Exercises 2.78 A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes: = 1 bar, Process 1-2: Compression with pV = constant, from pi V₁ = 2 m³ to V₂ = 0.2 m³, U₂ − U₁ = 100 kJ. Process 2-3: Constant volume to P3 = P₁. Process 3-1: Constant-pressure and adiabatic process. There are no significant changes in kinetic or potential energy. Determine the net work of the cycle, in kJ, and the heat transfer for process 2-3, in kJ. Is this a power cycle or a refrigeration cycle? Explain. Wnet = -280.52 kJ; Q23 = 80kJ

Answers

Answer 1

In the given thermodynamic cycle, the network of the cycle is determined to be -280.52 kJ, and the heat transfer for processes 2-3 is 80 kJ. This cycle is a power cycle because it involves a network output.

To calculate the network of the cycle, we need to determine the work for each process and then sum them up.

For Process 1-2, since the compression occurs with pV = constant, the work done can be calculated using the equation W = p(V₂ - V₁). Substituting the given values, we find W₁₂ = -100 kJ.

For Process 2-3, as it is a constant volume process, no work is done (W₂₃ = 0).

For Process 3-1, as it is a constant-pressure and adiabatic process, no heat transfer occurs (Q₃₁ = 0).

The network of the cycle is the sum of the work for each process, so W_net = W₁₂ + W₂₃ + W₃₁ = -100 kJ + 0 + 0 = -100 kJ.

The heat transfer for processes 2-3 is given as Q₂₃ = 80 kJ.

Since the network output (W_net) is negative, indicating work done by the system, and heat is transferred into the system in processes 2-3, this cycle is a power cycle. In a power cycle, work is done by the system, and heat is transferred into the system to produce a network output.

To know more about the thermodynamic cycle click here:

https://brainly.com/question/30630564

#SPJ11


Related Questions

A string with a linear density of 7.11 × 10 ^- 4 k g / m and a length of 1.14m is stretched across the open end of a closed tube that is 1.39m long. The diameter of the tube is very small. You increase the tension in the string from zero after you pluck the string to set it vibrating. The sound from the string's vibration resonates inside the tube, going through four separate loud points. What is the tension in the string when you reach the fourth loud point? Assume the speed of sound in air is 343m/s.

Answers

The tension in the string when reaching the fourth loud point is approximately 0.725 Newtons. The fundamental frequency is 61.97 Hz. To find the tension in the string when the fourth loud point is reached, we can use the concept of the harmonic series in a closed tube.

The fundamental frequency of a closed tube is given by:

f = v / (4L),

where f is the fundamental frequency, v is the speed of sound, and L is the length of the tube.

In this case, the length of the tube is given as 1.39 m, so we can calculate the fundamental frequency:

f = 343 m/s / (4 * 1.39 m)

≈ 61.97 Hz

The fundamental frequency corresponds to the first loud point. Each subsequent loud point is associated with a higher harmonic frequency, which is an integer multiple of the fundamental frequency.

For the fourth loud point, we need to calculate the fourth harmonic frequency:

f4 = 4 * f

≈ 4 * 61.97 Hz

≈ 247.88 Hz

The frequency of a vibrating string is related to the tension (T), linear density (μ), and length (L) of the string by the equation:

f = (1 / 2L) * √(T / μ)

Rearranging the equation to solve for tension:

T = ([tex]4L^2[/tex]* μ *[tex]f^2)[/tex]

Given that the linear density (μ) of the string is 7.11 × [tex]10^(-4)[/tex] kg/m, the length (L) of the string is 1.14 m, and the frequency (f) is 247.88 Hz (fourth harmonic frequency), we can calculate the tension (T):

T = (4 * ([tex]1.14 m)^2 * 7.11 * 10^(-4)[/tex]kg/m * (247.88 [tex]Hz)^2)[/tex]

≈ 0.725 N

Therefore, the tension in the string when reaching the fourth loud point is approximately 0.725 Newtons.

Learn more about tension here:

https://brainly.com/question/30037765

SPJ11

Suppose 435 mL of Ne gas at 21 °C and 1. 09 atm, and 456 mL of SF6 at 25 °C and 0. 89 atm are put into a 325 mL flask at 30. 2 °C (a) What will be the total pressure in the flask? (b) What is the mole fraction of for each of the gases in the flask?

Answers

(a) To determine the total pressure in the flask, we need to consider the partial pressures of each gas present and add them together.

Using the ideal gas law, we can calculate the partial pressure of each gas:

PV = nRT

For Ne gas:

P₁V₁ = n₁RT

P₁ = (n₁/V₁)RT

For SF6 gas:

P₂V₂ = n₂RT

P₂ = (n₂/V₂)RT

To find the total pressure, we add the partial pressures:

P_total = P₁ + P₂

(b) The mole fraction (χ) of each gas can be calculated using the formula:

χ = moles of gas / total moles of gas

To find the moles of each gas, we use the ideal gas law rearranged:

n = PV / RT

Now, let's calculate the values.

Given:

Volume of Ne gas (V₁) = 435 mL = 0.435 L

Temperature of Ne gas (T₁) = 21 °C = 294 K

Pressure of Ne gas (P₁) = 1.09 atm

Volume of SF6 gas (V₂) = 456 mL = 0.456 L

Temperature of SF6 gas (T₂) = 25 °C = 298 K

Pressure of SF6 gas (P₂) = 0.89 atm

Volume of flask (V_total) = 325 mL = 0.325 L

Temperature of flask (T_total) = 30.2 °C = 303.2 K

Gas constant (R) = 0.0821 L·atm/(K·mol)

(a) To calculate the total pressure:

P₁ = (n₁/V₁)RT₁

P₁ = (PV₁/RT₁)

P₂ = (n₂/V₂)RT₂

P₂ = (PV₂/RT₂)

P_total = P₁ + P₂

(b) To calculate the mole fraction:

n₁ = P₁V_total / RT_total

n₂ = P₂V_total / RT_total

χ₁ = n₁ / (n₁ + n₂)

χ₂ = n₂ / (n₁ + n₂)

By plugging in the given values and performing the calculations, we can find the total pressure in the flask and the mole fraction of each gas.

Learn more about pressure here:-

brainly.com/question/30351725

#SPJ11

The Maxwell speed distribution (a) Verify from the Maxwell speed distribution that the most likely speed of a molecule is √2kT/m. - (b) Use a computer to plot the Maxwell speed distribution for nitrogen molecules at T 300 K and T 600 K. Plot both graphs on the same axes, and label the axes values.

Answers

The Maxwell speed distribution of a gas is given by the expression,1. f(v) = (m/2πkT)3/2 exp[-m*v2/2kT]. Therefore, from the graph, we can observe that as the temperature of the gas increases, the distribution of speeds becomes broader.

Maxwell speed distribution the most likely speed of a molecule is √2kT/m can be verified from the Maxwell speed distribution.

The Maxwell speed distribution of a gas is given by the expression,1. f(v) = (m/2πkT)3/2 exp[-m*v2/2kT]

where, f(v) is the number of molecules having a speed v within the range v to v+dv.

The most likely speed of a molecule can be obtained by differentiating f(v) with respect to v and equating the result to zero, df(v)/dv = (m/2πkT)3/2 {d/dv(exp[-m*v2/2kT])} = 0we get the most likely speed vmp as, vmp = √(2kT/m)

The plot for the Maxwell speed distribution of nitrogen molecules at temperatures of 300 K and 600 K are shown in the figure below:

The x-axis represents the speed v and the y-axis represents the fraction of molecules f(v).

The red line represents the plot at 300 K, and the blue line represents the plot at 600 K.

Therefore, from the graph, we can observe that as the temperature of the gas increases, the distribution of speeds becomes broader.

Learn more about Maxwell speed distribution here:

https://brainly.com/question/31648187

#SPJ11

Aone-gram sample of thorium ²²⁸Th contains 2.64 x 10²¹ atoms and undergoes a decay with a half-life of 1.913 yr (1.677 x 10⁴h).Each disintegration releases an energy of 5.52 MeV (8.83 x 10⁻¹³ J). Assuming that all of the energy is used to heat a 3.72-kg sample of water, find the change in temperature of the sample that occurs in one hour. