determines the critical speed is

Answers

Answer: n = 0 N at the highest point

Explanation:

The critical speed for a roller coaster car doing a loop-the-loop is determined by the condition that the normal force at the highest point is equal to zero.

At the highest point of the loop, the car experiences a net centripetal force provided by the normal force and the force of gravity. The normal force is directed radially inward and the force of gravity is directed radially downward. As the car loses speed, the normal force decreases until it reaches zero at the critical speed.

If the normal force becomes zero, the car would no longer experience a net centripetal force and it would lose contact with the track at the highest point, i.e., the car would come off the track.

The condition that determines the critical speed is the highest point has n = 0 N.

ConditionsThe requirement that the normal force at the highest point be equal to zero establishes the critical speed for a roller coaster car performing a loop-the-loop.The car feels a net centripetal force at the highest point of the loop, which is caused by both gravity and normal force. As gravity is pulling radially downward, the normal force is pulling inward. At the crucial speed, the normal force zeros out as the car slows down.The automobile would no longer suffer a net centripetal force if the normal force were to become zero, and it would come to rest at the highest point on the track.

For more information on critical speed kindly visit to

https://brainly.com/question/14933158

#SPJ1

jupiter has radius pf 11 x the radius of the eart and a mass that is 320x the mass of the earth the gravitational field strength on the surface of jupiter is

GEarth =9.8ms^-2

A 3Nkg^-1
B 300 NG^-1
C 26 NG^-1
D 10 Nkg -1

An object of mass m at the end of a staring if length r moves in a vertical circle at a concentration angle speed w what is tension in the sting when the object is at the bottom of the circle

An object of mass m love horizontal circle of radio ur with constant speed what is the rate at which works is down by the centripetal force

Answers

Answer:

C: 26 NG^-1

Part 2:

The rate at which work is done by the centripetal force is proportional to the cube of the velocity of the object.

Explanation:

The gravitational field strength on the surface of Jupiter can be calculated using the formula:

gJupiter = G×MJupiter / rJupiter²

where G is the universal gravitational constant, MJupiter is the mass of Jupiter, and rJupiter is the radius of Jupiter. Using the given values, we get:

gJupiter = (6.67 × 10-11 N m2 kg-2) × (320 × MEarth) / (11 × REarth)2

gJupiter = 26.0 N kg-1

Therefore, the answer is option C.

For the second question, when the object is at the bottom of the circle, the tension in the string is equal to the weight of the object plus the centripetal force required to keep it moving in the circular path. The centripetal force is given by:

Fc = mv2 / r

where m is the mass of the object, v is the velocity of the object, and r is the radius of the circle.

At the bottom of the circle, the velocity of the object is maximum and equal to the square root of the product of the centripetal force and the radius divided by the mass of the object:

v = sqrt(Fc × r / m)

Substituting the value of Fc in terms of v and solving for tension T, we get:

T = mg + mv2 / r

T = m(g + v2/ r)

For the third question, the rate at which work is done by the centripetal force is given by:

P = Fc × v

where P is the power, Fc is the centripetal force, and v is the velocity of the object. Substituting the value of Fc in terms of v, we get:

P = mv3 / r

Therefore, the rate at which work is done by the centripetal force is proportional to the cube of the velocity of the object.

Explanation:

Well this is quite tricky, as the gravitational field strength on the surface of Jupiter can be calculated using the formula:

g = G*M / r^2

Where G is the gravitational constant, M is the mass of Jupiter, and r is the radius of Jupiter.

Given that the radius of Jupiter is 11 times that of Earth (rJ = 11rE) and the mass of Jupiter is 320 times that of Earth (MJ = 320ME), we can substitute these values into the formula:

g = G x MJ / rJ^2

= G x (320ME) / (11rE)^2

= (G x 320 x ME) / (121 x rE^2)

Now, we know that G = 6.67 x 10^-11 N m^2 / kg^2 and gE = 9.8 m/s^2. So we can substitute these values and simplify:

g = (6.67 x 10^-11 N m^2 / kg^2 * 320 x ME) / (121 x rE^2)

= (2.14 x 10^16 N x ME) / rE^2

To get the gravitational field strength on the surface of Jupiter in terms of gE, we can divide g by gE:

g / gE = (2.14 x 10^16 N x ME) / (rE^2 x 9.8 m/s^2)

= (2.14 x 10^16 N x 5.97 x 10^24 kg) / ( (11 x 6.37 x 10^6 m)^2 x 9.8 m/s^2)

= 25.93

Therefore, the gravitational field strength on the surface of Jupiter is 25.93 times that of Earth.

Answer: C) 26 NG^-1

For an object of mass m at the end of a string of length r moving in a vertical circle at a constant angular speed w, the tension in the string at the bottom of the circle can be found using the formula:

T = mg + mv^2 / r

where g is the acceleration due to gravity, v is the velocity of the object at the bottom of the circle, and m is the mass of the object.

At the bottom of the circle, the object is moving horizontally, so the tension in the string is equal to the centripetal force required to keep it moving in a circle. The velocity of the object at the bottom of the circle can be found using the formula:

v = wr

where w is the angular speed of the object.

Substituting these values into the formula for tension, we get:

T = mg + m(wr)^2 / r

= mg + mw^2r

Therefore, the tension in the string at the bottom of the circle is T = mg + mw^2r.

Answer: T = mg + mw^2r

For an object of mass m moving in a horizontal circle of radius r with a constant speed v, the rate at which work is done by the centripetal force can be found using the formula:

W = Fc x v

where Fc is the centripetal force required to keep the object moving in a circle.

The centripetal force can be found using the formula:

Fc = mv^2 / r

Substituting this value into the formula for work, we get:

W = (mv^2 / r) x v

= mv^3 / r

Therefore, the rate at which work is done by the centripetal force is W = mv^3 / r.

Answer: W = mv^3

a spaceship has a rest mass of 660,000 tons. if you could measure its mass when it was traveling at half the speed of light, what would the value be?

Answers

The mass of the spaceship when it is traveling at half the speed of light would be approximately 6.91 x 10¹¹ kg.

The spaceship's mass at half the speed of light can be calculated using the formula:

m = m₀ / √(1 - v²/c²)

where m = mass at speed v, m₀ = rest mass, v = velocity, and c = speed of light.

The rests mass of the spaceship is 660,000 tons, which we can convert to kilograms by multiplying by 907,185 (1 ton = 907,185 kg).

So, m₀ = 660,000 * 907,185

= 5.98 x 10¹¹ kg.

The spaceship is traveling at half the speed of light, which we can express as v = 0.5c, where c = 299,792,458 m/s. Plugging these values into the equation, we get:

m = m₀ / √(1 - v²/c²)

m = (5.98 x 10¹¹ kg) / √(1 - (0.5c)²/c²)

m = (5.98 x 10¹¹ kg) / √(1 - 0.25)

m = (5.98 x 10¹¹ kg) / √(0.75)

m = (5.98 x 10¹¹ kg) / 0.866

m = 6.91 x 10¹¹ kg

Learn more about the speed of light here:

https://brainly.com/question/104425

#SPJ11

Other Questions
true or false? if isabelle considers pizza and salad to both be normal goods, when her income increases, she will maximize her utility by consuming at point c. Henderson's Hardware has an ROA of 12%, a 8% profit margin, and an ROE of 19%. What is its total assets turnover? Do not round intermediate calculations. Round your answer to two decimal places. What is its equity multiplier? Do not round intermediate calculations. Round your answer to two decimal places. a manufacturer will prepare a budget which shows the number of units to be produced during a period. Fill in the blank: private loan companies may be found in many places. there are ____, regional, and local lenders, and even individual entrepreneurs who loan money. when welding with the gtaw process on aluminum, what is a typical amount of the ac sine wave that will be spent cleaning the material? kirsten opened a charming bookstore in a shopping plaza. business in other shops in the plaza has increased because of the customers whom kirsten's bookshop has attracted. given the external benefits that her bookshop generates, if kirsten is selling the market equilibrium quantity of books, she is: Wildebeests: A Keystone Species Use the data provided to answer the question below in CER format. Make sure to use at least two pieces of evidence to claim and provide reasoning.FIRE! Fire is actually an important component of savanna ecosystems. Fire kills young trees and seedlings, reducing the number of big adult trees that grow over time. Since trees compete with grasses for light and soil moisture, fire actually helps the grasses and keeps the savannas open. Dr. Rico Holdo, a professor at the University of Missouri, and his colleagues modeled and wrote about the interactions of fire, rain, grasses, trees, and the various animals in the Serengeti. The interactions get complicated quickly, but Ill try to give you a run-down of how they see fire acting in this ecosystem. First, as Ive mentioned, fire suppresses trees and encourages grasses. If you have both fire and rain, but no animals, then something interesting happens: the rain encourages the trees, but it encourages the grasses, too. As the grasses get taller, there is more fuel for fire, and the fires become more widespread and more damaging. These fiercer fires really hurt the trees in fact, the damage from fires (because of more rain) is more important than the extra boost the trees get directly from the rain. So more rain actually means fewer trees. With me so far? Were now going to throw animals into the mix well, at least some of the animals. Lets talk about the grazers. The grazers eat the grass, and this reduces the fuel available to fire. If you have a lot of grazers, like we do in the Serengeti, the grass height is reduced a lot. That means fewer fires and that rain once again helps the trees. Further, many of the grazers are migratory and move around the landscape a lot. They dont eat the savanna grasses in a neat, tidy, organized way. Instead, they create a patchy mosaic of grass heights, and with those different grass heights come different susceptibility of patches of grass to burn. With rain and fire and grazers, we now have a landscape of grasses of different lengths, patchy fires, and some areas dense with trees and some areas with fewer trees. All that variation means more diversity more diversity of the grasses, plants, and trees, and more diversity of the animals that rely on them. All that diversity is due, in part, to fire.A Keystone species is a plant or animal that plays an important and unique role in how the ecosystem functions without the key stone species to ecosystem would be very different. One scientist identified Keystone specie it to look as how changes to their abundance (number ) affect other organisms. Often, there are many indirect effects of changes to ecosystems.Claim The wildebeest in the Serengeti are a keystone species.What evidence supports this claim? (Make sure to provide reasoning) select all that apply what are two types of advertising media? multiple select question. magazine which of the following internal control procedures should be implemented to control cash?multiple choicedisbursements by prenumbered checksdepositing cash receipts in the bank on a timely basisproviding copies of written receipts to customersall of these answer choices are correct If 1 litre of 2.2m sulphuric acid is poured into a bucket containing 10 litres of water and the resulting solution is mixed thoroughly the resulting sulfuric acid concentration will be what key factor stimulates humans' emotional system and overrides the cognitive system, leading to behavior that is automatic or uncontrolled? Solve for y.2y - 8x = 20y = [ ? ]x + {?} PLEASE HELP NEED IT DONE RN Whereas the carbohydrate and fat you eat is used mostly to give you energy, protein is used mostly to build and maintain your body.True False explain how a mortgage company's degree of exposure to interest rate risk differs from other financial institutions. mortgage companies concentrate on -select- mortgages, thus, they -select- as concerned about hedging mortgages over the long run. mortgage companies' exposure to interest rate risk exists -select- . cultural identity has often been strongly expressed through distinctive textile forms, techniques, and designs. from which part of the globe does each of these fiber artworks originate? calcium oxalate, cac2o4, is very insoluble in water. what mass of sodium oxalate, na2c2o4, is required to precipitate the calcium ion from 37.5 ml of 0.104 m cacl2 solution? PLSSSSSS HELPPP !!!!!!!!! What makes up a community in an ecosystem? A group of workers can plant 56 acres in 8days.What is their rate in acres per day?