As per the combination method, Cameron can wear a different outfit for 6 days.
If we want to find the number of different combinations of shirts that Cameron can wear with a pair of shorts, we need to calculate the value of 3C1 (which means choosing 1 shirt out of 3). Using the formula above, we get:
³C₁ = 3! / (1! x (3-1)!) = 3
So there are 3 possible combinations of shirts that Cameron can wear with a pair of shorts.
Since Cameron has 2 pairs of shorts, he can wear each combination twice (once with each pair of shorts). Therefore, the total number of different outfits he can wear is:
3 (number of shirt combinations) x 2 (number of pairs of shorts) = 6
To know more about combination here
https://brainly.com/question/28998705
#SPJ4
Evaluate. Write your answer as a fraction or whole number without exponents.
6^–3 =
Answer:
i'm pretty sure it's 33
Step-by-step explanation:
6^= 36
36-3= 33
Factor
[tex]64h^3+216k^9[/tex]
Answer:
Factor 64h^3+216k^9
Step-by-step explanation:
The given expression is a sum of two terms:
[64h^3+216k^9
Notice that each term has a common factor. For the first term, the greatest common factor (GCF) is 64h^3, and for the second term, the GCF is 216k^9. So we can factor out these GCFs to get:
64h^3+216k^9 = 64h^3(1 + 3k^6)
This expression cannot be factored any further, so the final answer is:
64h^3+216k^9 = 64h^3(1 + 3k^6)
If you can, give me brainliest please!
In an election, there were three candidates;⅔ of the electors voted for the first candidates,¼ for the second candidate and the rest for the third candidate. If the third candidate got 3290 votes, how many votes did the winner get? Solve this and show All your workings
The winner of the election got 26320 votes.
Let's first find the total number of votes cast in the election. We know that 2/3 fraction of the electors voted for the first candidate and 1/4 of the electors voted for the second candidate. Therefore, the remaining 1/12 of the electors voted for the third candidate. So, we have:
2/3 + 1/4 + 1/12 = 8/12 + 3/12 + 1/12 = 12/12 = 1
This means that all the electors voted, and the total number of votes cast is equal to the total number of electors.
Now, let's find the number of votes the third candidate got, which is 1/12 of the total number of votes. We know that this is equal to 3290. So, we have
1/12 x Total Number of Votes = 3290
Multiplying both sides by 12, we get:
Total Number of Votes = 3290 x 12 = 39480
Now, we can find the number of votes the first candidate got, which is 2/3 of the total number of votes. We have:
2/3 x Total Number of Votes = 2/3 x 39480 = 26320 votes
Learn more about fraction here
brainly.com/question/8764267
#SPJ4
WILL MARK BRAINLIEST draw the right triangle (show your process)
Answer:[tex]3\sqrt{2}[/tex]
Step-by-step explanation:
in order to make a right triangle point should be either (1,4) or (4,1)
each way hypotenuse of this triangle is
[tex]known coordinates are (4,4)-- > (x1,y1)\\ and (1,1)-- > (x2,y2) \\\sqrt{(x1-x2)^{2}+(y1-y2)^{2}} =\sqrt{(4-1)^{2}+(4-1)^{2}}=\sqrt{9+9}=\sqrt{3^{2}*2}=3\sqrt{2}[/tex]
find the general solutions to the following inhomogeneous first-order linear differential equations using the particular solution method: i. y 0 3y
The general solution to the given differential equation is y(t) = C * e^(3t).
To find the general solution to the inhomogeneous first-order linear differential equation y'(t) - 3y(t) = 0, follow these steps:
Step 1: Identify the homogeneous equation, which is y'(t) - 3y(t) = 0.
Step 2: Solve the homogeneous equation by finding the general solution. In this case, it is y_h(t) = C * e^(3t), where C is a constant.
Step 3: Identify the inhomogeneous part of the equation, which is missing in this case. Since the given equation is already homogeneous, there is no need to find a particular solution.
Step 4: Combine the homogeneous solution and the particular solution (if present) to form the general solution. In this case, the general solution is y(t) = y_h(t) = C * e^(3t).
So, the general solution to the given differential equation is y(t) = C * e^(3t).
Learn more about Equation
brainly.com/question/24169758
#SPJ11
The equivalent ratios are 2:5 , _ : _ , and _ : _ .
Answer:
The equivalent ratios are 2:5, 4:10, and 10:25
Step-by-step explanation:
2:5 * 2 = 4:10 and 2:5 * 5 = 10:25
When comparing the given value to −12, which is a TRUE statement?
a business student is interested in estimating the 90% confidence interval for the proportion of students who bring laptops to campus. he wants a precise estimate and is willing to draw a large sample that will keep the sample proportion within nine percentage points of the population proportion. what is the minimum sample size required by this student, given that no prior estimate of the population proportion is available?
Answer:
n=106
Step-by-step explanation:
Given p = 0.5 and 1-p = q = 0.5Margin of error = 0.08 Confidence level = 90% Z score for 90% confidence level = 1.65As we know - Margin of error = z * Sqrt (pq/n)Substituting the given value, we get – 0.08 = 1.65 * Sqrt (0.5*0.5/n)Squaring both the sides and solving, we get n = 1.65^2*0.5^2/0.08^2n = 106.34 = 106
The rate of the jetstream is 300 mph traveling with the jetstream an airplane can fly 3000 miles in the same amount of time as it takes to fly 1000 miles against the jetstream. What is the airplanes, average rate in calm air?
The airplane's average rate in calm air is 600 mph.
What is an average?
In mathematics, the average is a measure of the central tendency of a set of numerical values, which is computed by adding all the values in the set and dividing them by the total number of values. The average is also known as the mean, and it is one of the most commonly used measures of central tendency in statistics
Let's denote the airplane's average rate in calm air by x mph.
When the airplane is flying with the jetstream, its ground speed (speed relative to the ground) is x + 300 mph. We know that it can fly 3000 miles in the same amount of time it takes to fly 1000 miles against the jetstream, so we can set up the following equation:
3000 / (x + 300) = 1000 / (x - 300)
We can cross-multiply to simplify:
3000(x - 300) = 1000(x + 300)
Expanding the brackets gives:
3000x - 900000 = 1000x + 300000
Simplifying and rearranging terms gives:
2000x = 1200000
x = 600
Therefore, the airplane's average rate in calm air is 600 mph.
To learn more about averagevisit the link:
https://brainly.com/question/130657
#SPJ9
an item on sale costs 60 of the original price. if the original price was $80 what is the sale price 82 whats the sales price
The sales price of the item is $48.
The sale price of an item that costs 60% of its original price which is $80 is $48. The original price of the item is $80, and it costs 60% of the original price. The amount of money we'll be spending is calculated as follows: 60 per cent of $80 (60/100) × $80= $48 Therefore, the sales price is $48. The percentage discount for the item is calculated as follows:$80 - $48 = $32
$32 is the amount of money saved due to the discount, which is then divided by the original price, $32/$80 = 0.4 or 40%. Thus, there was a 40% discount on the original price.
To learn more about "Sales price": brainly.com/question/29363568
#SPJ11
8). A wheel which is initially at rest starts to turn with a constant angular acceleration. After 4 seconds it has made 4 complete revolutions. How many revolutions has it made after 8 seconds? b) 16 c) 24
Therefore, the wheel has made 8 complete revolutions after 8 seconds.So, the correct answer is option A) 8.
The given problem is about a wheel that is initially at rest, but then starts to turn with a constant angular acceleration. After four seconds, it has made four complete revolutions. The question asks us to find out how many revolutions it has made after eight seconds.The problem can be solved by using the formula for angular displacement. For a body moving with a constant angular acceleration, the angular displacement, θ can be given as,θ = ω1t + 1/2 α t²Where ω1 is the initial angular velocity and α is the angular acceleration of the body.
Substituting the given values, ω1 = 0 (since the wheel is initially at rest), α is unknown, and t = 4 seconds, we get the equation,[tex]θ = 1/2 α t² = 4 × 2π[/tex]revolutions (since the wheel has made four complete revolutions in four seconds)Solving for α,α = (8π) / (16) = π/2 rad/s²Now, to find out the number of revolutions made after eight seconds, we need to calculate the angular displacement after eight seconds.θ = [tex]ω1t + 1/2 α t²Here, ω1 = 0, α = π/2 rad/s²[/tex], and t = 8 seconds[tex].θ = 0 + 1/2 (π/2) (8)² = 8π[/tex] revolutions
for such more questions on angular displacement
https://brainly.com/question/31150979
#SPJ11
answer two questions about the following rational division.
1. The quotient in lowest terms of the given rational division is (x+2)/(3x-9).
2. The values of r is A. x=-2 and B. x=0.
What is factor?Factor is a quantity which when multiplied by another quantity, produces a given product. Factors are used to simplify and solve equations, as well as in other areas of mathematics. Factors can be numbers, variables, and expressions.
