The histology of a healthy organ and a smoker's organ are different. This difference arises from the effect of the toxins present in the smoke, causing inflammation, tissue damage, and changes in cellular differentiation and structure in a smoker's organ.
The histology of a healthy organ: Healthy tissue is well-organized and possesses regular cell structure. It has a well-defined boundary, and its nuclei are aligned in a consistent manner. It has a robust blood supply and is composed of cells that are homogeneously arranged.
The histology of a smoker's organ: Smoke exposure, regardless of the type of organ, causes inflammation. Inflammation is a process that causes the accumulation of immune cells, oxidative stress, and tissue injury. It can manifest as fibrosis, airway obstruction, and neoplasia in lung tissues, leading to emphysema, chronic bronchitis, and lung cancer.
Smoke exposure damages cells and induces abnormal cell differentiation, resulting in carcinogenesis, tissue damage, and apoptosis. Carcinogenesis is the formation of cancer cells through the accumulation of mutations in genes responsible for regulating cell growth and division.
Learn more about Carcinogenesis
https://brainly.com/question/30746193
#SPJ11
Which of the following statement(s) about the digestive system is (are) correct? SELECT ALL THAT APPLY: A. Digestion of carbohydrates begins in the stomach. Bile is synthesized in the gall bladder. B. The common bile duct and the pancreatic duet drain into the major duodenal papilla. C. The glossopharyngeal nerve provides sensory innervation (both for taste and somatic sensory innervation) to the posterior 1/3 of the tongue. D. The lesser omentum connects the liver and the lesser curvature of the stomach.
Statement B is correct as bile is synthesized in the liver and stored in the gallbladder. Statement C is also correct as the glossopharyngeal nerve provides sensory innervation to the posterior one-third of the tongue. Statement D is correct as the lesser omentum connects the liver and the lesser curvature of the stomach.
Bile is synthesized in the liver and stored in the gallbladder. The gallbladder acts as a reservoir for bile and releases it into the small intestine when needed for digestion.
The glossopharyngeal nerve, one of the cranial nerves, provides sensory innervation to the posterior one-third of the tongue. It carries taste sensations from this region and also provides somatic sensory innervation, allowing for general sensation, such as touch and temperature perception.
The lesser omentum is a double-layered peritoneal fold that connects the liver to the lesser curvature of the stomach. It helps to stabilize the position of the stomach and provides a pathway for blood vessels, nerves, and lymphatics to reach these organs.
Digestion of carbohydrates primarily begins in the mouth, where salivary amylase starts breaking down complex carbohydrates into simpler sugars. In the stomach, the digestion of carbohydrates is limited due to the acidic environment.
The main site for carbohydrate digestion is the small intestine, where pancreatic amylase and brush border enzymes further break down carbohydrates into absorbable molecules. Statements B, C, and D are correct, while statement A is incorrect.
To learn more about gallbladder
https://brainly.com/question/4280987
#SPJ11
When recording in the left primary visual cortex, what type of cells do you expect to find in the center of a left ocular dominance column? O Class 2-3 - binocular preferring contralateral input O Class 7 monocular preferring ipsilateral input O Class 5-6 - binocular preferring ipsilateral input O Class 1 - monocular preferring contralateral input O Class 4 binocular With eye preference -
When recording in the left primary visual cortex, binocular preferring ipsilateral input type of cells are expected to be found in the center of a left ocular dominance column.
The answer is Class 5-6 - binocular preferring ipsilateral input. Binocular vision refers to the capability of both eyes to perceive a single vision that is perceived as three-dimensional. The human brain perceives an image that results in the blending of two slightly different images from each eye when the eyes are properly aligned. In binocular cells, the preferred eye input is on the side of the cell's dendrites, while the non-preferred eye input is on the opposite side of the dendrites.
This enables binocular cells to integrate information from both eyes, creating a cohesive and rich picture of the visual world. A monocular cell is a neuron that only receives visual information from one eye. The preferred eye input is on the side of the dendrites for monocular cells that prefer contralateral input (Class 1), while the non-preferred eye input is on the opposite side. Monocular cells that prefer ipsilateral input (Class 7) are primarily found in the primary visual cortex's inner layers.
To learn more about Ipsilateral visit here:
brainly.com/question/30751887
#SPJ11
sastry 2021 mining all publically available expression data compute dyanmic microbial transcriptional regulatory network
In their 2021 paper, Sastry et al. introduced a workflow that converts all public gene expression data for a microbe into a dynamic representation of the organism's transcriptional regulatory network.
How to explain the informationThe authors first mined the public databases for all gene expression data that had been published for B. subtilis. This yielded a total of 1,133 datasets, representing a wide range of experimental conditions.
The authors then processed the raw expression data to remove any errors or inconsistencies. This involved filtering out genes that were not expressed in any of the datasets, as well as normalizing the expression levels across all datasets.
The authors then curated the processed expression data to remove any genes that were likely to be artifacts of the experimental procedures.
Learn more about gene on
https://brainly.com/question/1480756
#SPJ4
Summarize sastry 2021 paper titled mining all publically available expression data compute dyanmic microbial transcriptional regulatory network
1) Points A and B in the diagram show two processes
taking place at interactions in Earth's oceanic crust.
a) Describe the process taking place at point A.
b) Describe the process taking place at point B.
continent
oceanic
crust
mantle
magma
B
continent
oceanic
crust
mantle
a)The process taking place at point A in the diagram is subduction, where oceanic crust is forced beneath the continental crust and into the mantle.
b) The process taking place at point B in the diagram is seafloor spreading, where new oceanic crust is formed at mid-oceanic ridges as magma rises to the surface, creating new crust.
a)The process taking place at point A in the diagram is subduction. Subduction occurs when two tectonic plates collide and the denser oceanic crust is forced beneath the less dense continental crust. At this point, the oceanic crust descends into the mantle through a subduction zone. This process is driven by the difference in density between the two crustal plates and the convection currents in the mantle.
b) The process taking place at point B in the diagram is seafloor spreading. Seafloor spreading occurs at mid-oceanic ridges, where two tectonic plates are moving apart. Magma rises from the mantle and erupts onto the seafloor, creating new oceanic crust. As the magma cools and solidifies, it forms a new layer of crust. Over time, the new crust spreads out from the ridge, pushing the existing crust away and creating a continuous process of crustal formation.
Together, these processes of subduction and seafloor spreading contribute to the dynamic nature of Earth's oceanic crust, shaping the geology and plate tectonics of our planet.
For more such question on subduction
https://brainly.com/question/1358208
#SPJ8
What anatomical feature of the fallopian tubes
allows sexually transmitted infections to
sometimes spread into the abdomen in women?
The anatomical feature of the fallopian tubes that allows sexually transmitted infections to sometimes spread into the abdomen in women is their open ends.
The fallopian tubes are a pair of narrow tubes that connect the ovaries to the uterus. Their main function is to transport eggs from the ovaries to the uterus. The open ends of the fallopian tubes, called fimbriae, are located near the ovaries and have finger-like projections that help capture released eggs.
However, the open ends of the fallopian tubes also create a potential pathway for infection. If a woman contracts a sexually transmitted infection (STI) such as chlamydia or gonorrhea, the bacteria or other pathogens can enter the fallopian tubes through the cervix during sexual activity. From there, the infection can ascend through the tubes and reach the abdominal cavity.
The presence of an STI in the fallopian tubes can lead to a condition called pelvic inflammatory disease (PID), which is characterized by inflammation and infection of the reproductive organs. If left untreated, PID can cause serious complications, including infertility, chronic pelvic pain, and in severe cases, abscesses or scarring in the fallopian tubes.
Learn more about narrow tubes
brainly.com/question/13962446
#SPJ11
Fill in the blank
1. The disease wherein plaques of fats, calcium, and other chemicals form in an artery wall thus narrowing the lumen of the vessel is called _______.
2. When a coronary artery becomes full of plaque, oxygen delivery to the functional tissue of the heart which is called _______, is decreased. This may result in a heart attack.
3. If cells become starved of oxygen, they die. Chemicals released from dying cells stimulate nociceptors (pain receptors) and creates chest pain which is a common characteristic of heart attack, which is called ______ ______.
4. Arterial blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps blood. Blood pressure measurements consist of 2 numbers such as 120 mm Hg/80 mm Hg: the first number is systolic pressure and it is caused by the force of blood against the artery walls when the ventricles are _________.
5. The second number in arterial blood pressure is ______ pressure and it is caused by the force of blood against the artery walls when the ventricles are relaxed.
6. If an adult at rest consistently has blood pressure which measures higher than about 140/90 mm Hg, s/he is diagnosed with the disease called ____________ AKA high blood pressure (HBP).
7. About 1 in 3 adults in the United States has HBP. A person can have it for years without experiencing any signs or symptoms, thus this disease is sometimes called the "___________" killer.
8. Blood flows through the heart in one direction due to the presence of two sets of valves in the heart: _______ valves close when the ventricles contract, thus preventing backflow of blood from the ventricles into the atria.
1. The disease wherein plaques of fats, calcium, and other chemicals form in an artery wall thus narrowing the lumen of the vessel is called atherosclerosis.
2. When a coronary artery becomes full of plaque, oxygen delivery to the functional tissue of the heart which is called myocardium, is decreased. This may result in a heart attack.
3. If cells become starved of oxygen, they die. Chemicals released from dying cells stimulate nociceptors (pain receptors) and create chest pain which is a common characteristic of heart attack, which is called angina pectoris.
4. Arterial blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps blood. Blood pressure measurements consist of 2 numbers such as 120 mm Hg/80 mm Hg: the first number is systolic pressure and it is caused by the force of blood against the artery walls when the ventricles are contracting.
5. The second number in arterial blood pressure is diastolic pressure and it is caused by the force of blood against the artery walls when the ventricles are relaxed.
6. If an adult at rest consistently has blood pressure which measures higher than about 140/90 mm Hg, s/he is diagnosed with the disease called hypertension AKA high blood pressure (HBP).
7. About 1 in 3 adults in the United States has HBP. A person can have it for years without experiencing any signs or symptoms, thus this disease is sometimes called the "silent" killer.
8. Blood flows through the heart in one direction due to the presence of two sets of valves in the heart: atrioventricular valves close when the ventricles contract, thus preventing backflow of blood from the ventricles into the atria.
Learn more about artery wall from the given link
https://brainly.com/question/30282575
#SPJ11
Stomach contents are made very acidic (as low as pH=1) by the production and secretion of by cells of the stomach. This is necessary to activate and provide the optimal environment for the enzymatic activity for the enzyme produced and secreted by cells, which digests proteins.
Stomach acid, produced by parietal cells, plays a vital role in protein digestion, bacterial defense, and optimal enzymatic activity. It is regulated by hormones and signaling pathways to maintain proper acidity.
The stomach is known for its acid environment, which is produced by cells that help in activating enzymatic activity. This acid environment is crucial for the enzymatic digestion of proteins. The cells that secrete acid are the parietal cells in the stomach.
The acidity produced in the stomach can be as low as pH=1, which is extremely acidic. The acid produced in the stomach by the parietal cells is hydrochloric acid. The acidity of the stomach acid kills any bacteria that may have entered the stomach and also helps in the digestion of proteins.
The enzyme pepsin, which is produced and secreted by cells of the stomach, works optimally in an acidic environment. Therefore, the acidity of the stomach acid is necessary to provide an optimal environment for the enzymatic activity of pepsin. Stomach acid is regulated by various hormones and signaling pathways. The hormone gastrin, which is secreted by G cells in the stomach, stimulates the secretion of stomach acid by the parietal cells.
The signaling pathway involving histamine also stimulates acid secretion. Additionally, the hormone somatostatin inhibits the secretion of stomach acid. These regulatory mechanisms ensure that the acidity of the stomach is appropriately regulated.
To learn more about Stomach acid
https://brainly.com/question/29483994
#SPJ11
how to write medical equipment report on x ray
A medical equipment report on X-ray is a document that details the current status of X-ray equipment at a medical facility.
In order to write a medical equipment report on X-rays, you should include the following information:
Overview: Begin by giving a brief overview of the equipment being reported on, including the make and model, date of purchase or installation, and location of the equipment.
Description: Describe the physical attributes of the equipment, including its size, weight, and any notable features. Also, describe the purpose of the equipment and how it is used.
Functionality: Detail the current state of the equipment's functionality. Explain any issues or problems that have arisen, as well as any repairs or maintenance that have been performed. If the equipment is in good working order, simply note that it is functioning as intended.
Maintenance history: Include a brief history of the equipment's maintenance, including any scheduled or unscheduled maintenance that has been performed. This should include any replacement parts or repairs that have been done, as well as any warranties or service agreements that are in effect. Also, add the most recent date when the equipment was serviced by a technician.
Technical specifications: Provide technical specifications for the equipment, including its power requirements, imaging capabilities, and any additional features or functions. This information can usually be found in the equipment's user manual or technical documentation.
Conclusion: Conclude the report by summarizing the information presented, noting any recommendations for repairs, replacement, or upgrades, and providing contact information for the person responsible for the equipment or for further questions.
To learn more about X-rays here
https://brainly.com/question/32410933
#SPJ11
3. How do the following influence the glomerular filtration rate? What is most important?
A.) Difference in pressure between blood in glomerular capillaries and filtrate in the Bowman’s space
B.) Difference in pressure between blood in peritubular capillaries and filtrate in the Bowman’s space
C.) Difference in pressure between blood in glomerular capillaries and filtrate in the distal tubule
D.) Difference in pressure between peritubular capillaries and filtrate in the proximal tubule
E.) Difference in pressure between afferent arterioles and efferent arterioles
The most important factor that influences the glomerular filtration rate is the difference in pressure between blood in glomerular capillaries and filtrate in the Bowman's space .The glomerular filtration rate is defined as the amount of blood plasma that passes through the glomeruli of the kidney's nephrons per unit time. It is typically expressed as a unit of volume per unit time (mL/min).Several factors influence the glomerular filtration rate (GFR), including the difference in pressure between blood in glomerular capillaries and filtrate in the Bowman's space.
The GFR is increased when the pressure difference is high and decreased when the pressure difference is low .The other factors listed in the question also influence the GFR, but they are less important than the pressure difference between blood in glomerular capillaries and filtrate in the Bowman's space. In general, the GFR is determined by the balance between the pressures that drive filtration and the pressures that oppose filtration .
Learn more about filtration
https://brainly.com/question/31609992
#SPJ11
1. In 2020, Putin critic Alexei Navalny was poisoned with Novichoc, which inhibits the acetylcholinesterase in the synapse cleft of motor neurons. The acetylcholinesterase breaks down acetylcholine. of the following options, select the steps in signaling from motor neuron to muscle contraction that are being affected by Novichoc Select one or more answers a. The frequency of action potentials in the motor neuron b. The amount of sodium channels that open in the muscle cell at the synapse cleft c. The frequency of action potentials in the muscle cell d. The amount of calcium in the cytosol in the muscle cell e. Anthe number of sarcomers in the muscle cell
Novichoc is known to prevent the breakdown of acetylcholine by inhibiting acetylcholinesterase in the synapse cleft of motor neurons. This compound ultimately affects signaling from the motor neuron to muscle contraction. The options below describe the steps in signaling from the motor neuron to muscle contraction that are affected by Novichoc. The correct options are:
a. The frequency of action potentials in the motor neuron
b. The amount of sodium channels that open in the muscle cell at the synapse cleft
c. The frequency of action potentials in the muscle cell
d. The amount of calcium in the cytosol in the muscle cell
Explanation:
When an action potential reaches the presynaptic terminal of the motor neuron, it triggers the release of a chemical neurotransmitter called acetylcholine. Acetylcholine diffuses across the synaptic cleft and binds to specific receptors on the postsynaptic membrane. The binding of acetylcholine to the postsynaptic receptors results in the opening of sodium channels and the entry of sodium ions into the muscle cell.
The influx of sodium ions depolarizes the muscle cell, generating an action potential that travels along the sarcolemma and into the T-tubules. This action potential triggers the release of calcium ions from the sarcoplasmic reticulum, which binds to troponin, causing the tropomyosin to move and exposing the actin binding sites. Myosin cross-bridges then bind to the actin, causing muscle contraction.
Novichoc inhibits acetylcholinesterase, which prevents the breakdown of acetylcholine in the synapse cleft. The accumulation of acetylcholine leads to overstimulation of the postsynaptic receptors, causing continuous depolarization of the muscle cell membrane, which ultimately leads to muscle paralysis. Thus, the frequency of action potentials in the motor neuron, the amount of sodium channels that open in the muscle cell at the synapse cleft, the frequency of action potentials in the muscle cell, and the amount of calcium in the cytosol in the muscle cell are all affected by Novichoc.
Learn more about muscle contraction from the given link
https://brainly.com/question/28446332
#SPJ11
during atrial systole_______.
a. atrial pressure exceeds ventricular pressure
b. 70% of ventricular filling occurs
c. AV valves are open
d. valves prevent backflow into the great veins
e. A and C
e. A and C. (During atrial systole, atrial pressure exceeds ventricular pressure, and AV valves are open.)
During atrial systole, both options A and C are correct. Option A states that atrial pressure exceeds ventricular pressure, which is true during atrial contraction. This allows the atria to forcefully pump blood into the ventricles. Option C states that AV (atrioventricular) valves are open, which is also true. The AV valves, including the tricuspid valve on the right side and the mitral valve on the left side, open during atrial systole to allow the flow of blood from the atria into the ventricles. This filling of the ventricles accounts for approximately 70% of the ventricular filling (option B). Option D, which states that valves prevent backflow into the great veins, is not accurate during atrial systole as the focus is primarily on the atrial-ventricular filling process.
learn more about atrial pressure here:
https://brainly.com/question/30670592
#SPJ11
Which of the following is a TRUE statement? (Check all that apply) (A) The automaticity of the heart is owed to the "pacemaker" activity of the sinoatrial node. (B) The potential pacemaker activity of the atrioventricular node and Purkinje fibers is normally suppressed by action potentials from the sinoatrial node. (C) An incomplete repolarization of the pacemaker cells may impede the initiation of the next cardiac cycle. (D) An inactivation of the enzymé adenylate cyclase will promote the ability of epinephrine to open HCN channels. (E) Parasympathetic neurons slow the heart rate by closing HCN channels. (F) Caffeine is an inhibitor of the enzyme phosphodiesterase; therefore, increases the heart rate by promoting the accumulation of CAMP in the pacemaker cell. (G) Only slow calcium channels are open during the plateau phase of the myocardial action potential. (H) The depolarization phase of the myocardial action potential appears as a vertical line because myocardial cells are automatically depolarized to the threshold by the action potential from the pacems . (I) Action potential conduction is faster between the SA node and the AV node than in the Purkinje fibers. (J) A myocardium aimost completes a contraction by the time it recovers from the triggering action potential, hence no possibility of summation or tetanus. (K) For each myocardial contraction, all myocardial cells are recruited at once to contract as a single unit.
The true statements are:
(A) The automaticity of the heart is owed to the "pacemaker" activity of the sinoatrial node.
(B) The potential pacemaker activity of the atrioventricular node and Purkinje fibers is normally suppressed by action potentials from the sinoatrial node.
(C) An incomplete repolarization of the pacemaker cells may impede the initiation of the next cardiac cycle.
(E) Parasympathetic neurons slow the heart rate by closing HCN channels.
(I) Action potential conduction is faster between the SA node and the AV node than in the Purkinje fibers.
(A) The automaticity of the heart, its ability to initiate its own electrical impulses, is primarily due to the pacemaker activity of the sinoatrial (SA) node, which sets the rhythm of the heartbeat.
(B) The pacemaker activity of the atrioventricular (AV) node and Purkinje fibers is normally suppressed by the action potentials generated by the SA node, ensuring that the SA node maintains control over the heart rate.
(C) An incomplete repolarization of the pacemaker cells can impede the initiation of the next cardiac cycle, affecting the regularity of the heartbeat.
(E) Parasympathetic neurons slow down the heart rate by releasing neurotransmitters that close HCN (hyperpolarization-activated cyclic nucleotide-gated) channels, which play a role in pacemaker activity.
(I) Action potential conduction is faster between the SA node and the AV node compared to the Purkinje fibers, allowing for proper coordination and synchronization of the atrial and ventricular contractions.
Therefore, options A, B, C, E, and I are true statements.
You can learn more about heartbeat at
https://brainly.com/question/17479293
#SPJ11
Why does testosterone act on receptors inside a cell, instead of outside a cell?____ a
Testosterone acts on receptors inside a cell rather than outside a cell because it is a steroid hormone that is lipid-soluble and can readily cross the cell membrane.
Steroid hormones, including testosterone, are derived from cholesterol and have a specific chemical structure that allows them to pass through the hydrophobic lipid bilayer of the cell membrane. Once inside the cell, testosterone binds to intracellular receptors known as nuclear receptors. These receptors are typically located in the cytoplasm or nucleus of the target cell.
When testosterone binds to its receptor, it forms a hormone-receptor complex that can directly interact with the cell's DNA. This complex acts as a transcription factor, influencing gene expression by either activating or inhibiting specific genes. The changes in gene expression induced by testosterone influence various cellular processes and mediate the physiological effects of the hormone.
By acting on receptors inside the cell, testosterone can exert long-lasting and profound effects on gene expression and cellular function. This intracellular mechanism allows testosterone to regulate the development, maintenance, and function of various tissues and organs, including the reproductive system, muscle mass, bone density, and other secondary sexual characteristics.
In contrast, hormones that act on receptors located on the cell surface, such as peptide hormones, cannot pass through the cell membrane due to their hydrophilic nature. Instead, they bind to receptors on the cell surface, triggering intracellular signaling cascades that eventually lead to specific cellular responses.
In summary, testosterone acts on receptors inside the cell because of its lipid-soluble nature, which enables it to cross the cell membrane. This intracellular interaction allows testosterone to directly modulate gene expression and regulate various cellular processes, contributing to its wide-ranging physiological effects.
learn more about "Testosterone ":- https://brainly.com/question/13061408
#SPJ11
Question 6 5 pts Write a definition for "adenocarcinoma." • Define every word part individually. • After you are done defining the word parts, put them together and give a complete and logical definition. • Definitions must be in your own words. You CANNOT give me the definition(s) from the textbook, a website, a dictionary, or any other source. You will not receive any credit if you do. • Spelling counts! • Example: o Definition of HEPATITIS: o Hepatitis Hepat/o = Liver, -itis = Inflammation o Definition: Inflammation of the Liver.
Adenocarcinoma is a type of cancer that develops from glandular tissues. It can occur in various parts of the body, including the colon, lung, breast, pancreas, and prostate.
Here is the definition of adenocarcinoma and its word parts individually: Word parts: Adeno-: It refers to a gland. It is a prefix used to indicate a glandular structure or element. Carcin-: It refers to cancer.- Oma: It is a suffix indicating a tumor or swelling. Adenocarcinoma is a malignant tumor that develops from glandular tissues.
It is a type of cancer that spreads aggressively and can metastasize to other parts of the body. Adenocarcinoma often occurs in the colon, lung, breast, pancreas, or prostate and can be fatal if not treated promptly and effectively.
Learn more about Adenocarcinoma:
https://brainly.com/question/28207982
#SPJ11
will someone help with current event news or incidences related to
Anatomy and physiology.I need 5 of them it can be heard in redio,tv
or magazine.Thank you
I can certainly help you with current event news or incidences related to Anatomy and Physiology.
1. Brain Implants for Paralysis Patients: Scientists have been working on developing brain implants that can help patients who are paralyzed due to spinal cord injuries to regain some mobility. This involves the use of electronic implants that can stimulate the spinal cord and other nerves to produce muscle contractions. This research has been featured in several news outlets and scientific journals.
2. CRISPR Gene Editing: The CRISPR-Cas9 system is a revolutionary gene-editing tool that has the potential to cure a wide range of genetic disorders. Scientists have used this system to edit the DNA of human embryos to correct genetic defects. This technology is still in its early stages, but it has already generated a lot of interest in the scientific community and beyond.
3. New Discoveries in Human Anatomy: In recent years, scientists have made some fascinating discoveries about the human body, including new organs that were previously unknown.
Learn more about Anatomy;
https://brainly.com/question/2844926
#SPJ11
An 83-year-old anemic male, Jose was admitted to a local hospital for recurrent urinary tract bleeding and infection associated with prostatitis.
- CBC upon admission
RBC: 4.15 × 1012/L
Hb: 81 g/L (8.1g/dL)
Hct: 0.26 L/L (26%)
Platelet: 174 × 109/L
WBC: 2.8 × 109/L
- Reflex tests:
Reticulocyte count: 2.6%
Serum iron: 18 mcg/dL
TIBC: 425 4)
Question
How do the patient's iron study results help in differentiating the diagnosis of iron deficiency from ACD? What additional test that was not done would be most helpful in this case?
5) Do the iron studies in Jose (serum iron 18 mcg/dL, TIBC 425 mcg/dL) suggest sideroblastic anemia? Do Jose's laboratory test results and clinical history indicate that a bone marrow examination is necessary, explain?
6) Does Jose need any type of treatment(s)? Justify. If you want to treat him, how would you go about doing it? Be as specific as possible.
The patient's iron study results suggest iron deficiency anemia. A bone marrow examination is necessary to diagnose the cause of anemia. Treatment should focus on addressing the underlying condition and may involve oral or IV iron supplementation, as well as treating associated issues like urinary tract bleeding and infection.
1) The patient's iron study results help in differentiating the diagnosis of iron deficiency from ACD by observing the following parameters: Serum iron levels: low in iron deficiency but normal or elevated in ACDTIBC (Total iron binding capacity): increased in iron deficiency but is normal or decreased in ACD% Transferrin saturation: low in iron deficiency and normal or high in ACD.
In this case, the patient's serum iron levels are low, and TIBC levels are high, which suggests that the patient is suffering from iron deficiency anemia. To confirm the diagnosis of iron deficiency anemia, a ferritin test would be most helpful.
2) No, Jose's iron studies do not suggest sideroblastic anemia. 3) Yes, Jose's laboratory test results and clinical history indicate that a bone marrow examination is necessary. It is necessary because the patient has a low WBC count and RBC count, and he has recurring urinary tract bleeding and infection associated with prostatitis. The bone marrow examination is also important to diagnose the cause of anemia.
4) Yes, Jose needs treatment. The treatment should be directed towards his underlying condition, i.e., iron deficiency anemia. The following interventions can be taken to treat him: a) Oral iron supplementation: This would involve taking iron tablets orally.
Patients should take iron supplements for at least 3 to 6 months to restore iron levels. b) IV iron supplementation: This is recommended if the patient is unable to tolerate or absorb oral iron or has severe iron deficiency anemia. c) Treatment of the underlying cause: The underlying cause of anemia should also be treated. For example, in the case of Jose, recurrent urinary tract bleeding and infection associated with prostatitis should be treated.
To learn more about anemia
https://brainly.com/question/866200
#SPJ11
I've been on a roller coaster for the past two years, says Leigh Moyer, 34 years old computer professional. During 2016 to 2019, she lost 25 of her 155 pounds by diligently counting calories and logging daily sweat sessions at the gym. The Covid-19 pandemic interrupted her gym sessions in early 2020. She started working from home. Leigh blew off her workouts and stopped monitoring her food serving portions ... and shot up to 165. "It was so sad, so frustrating," she says. "I let myself down." Explain the anatomy and physiology of the loss and gain of weight.
The anatomy and physiology of the loss and gain of weight can be explained as follows: When an individual loses weight, it results from a decrease in the size of the adipocytes or fat cells.
These cells are reduced in size but not in number. As a result, when a person gains weight, it is due to an increase in the size of these cells, and not an increase in their number. Excessive calorie intake results in the body accumulating excess fat, which is stored in adipose tissue. During a pandemic like Covid-19, there are many changes that can influence weight gain, including lockdowns and gym closures that can reduce physical activity, resulting in reduced calorie expenditure.
Additionally, staying at home can lead to stress and anxiety, resulting in emotional eating or binge eating. In addition, working from home can disrupt a person's sleep pattern and increase sedentary activity. It is important to maintain a healthy diet and a healthy lifestyle during a pandemic to avoid unnecessary weight gain.
To learn more about adipocytes here
https://brainly.com/question/31670458
#SPJ11
Identify the connective tissue in the following slide:
Select one:
a.
E
b.
D
c.
A
d.
B
e.
C
The connective tissue in the given slide is option B.What is connective tissue?Connective tissues are a type of biological tissue that provides support and form to other organs and tissues of the body.
The connective tissue is composed of cells, protein fibers, and ground substance. The connective tissue plays a vital role in many body functions, such as immune defense, wound healing, and transport.The image given shows different tissue sections under a microscope, and we are required to identify the connective tissue in the given slide. By observing the slide carefully, we can see that the connective tissue is represented by option B.Option B represents adipose tissue, which is a type of loose connective tissue.
Adipose tissue contains adipocytes or fat cells that store energy and provide insulation to the body. Hence, option B is the correct answer.
Learn more about connective tissue here:https://brainly.com/question/1985662
#SPJ11
Case Study: In the middle of winter, you notice that you are beginning to develop symptoms associated with an upper respiratory viral infection - Respiratory Tract Infection (Pneumonia)
A. Explain what immune factors might be contributing to your symptoms and how those factors lead to your particular symptoms. (20%)
B. What immune mechanisms will be activated in your body to limit the infection and facilitate your recovery most effectively? (40%)
Immune factors contributing to your symptoms and how those factors lead to your particular symptomsare Respiratory tract infections are caused by a range of pathogens such as viruses, bacteria, and fungi.
Pneumonia, which is caused by bacteria or viruses, is a common respiratory tract infection. When pathogens invade the respiratory tract, it stimulates an immune response which is mounted to fight the infection. The following are the immune factors that contribute to the symptoms of upper respiratory viral infections such as pneumonia:- Inflammation:
This is the response of the immune system when the body is trying to defend itself from infection. The cells of the immune system are activated to release inflammatory chemicals to the site of infection to kill the pathogens. The inflammation causes the airways to narrow, making it harder for air to move in and out of the lungs, and causing symptoms such as cough and difficulty breathing.-
Increased mucus production: The immune system activates the cells lining the airways to produce more mucus to trap the pathogens. The excess mucus blocks the airways, making it harder to breathe.- Fever: The immune system raises the body's temperature in response to the infection, which can cause fatigue, weakness, and headaches. B. Immune mechanisms that will be activated in your body to limit the infection and facilitate your recovery most effectively:
Innate immunity: This is the first line of defense that is activated immediately after an infection. It consists of physical barriers such as the skin, mucous membranes, and enzymes in body fluids that prevent the entry and spread of pathogens. It also includes cells such as natural killer cells, neutrophils, and macrophages that detect and destroy pathogens.-
Adaptive immunity: This is a more specialized immune response that is activated after the innate immune response. It involves the activation of T cells and B cells that can recognize and target specific pathogens. The activated B cells produce antibodies that can neutralize the pathogens, while the T cells can directly kill infected cells.- Inflammation:
However, excessive inflammation can be harmful, so the immune system needs to regulate the response to prevent damage to the host tissues.- Cytokines: These are chemical messengers that are produced by immune cells to communicate with each other. They play a critical role in coordinating the immune response and can help to limit the infection by activating immune cells and inducing inflammation.
To know more about Immune factors , visit:-
brainly.com/question/28149600
#SPJ11
berk jm, tifft ke, wilson kl. the nuclear envelope lem-domain protein emerin. nucleus 2013;4:298-314.
The article titled “The nuclear envelope Lem-domain protein emerin” by Berk JM, Tifft KE, Wilson KL was published in the journal Nucleus in 2013. The article describes emerin, a protein that is found in the nuclear envelope and is important for the maintenance of nuclear architecture.
Protein is one of the most important molecules found in the body. Proteins are the building blocks of life and play many critical roles in the body. They are responsible for many important functions such as carrying out cellular metabolism, serving as structural components of cells, transporting molecules across membranes, and serving as enzymes and hormones. Proteins are also important in the field of medicine, where they are used to create new drugs and treatments for a variety of diseases.
For example, some drugs are designed to target specific proteins that are involved in the development of cancer. The article by Berk JM, Tifft KE, and Wilson KL describes the nuclear envelope Lem-domain protein emerin. This protein is found in the nuclear envelope and is important for the maintenance of nuclear architecture. Emerin has been shown to interact with other proteins, including lamin A and B, which are important for the stability of the nuclear envelope. Mutations in the emerin gene have been linked to several diseases, including Emery-Dreifuss muscular dystrophy (EDMD), which is a rare genetic disorder that affects the muscles and the heart. In conclusion, the article by Berk JM, Tifft KE, and Wilson KL provides valuable insights into the function of emerin and its role in maintaining nuclear architecture.
To know more about Protein visit:
https://brainly.com/question/31017225
#SPJ11
1.Discuss the mechanism of mitochondrial ATPase. In your answer, describe localisation, enzyme functions and driving forces of this central process.
2.Explain how ammonia is generated during the breakdown of amino acids to generate energy, and outline how the ammonia formed is detoxified in the urea cycle.
Mitochondrial ATPase, also known as ATP synthase or Complex V, is an enzyme complex found in the inner mitochondrial membrane. Its main function is to catalyze the synthesis of ATP (adenosine triphosphate) from ADP (adenosine diphosphate) and inorganic phosphate (Pi).
Mechanism of Mitochondrial ATPase:Mitochondrial ATPase, also known as ATP synthase or Complex V, is an enzyme complex found in the inner mitochondrial membrane. Its main function is to catalyze the synthesis of ATP (adenosine triphosphate) from ADP (adenosine diphosphate) and inorganic phosphate (Pi). This process occurs during oxidative phosphorylation, where ATP is generated as a result of the electron transport chain.
Localization:Mitochondrial ATPase is embedded in the inner mitochondrial membrane. It consists of two main components: F1 and Fo. F1 is located on the matrix side (inner side) of the membrane, while Fo spans the membrane and protrudes into the intermembrane space.
Enzyme Functions:The mitochondrial ATPase functions through a process called chemiosmosis, utilizing the energy gradient of protons (H+) across the inner mitochondrial membrane. The mechanism involves two key activities:
Proton Translocation (Fo component):The Fo component contains a proton channel, which allows protons to flow from the intermembrane space to the matrix. This proton flow is driven by the electrochemical gradient created during electron transport chain reactions. As protons move through Fo, it induces conformational changes in the F1 component.
ATP Synthesis (F1 component):The F1 component contains catalytic sites where the actual synthesis of ATP occurs. The conformational changes induced by proton flow in Fo cause rotation of the F1 component, leading to the binding of ADP and Pi and subsequent formation of ATP.
Driving Forces:The driving forces behind mitochondrial ATPase can be summarized as follows:
a. Proton Gradient:The electrochemical gradient of protons across the inner mitochondrial membrane, generated by the electron transport chain, provides the necessary energy for ATP synthesis. The flow of protons back into the matrix through ATPase drives the rotation of the F1 component and facilitates ATP synthesis.
b. Conformational Changes:The conformational changes induced by proton flow in Fo cause the rotation of the F1 component. This rotation is crucial for the catalytic binding and conversion of ADP and Pi into ATP.
Generation and Detoxification of Ammonia:During the breakdown of amino acids for energy production, ammonia (NH3) is generated as a byproduct. This occurs through the process of deamination, where the amino group (-NH2) is removed from the amino acid. The amino group is converted into ammonia, while the remaining carbon skeleton is utilized for energy production or converted into other molecules.
To prevent the toxic accumulation of ammonia, the body employs the urea cycle, a process that occurs primarily in the liver. The urea cycle involves several enzymatic reactions that convert ammonia into urea, a less toxic compound that can be excreted by the kidneys. Here is a simplified outline of the urea cycle:
Ammonia enters the urea cycle as carbamoyl phosphate, which is synthesized from ammonia and carbon dioxide (CO2) with the help of the enzyme carbamoyl phosphate synthetase I (CPS I).
Carbamoyl phosphate combines with ornithine to form citrulline in a reaction catalyzed by the enzyme ornithine transcarbamylase.
Citrulline is transported out of the mitochondria and enters the cytoplasm. In the cytoplasm, it reacts with aspartate to form argininosuccinate. This reaction is catalyzed by the enzyme argininosuccinate synthetase.
Argininosuccinate is then converted into arginine and fumarate through the action of the enzyme argininosuccin
Learn more about Mitochondrial ATPase from the given link
https://brainly.com/question/250287
#SPJ11
HELP! Compare convection currents in the ocean with convection currents in the atmosphere. Use complete sentences and give at least two supporting details.
I don't know what to put please help!
This is for science by the way, not biology.
Convection currents are fluid movements that occur as a result of heating and cooling processes. These currents can occur in both the atmosphere and the ocean. However, the mechanisms and processes involved in the formation of these convection currents differ in both systems. The difference between convection currents in the ocean and convection currents in the atmosphere.
The following are some of the differences between the convection currents in the ocean and the convection currents in the atmosphere:
Mechanism: In the atmosphere, convection currents are mainly caused by solar heating, which heats up the earth's surface unevenly. The heat causes the air to rise and create low-pressure zones. This air then cools and descends, creating high-pressure zones. The movement of air from high to low-pressure zones creates wind. In the ocean, convection currents are primarily driven by density differences, which are caused by differences in temperature and salinity.
Supporting details: When seawater is heated, it becomes less dense, and it rises to the surface. When seawater cools, it becomes denser, and it sinks to the bottom. The temperature and salinity differences that cause these density variations are caused by factors such as differences in the amount of sunlight that reaches the water's surface and variations in the amount of freshwater runoff.
The vertical scale: Convection currents in the atmosphere are typically deeper than those in the ocean. The depth of atmospheric convection currents can range from several kilometers to the top of the troposphere. In contrast, the depth of oceanic convection currents is typically limited to the upper 1000 meters of the ocean. This is because the ocean is generally much denser than the atmosphere, and it is harder for heat to penetrate deep into the ocean.
Supporting details: The density of seawater is approximately 1000 times higher than that of air. As a result, it takes much more energy to heat up seawater than it does to heat up air, which means that the ocean's surface layers absorb much more of the sun's heat than the deeper layers. This means that convection currents in the ocean tend to be limited to the upper layers of the water column.
Know more about solar heating here :
brainly.com/question/26996338
#SPJ8
What decision would you ultimately make, and why? explain whether you feel more closely aligned with the anthropocentrist philosophy of gifford pinochet, or the ecocentrist philosophy of john muir?
I feel more closely aligned with John Muir’s as his philosophy tells about the nature and how to preserve it.
Anthropocentrism, as advocated by Gifford Pinchot, places human beings at the centre of environmental decision-making. Pinchot emphasized the responsible and sustainable use of natural resources for the benefit of present and future generations. This perspective recognizes the importance of human needs, economic growth, and development while aiming to manage and conserve natural resources effectively.
On the other hand, John Muir's ecocentrism emphasizes the intrinsic value of nature, independent of human interests. Muir believed in the preservation and protection of wilderness areas for their own sake, prioritizing the well-being of ecosystems and non-human species. This perspective promotes the idea of living in harmony with nature and respecting its inherent rights.
Know more about Nature here:
https://brainly.com/question/16508109
#SPJ4
Water conservation and the importance of the medullary gradient: What is the reason for the gradient and what powers the gradient? What is the role of the vasa recta? What is the water permeability difference between the ascending and descending limbs of the nephron loop? What is the effect of ADH on the water permeability of the collecting duct? Review HORMONE CHART for ANP, ADH, Renin, Angiotensin, Aldosterone... the highlighted hormones. Renal handling of electrolytes: Na+ is linked to water and volume; Aldosterone handles Na+ / water retention and K+
excretion; K+ is linked to membrane stability, cardiac stability; K+ also gets exchanged in the kidney for H+
if there is a pH problem. It goes intracellular if high H+
concentration in the blood: what is then meant by the fact that on a gravely ill person you don't treat an abnormal potassium level (high or low) if you don't know/follow the pH ?
The medullary gradient plays a crucial role in water conservation within the kidneys. It is the osmotic gradient created in the medulla of the kidney that allows for the reabsorption of water and concentration of urine.
The vasa recta, a network of blood vessels surrounding the nephron loop, helps maintain the medullary gradient by preventing the washout of the concentrated medullary interstitial fluid. It acts as a countercurrent exchange system, allowing for the exchange of solutes and water between the descending and ascending limbs of the vasa recta.
The descending limb of the nephron loop is highly permeable to water but less permeable to solutes, while the ascending limb is impermeable to water but actively transports solutes. This difference in permeability creates a concentration gradient, enabling the reabsorption of water and the dilution of urine.
To learn more about Reabsorption visit here:
brainly.com/question/32164401
#SPJ11
When making a normal, dilute urine, the Distal Convoluted Tubule and Collecting Ducts are_______ to water and the urine is_____
◯ Permeable: hypotonic ◯ Impermeable; hypertonic ◯ Permeable; hypertonic ◯ Impermeable: hypotonic
When making a normal, dilute urine, the Distal Convoluted Tubule and Collecting Ducts are impermeable to water, and the urine is hypotonic.
The distal convoluted tubule and collecting ducts play a crucial role in the final concentration and dilution of urine. In the process of urine formation, these segments of the nephron regulate the reabsorption or secretion of water and solutes, ultimately determining the concentration of the urine.
In a normal, dilute urine scenario, the distal convoluted tubule and collecting ducts are impermeable to water. This means that water cannot freely pass through these tubules and ducts back into the bloodstream. As a result, water remains in the tubular fluid, leading to a higher water content and a lower concentration of solutes in the urine. This makes the urine hypotonic, meaning it has a lower concentration of solutes compared to the blood.
So, the correct answer is d. Impermeable: hypotonic.
The correct format of the question should be:
When making a normal, dilute urine, the Distal Convoluted Tubule and Collecting Ducts are_______ to water and the urine is_____.
a. Permeable: hypotonic
b. Impermeable; hypertonic
c. Permeable; hypertonic
d. Impermeable: hypotonic
To learn more about distal convoluted tubule, Visit:
https://brainly.com/question/10033530
#SPJ11
• For each clinical case:
• What is the most probable diagnosis and what are the most probable causes for the
disease?
• Create a diagram describe the pathophysiology of the development of the fluid & electrolyte abnormalities in each clinical scenario. (see the diagram included in todays lecture, slide 29 "Sympathetic nervous system effects on Na+ excretion" must be similar)
• Answer the including questions about the last clinical case • Include at least 3 references in APA format
• Work should be submitted in pdf format
A 43-year-old man who had recorded a blood pressure of 170/98 mmHg during an insurance physical visited his family physician.
His history and physical examination was unremarkable, except he had noticed that, when working out in his home gym, his regular regimen had been more exhausting than usual over the past couple of months.
His blood pressure was 174/100 mm Hg sitting and standing and similar in all 4 extremities.
Laboratory data (normal in parentheses):
Serum: Na+ 144 mEq/L (142), K+ 2.8 mEq/L (4), Cl- 96 mEq/L (103), HCO3 - 34 mEq/L (24), Creatinine 1.0 mg/dl (0.6-1.2), Blood urea nitrogen 16 mg/dl (7-18), Glucose 88 mg/dl (fasting 70-110).
Urine: Na+ 58 mEq/L, K+ 34 mEq/L, Osmolality 650 mOsm/kg water.
The provided information explains the pathophysiology of secondary aldosteronism, specifically in the context of renovascular disease or renal artery stenosis. Here's a summary:
1. Renin is secreted by the juxtaglomerular apparatus in the kidney in response to low blood volume or low blood pressure.
2. Renin converts angiotensinogen to angiotensin I.
3. Angiotensin I is further converted to angiotensin II by angiotensin-converting enzyme (ACE) in the lungs.
4. Angiotensin II stimulates the production of aldosterone by the zona glomerulosa of the adrenal gland.
5. Angiotensin II has multiple effects:
- Constriction of efferent arterioles in the kidney, leading to increased glomerular filtration rate (GFR) and urine flow.
- Constriction of arterioles throughout the body, increasing total peripheral resistance and raising blood pressure.
- Induction of sodium and water retention in the renal tubules through increased aldosterone levels.
6. Increased aldosterone levels cause the loss of potassium through the kidneys, resulting in hypokalemia.
In the case of secondary aldosteronism associated with renovascular disease or renal artery stenosis, the production of aldosterone is triggered by the condition. This leads to the retention of sodium and water and the loss of potassium.
It's important to note that the provided references can provide more in-depth information on hypertension, secondary aldosteronism, and related topics if you require further study or research.
Learn more about pathophysiology from the given link
https://brainly.com/question/33254580
#SPJ11
QUESTIONS: 1. Describe the different ways of having skeletal muscle. 2. What are the actions of the following in muscular action? a. prime mover b. antagonist c. synergist 3. Differentiate the two principal groups of skeletal muscle. Tabulate muscles in each according to origin, insertion, action and intervention
1. Different ways of having skeletal muscle
There are several ways of having skeletal muscle:
1. Voluntary muscle - This is the muscle that a person can control voluntarily.
2. Involuntary muscle - This is the muscle that is not under our conscious control.
3. Striated muscle - This is the muscle that has a striped appearance due to its structure and function.
4. Smooth muscle - This is the muscle that is found in the walls of organs, such as the digestive system and blood vessels.
2. Actions of the following in muscular action
a. Prime mover - This is the muscle that is responsible for producing a specific movement.
b. Antagonist - This is the muscle that opposes the action of the prime mover.
c. Synergist - This is the muscle that works with the prime mover to produce a specific movement.
3. Two principal groups of skeletal muscle
The two principal groups of skeletal muscle are the axial and the appendicular muscles. The axial muscles are found in the trunk of the body and include muscles such as the diaphragm, intercostal muscles, and muscles of the back. The appendicular muscles are found in the limbs of the body and include muscles such as the biceps, triceps, and quadriceps.
Muscles in each according to origin, insertion, action, and intervention
Muscles: Axial muscles
Origin: Diaphragm
Insertion: Xiphoid process, costal margin
Action: Central tendon of diaphragm Inspiration and expiration
Intervention: Breathing techniques
Muscles: Intercostal muscles
Origin: Ribs superior to each rib below Inferior border of each rib above
Action: Contraction of these muscles causes elevation of the ribcage and an increase in thoracic volume.
Intervention: Stretching
Muscles: Appendicular muscles
Origin: Biceps Brachii Long head: supraglenoid tubercle of scapula, Short head: coracoid process of scapula
Insertion: Radial tuberosity of radius
Action: Flexes elbow and supinates forearm, Stretching, exercise
Intervention: Triceps Brachii Long head: infraglenoid tubercle of scapula, Lateral head: posterior humerus, Medial head: posterior humerus Olecranon of ulna Extends elbow and adducts arm Stretching, exercise
Learn more about skeletal muscle:
https://brainly.com/question/12252128
#SPJ11
The Mousterian stone tool assemblage is mostly associated with which species? A. Denisovans B. Neanderthals C. Homo heidelbergensis D. Anatomically E. Modern Humans
The Mousterian stone tool assemblage is mostly associated with the species Neanderthals. The Mousterian stone tool assemblage is a stone tool culture that is associated mainly with the Neanderthals, and which appears in Europe between around 400,000 and 50,000 years ago.
During the Middle Palaeolithic era, Neanderthals employed a specialised stone tool technology known as the Mousterian industry. These stone tools are distinguished by a range of tool types, such as handaxes, scrapers, and points, all of which were made using the technique of flint knapping. The Mousterian implements, which are proof of the technological prowess and cultural practices of Neanderthals, have been discovered in several archaeological sites throughout Europe, Western Asia, and portions of Africa.
Learn more about Mousterian stone tool at https://brainly.com/question/31459150
#SPJ11
Question 33 Control of blood pressure is a combination of cardiac output, blood volume and peripheral resistance, which of the following produces a hormone that plays a role in controlling blood volume? 1) anterior pituitary 2) sympathetic nerves 3) posterior pituitary 4) thyroid glands
5) adrenal glands
Control of blood pressure is a combination of cardiac output, blood volume and peripheral resistance, posterior pituitary plays a role in controlling blood volume. The correct answer is 3.
The posterior pituitary gland produces a hormone called antidiuretic hormone (ADH), also known as vasopressin, which plays a role in controlling blood volume. ADH acts on the kidneys to regulate the reabsorption of water, thereby influencing blood volume.
The anterior pituitary gland primarily produces hormones involved in regulating other physiological processes but not specifically blood volume. Sympathetic nerves release neurotransmitters that can affect peripheral resistance but are not directly responsible for controlling blood volume.
Therefore, the correct option (3) posterior pituitary gland, through the release of ADH, is the correct answer for a hormone that plays a role in controlling blood volume.
Learn more about neurotransmitters
https://brainly.com/question/28101943
#SPJ11
Hormone release from the posterior pituitary is controlled by the hypothalamus through the use of O hypothalamic releasing hormones O hypothalamo-hypophysial portal system O hypothalamo-hypophysial tract neurosecretory cells O all of the above QUESTION 91 The Hormone ______ will cause maturation and normal development of T lymphocytes O epinephrine O glucagon O thyroid hormone O thymosin QUESTION 92 : Reduced secretion of this hormone causes type 1 diabetes mellitus O epinephrine O glucagon O thyroid hormone O insulin QUESTION 93 The hormone cortisol is released from the____ due to ___ O adrenal medulla / low blood pressure O adrenal cortex /high blood pressure O adrenal cortex / stress O adrenal medulla / stress QUESTION 94 The hormone _____ is released from the_______ when blood calcium concentration is ___
O PTH/parathyroid glands/low O EPO/kidneys / low O ADH/ kidneys / high O ADH/ lungs / low QUESTION 95 This area of the adrenal cortex releases glucocorticoids O zona fasciculata O zona glomerulosa O zona reticularis O zona medullaris QUESTION 96 Aldosterone is released from the____ and acts on____ O adrenal cortex / skeletal muscle O adrenal medulla / testes O adrenal cortex / kidney tubules O adrenal medulla / liver
QUESTION 97 Glucagon is released from the____ when blood sugar levels are__ O liver / high O thyroid gland / low O pancreas/low O pancreas/high QUESTION 98 All hormone release in the human body is regulated by negative feedback system O True O False QUESTION 99 The thyroid hormones T3 and T4 are produced within the_____ of the thyroid gland
O parafollicular cells O follicular cells O thyroid follicles O all of the above QUESTION 100 Parathyroid hormone is released from the_____ and causes increased activity of_____ O parathyroid glands / osteoblasts O thyroid gland / osteoclasts O parathyroid glands / osteoclasts O thyroid gland / osteoblasts
Hormone release from the posterior pituitary is controlled by the hypothalamus through the use of hypothalamo-hypophysial tract neurosecretory cells. Reduced secretion of insulin causes type 1 diabetes mellitus. The hormone cortisol is released from the adrenal cortex due to stress. The hormone PTH is released from the parathyroid glands when blood calcium concentration is low. Zona fasciculata releases glucocorticoids.
Aldosterone is released from the adrenal cortex and acts on kidney tubules. Glucagon is released from the pancreas when blood sugar levels are low. All hormone release in the human body is regulated by a negative feedback system. The thyroid hormones T3 and T4 are produced within the follicular cells of the thyroid gland. Parathyroid hormone is released from the parathyroid glands and causes increased activity of osteoclasts. Hypothalamus is responsible for hormone release from the posterior pituitary through the use of hypothalamo-hypophysial tract neurosecretory cells. The posterior pituitary secretes two hormones - oxytocin and antidiuretic hormone (ADH) - directly into the bloodstream. The hypothalamus produces both oxytocin and ADH and controls their release.
The hormone thymosin will cause maturation and normal development of T lymphocytes. Reduced secretion of insulin causes type 1 diabetes mellitus. The hormone cortisol is released from the adrenal cortex due to stress. The hormone PTH is released from the parathyroid glands when blood calcium concentration is low. Zona fasciculata releases glucocorticoids. Aldosterone is released from the adrenal cortex and acts on kidney tubules.
Glucagon is released from the pancreas when blood sugar levels are low.All hormone release in the human body is regulated by a negative feedback system.The thyroid hormones T3 and T4 are produced within the follicular cells of the thyroid gland. Parathyroid hormone is released from the parathyroid glands and causes increased activity of osteoclasts.
Know more about posterior pituitary
https://brainly.com/question/31607913
#SPJ11