To find the lowest terms, we must divide the numerator and denominator by the same number. The largest common factor of the numerator and denominator is 3. Dividing both the numerator and denominator by 3, we get (x+2)/(3x-9) = (x+2)/(x-3).
The values of r that must be excluded from the domains of the expressions are x=0 and x=3. x=0 must be excluded because it will create a zero in the denominator which is not allowed. x=3 must also be excluded because it will create a zero in the numerator, and thus make the entire expression equal to 0. Thus, the correct answer is A. x=-2 and B. x=0.
For more questions related to division
https://brainly.com/question/25289437
#SPJ1
what happens to the sector area of a circle if you double its radius? what happens to the arc length of a circle if you double its radius? why do you think that happens?
The sector area of a circle is quadrupled when the radius is doubled. When the radius is doubled, the arc length of a circle is also doubled. This happens because the sector area and arc length are both dependent on the radius of a circle. Therefore, any change in the radius of a circle affects both its sector area and arc length.
Let us understand both these concepts in detail:
Sector area of a circle: A sector is a region of a circle, and the area enclosed by two radii and an arc is known as a sector area. The formula for the sector area of a circle is given by:
Sector Area = (θ/360)πr²
where θ is the central angle in degrees,
r is the radius of the circle,
and is a constant value.
If we double the radius of a circle, the sector area increases by a factor of 4. This is because the sector area is directly proportional to the square of the radius.
Hence, doubling the radius of a circle results in an increase in the sector area by a factor of 22 (four).
Arc length of a circle: The length of an arc is the distance between two points on a circle. The formula for the arc length of a circle is given:
Arc Length = (θ/360)2πr
where θ is the central angle in degrees,
r is the radius of the circle,
and 2pie is a constant value.
If we double the radius of a circle, the arc length also doubles.
This is because the arc length is directly proportional to the radius.
Hence, doubling the radius of a circle results in an increase in the arc length by a factor of 2.
To learn more about “Sector Area” refer to the https://brainly.com/question/22972014
#SPJ11
what is the problem with this question item that appeared in a survey? was your phone purchased in the last two years and have you recently updated it?
Option B, The fact that this survey question is a double-barreled question makes it problematic.
A survey question known as a double-barreled question has two questions inside one, making it challenging for respondents to give truthful and insightful responses.
The offered inquiry, in this instance, combines two distinct inquiries: if the phone was acquired within the last two years and whether it has recently had an upgrade.
Inconsistent answers might result from a person who bought their phone more than two years ago but only recently upgraded it, or vice versa. In order to prevent double-barreled questions and guarantee that responders can give precise and complete replies, each question should be isolated and posed independently.
Learn more about the survey at
https://brainly.com/question/17373064
#SPJ4
The question is -
What is the problem with this question item that appeared in a survey? was your phone purchased in the last two years and have you recently updated it?
a. It is a leading question
b. It involves negative wording
c. It is a double-barreled question
d. It is not on a Likert Scale
A quadrilateral has opposite sides with the same slopes and consecutive sides with slopes that are reciprocals. What is the most precise classification of the quadrilateral?
Quadrilateral
Rectangle
Parallelogram
Trapezoid
The most precise classification of the quadrilateral with opposite sides having the same slopes and consecutive sides having slopes that are reciprocals is a Rectangle.
1. Opposite sides with the same slopes imply that these sides are parallel.
2. Consecutive sides with slopes that are reciprocals mean that they are perpendicular.
3. Parallel opposite sides make the quadrilateral a parallelogram.
4. Perpendicular consecutive sides make it a rectangle, as all angles are 90 degrees.
So, the quadrilateral is a Rectangle.
More On Quadrilateral:https://brainly.com/question/23935806
#SPJ11
what is fourteen million, six hundred sixty-five thousand, seven hundred eighty-seven in standard form? What is two hundred eighty-six million, nine hundred thousand in standard form?
Answer:
a) 1.4665787 × 10^7
b) 2.869 × 10^8
Step-by-step explanation:
Answer:
14,665,787 that's the answer for that question
how is 21.3-31.2= -9.9 when it should be 10.1?
Answer: answer is 9.9
Step-by-step explanation: becuz 31.2 - 21.3 = 9.9
u have to substract 21.3 from 31.2 . if u subtract 21.3 from 31.2 then it will be 9.9
but ig u did subtract 31.2 from 21.3....
if a sample of 5 lightbulbs is selected, find the probability that none in the sample are defective.
The probability of selecting a sample of 5 lightbulbs without any defective bulbs is then given by p^5, where p is the probability of not having a defective bulb.
In this situation, the probability of selecting a sample of 5 lightbulbs without any defective bulbs is calculated using the binomial distribution. The probability of success, p, is the probability that a single lightbulb is not defective, and the probability of failure, q, is the probability that a single lightbulb is defective. The probability of selecting 5 lightbulbs with no defective bulbs is then given by the equation:
P(x=0) = (p^5)*(q^0) = p^5
In this case, p is the probability of not having a defective bulb, and q is the probability of having a defective bulb. The probability of selecting 5 lightbulbs without any defective bulbs is then given by p^5.
For example, if the probability of not having a defective bulb is 0.95 and the probability of having a defective bulb is 0.05, then the probability of selecting a sample of 5 lightbulbs without any defective bulbs is 0.95^5 = 0.7737. This means that there is a 77.37% chance of selecting a sample of 5 lightbulbs without any defective bulbs.
To sum up, the probability of selecting a sample of 5 lightbulbs without any defective bulbs is calculated using the binomial distribution. The probability of success is the probability of not having a defective bulb, and the probability of failure is the probability of having a defective bulb. The probability of selecting a sample of 5 lightbulbs without any defective bulbs is then given by p^5, where p is the probability of not having a defective bulb.
The correct question is:
A box contains 100 bulbs, out of which 10 are defective. If a sample of 5 lightbulbs is selected, find the probability that none in the sample are defective
To know more about probability refer here:
https://brainly.com/question/30034780
#SPJ11
A bag contains 6 red marbles and 1 blue marble. A marble is taken at random, put to one side, and then another marble is taken at random. What is the probability that at least one of the marbles takes was blue?
Give your answer as a fraction in its simplest form
We have 6 red and 1 blue marble thus the probability of drawing blue marble = 1/7
To understand probability as a concept, pay attention to the steps below.
Step 1. Multiply the individual probabilities to obtain the chance of numerous separate events.
Step 2. As there are two separate events in this scenario, double the probabilities of each.
Step 3. Add the individual probabilities to obtain the chance of several events that are mutually exclusive.
In this bag of 7 marbles, there is 1 blue one. Assume that each is marked with a number. Choosing blue-1 has a 1/7 chance of happening. (Why? As there are 7 marbles that may be chosen, each with an equal probability, and since those 7 occurrences are mutually exclusive, the 7 probabilities total up to 1.)
The probability of choosing blue-2 is similarly 1/7; the same goes for blue-3,..., and blue-8. To determine the likelihood of picking a blue, add those up (and blue).
Step 4. Do the same for red next.
Thus the probability of drawing blue marble = 1/7
Learn more about probabilities at
brainly.com/question/30034780
#SPJ4
Neal buys a board game. He pays for the board game and pays
$
1.54
$1.54dollar sign, 1, point, 54 in sales tax. The sales tax rate is
5.5
%
5.5
Proportionately, the cost of the board game without the sales tax is $28.00.
What is the sales tax?The sales tax is the levy imposed by the government on the consumption and production of certain goods and services.
The purposes of imposing sales taxes are to discourage consumption and to increase governmental revenue.
Proportion refers to the equation of two ratios.
In this situation, we can equate the value of the sales tax with its percentage to determine the cost of the board game.
The sales tax in dollars = $1.54
The sales tax rate = 5.5%
Proportionately, the value of the board game without the sales tax = $28.00 ($1.54/5.5%).
Learn more about the sales tax at https://brainly.com/question/30109497
#SPJ1
Question Completion:How how is the cost?
Which values from the given replacement set make up the solution set of the inequality?
2b−4≥3 ; {2,3,4,5}
A. {2,3}
B. {3,4,5}
C. {4,5}
D. {2,3,4}
Answer:
We can solve the inequality by adding 4 to both sides:
2b - 4 + 4 ≥ 3 + 4
2b ≥ 7
b ≥ 7/2
The values in the replacement set that are greater than or equal to 7/2 are {3, 4, 5}. Therefore, the solution set is:
{3, 4, 5}
So the answer is B. {3, 4, 5}.
Roland's family drove 4 6/10 kilometers from their home to the gas station. They drove 2 30/100 kilometers from the gas station to the store. Which expression can be used to determine the number of kilometer Ronald's family drove altogether
The following phrase can be used to calculate the total amount of kilometre that Roland's family travelled: 2 30/100 plus 4 6/10 equals 69/10 kilometres.
The distance from house to the gas station and the distance from the gas station to the store must be added in order to calculate the total number of kilometre driven by Roland's family.
The distance between their house and the petrol station is 4 6/10 kilometres, which can also be expressed using an incorrect fraction as follows:
4 6/10 = (4 × 10 + 6) / 10 = 46/10
The distance between the petrol station and the store can be expressed as 2 30/100 kilometres, which can be written as follows:
2 30/100 = (2 × 100 + 30) / 100 = 230/100
We sum the two distances to get the total distance travelled:
46/10 + 230/100
We must identify a common denominator in order to add these fractions. Both 10 and 100 can be divided into only one single digit, which is 100. Hence, using 100 as the common denominator, we can rewrite the expression as follows:
(46/10) * (10/10) + (230/100) * (1/1)
That amounts to:
460/100 + 230/100 = 690/100
So, by dividing the numerator and denominator by their 10 greatest common factor, we may reduce this fraction:
690/100 = (690 ÷ 10) / (100 ÷ 10) = 69/10
As a result, the following phrase may be used to calculate the total amount of kilometres driven by Roland's family:
2 30/100 plus 4 6/10 equals 69/10 kilometres.
Learn more about kilometer here:
https://brainly.com/question/30581160
#SPJ1
in a simple linear regression analysis, if the coefficient of correlation is -0.933, then the percentage of the total sum of squares that can be explained by using the estimated regression equation is
In a simple linear regression analysis, the coefficient of correlation (also known as the Pearson correlation coefficient) measures the strength and direction of the linear relationship between the dependent variable and the independent variable.
A value of -0.933 indicates a strong negative correlation, meaning that as one variable increases, the other variable tends to decrease.
To determine the percentage of the total sum of squares that can be explained by using the estimated regression equation, we need to look at the coefficient of determination (R-squared). R-squared is the proportion of the variance in the dependent variable that is explained by the independent variable(s).
The square of the coefficient of correlation (r) gives us the R-squared value. Therefore, in this case, the R-squared value would be:
R-squared = (-0.933)^2 = 0.871
This means that 87.1% of the total sum of squares can be explained by using the estimated regression equation. The remaining 12.9% of the variation in the dependent variable is unexplained and is attributed to other factors that are not included in the model.
For more details about Pearson click here:
https://brainly.com/question/30897203#
#SPJ11
Perform the indicated operation.
f(x) = −3x² + 3x; _g(x) = 2x+5
(ƒ + g)(3)
The composite function (f + g)(3) when evaluated from f(x) = −3x² + 3x and g(x) = 2x+5 is -7
Calculating the composite functionGiven that
f(x) = −3x² + 3x and
g(x) = 2x+5
To perform the operation (ƒ + g)(3), we need to add the functions ƒ(x) and g(x) first, and then evaluate the sum at x = 3.
ƒ(x) = −3x² + 3x
g(x) = 2x + 5
To add the functions, we simply add their corresponding terms:
(ƒ + g)(x) = ƒ(x) + g(x) = (−3x² + 3x) + (2x + 5)
When the like terms are evaluated, we have
(ƒ + g)(3) = −3x² + 5x + 5
Now, we can evaluate the sum at x = 3:
(ƒ + g)(3) = −3(3)² + 5(3) + 5
So, we have
(ƒ + g)(3) = −27 + 15 + 5
Lastly, we have
(ƒ + g)(3) = -7
Therefore, (ƒ + g)(3) = -7.
Read more about composite function at
https://brainly.com/question/10687170
#SPJ1
Can anyone help me with this? i have 6 problems like this and I don't know how to solve them.
1. y=x+4
y = 3x
2. x=-2y+1
x-y=-5
3. y=x-7
2x+y=8
4. y=3x-6
-3x+y=-6
5. x+2y=200
x=y+50
6. 4x+3y=1
x=1-y
Its Solving Using Substitution. It's also due tomorrow so please help.
Answer:
Sure, I can help you solve these problems using substitution. Let's start with problem 1:1. y=x+4 y=3x To solve this system of equations, we need to substitute one of the variables from one equation into the other equation. We can solve the second equation for y:y=3x Now we can substitute this expression for y into the first equation:y=x+4 3x=x+42x=4x=2 Now we can substitute this value for x into either equation to solve for y:y=x+4 y=2+4y=6 So the solution to this system of equations is x=2, y=6. You can follow the same procedure to solve the rest of the problems. 2. x=-2y+1 x-y=-53. y=x-7 2x+y=84. y=3x-6 -3x+y=-65. x+2y=200 x=y+506. 4x+3y=1 x=1-y Let me know if you need any further assistance.
A regular hexagon and a regular pentagon have a common edge. Work out the value of a.
the answer is below with full explanation
question: given 2 patterns at 0.4 and 0.6 , estimate probability density analytically using a rectangular window of width 0.3 , using a triangular window of width 0.3 and using 1 nearest-neighbour.
The probability density of the two patterns at 0.4 and 0.6, for one nearest-neighbour is 0.6
Given two patterns at 0.4 and 0.6, the probability density of these patterns can be estimated analytically using a rectangular window of width 0.3, a triangular window of width 0.3, and one nearest-neighbour.
Probability density can be calculated using the following formula: [tex]$p(x)=\frac{n}{aN}$[/tex] where n is the number of samples that fall in the window centered at x, a is the window's width, and N is the total number of samples.
For the rectangular window of width 0.3, the probability density can be calculated as the sum of the two rectangular windows multiplied by 0.3, giving a probability density of 0.6.
For the triangular window of width 0.3, the probability density can be calculated as the sum of the two triangular windows multiplied by 0.3, giving a probability density of 0.45.
Finally, for one nearest-neighbour, the probability density is the maximum of the two patterns, which in this case is 0.6.
To know more about probability density, refer here
https://brainly.com/question/26059059#
#SPJ11
a fireworks show is designed so that the time between fireworks is between one and seven seconds, and follows a uniform distribution. (a) find the average time between fireworks. (enter your answer to one decimal place.)
The average time between fireworks is 4 seconds.
The given problem is a uniform distribution problem.
Uniform distribution is the probability distribution, which states that all outcomes of a random variable are equally likely. The mean or the average of the uniform distribution formula is (a + b) / 2, where a is the lower limit and b is the upper limit of the interval.
The given problem states that the time between fireworks follows uniform distribution between one and seven seconds. Hence, the lower limit (a) is 1 and the upper limit (b) is 7.
The mean or the average time between the fireworks can be calculated using the formula; (a + b) / 2.(a) Average time between fireworks = (1 + 7) / 2 = 4 seconds.
To know more about probability distribution click on below link:
https://brainly.com/question/14210034#
#SPJ11
what is the measure of the larger acute angle of the triangle? round your answer to the nearest tenth of a degree.
The measure of the larger acute angle of the triangle can be calculated using trigonometric ratios or by subtracting the measure of the smaller acute angle from 90 degrees. Without further information or given measurements, it is not possible to determine the exact measure of the angle.
Let's consider the general formula for a right triangle where A, B, and C are the angles and a, b, and c are the corresponding sides opposite to each angle:
sin A = a/c, sin B = b/c, and sin C = a/b.
For an acute triangle, we know that the sum of all the angles is equal to 180 degrees, so A + B + C = 180. If the triangle is a right triangle, then one of the angles, say C, is equal to 90 degrees, and A + B = 90 degrees.
In this case, we are only given that the angles of the triangle are acute. Therefore, we can use the formula sin A = a/c, sin B = b/c and sin C = a/b to solve for the angles or use the fact that A + B + C = 180 degrees and A + B = 90 degrees to find the measure of the larger acute angle by subtracting the measure of the smaller acute angle from 90 degrees. However, without specific measurements or additional information, we cannot determine the exact measure of the angle.
for such more question on triangle
https://brainly.com/question/1058720
#SPJ11
A four-sided figure is resized to create a scaled copy. The lengths of its four sides
change as in the table below.
Original Figure Scaled Copy
64
88
104
8
11
13
Find the constant of proportionality from the original figure
to the scaled copy. Express your answer as a fraction in
reduced terms.
1
The scale of proportionality is given as 8 from the table that you have presented
How to solve for the scale of proportionalityThe table here was not properly arranged in the question. I have done so below
64 88 104
8 11 13
lets say that 8p = 64
then p = 64 / 8
p = 8
we would have to determine if the value 8 when multiplied with scaled factor would be able to give us the original factor
8 * 11 = 88
8 * 13 = 104
Hence the scale of proportionality is given as 8
Read more on scale of proportionality https://brainly.com/question/19952594
#SPJ1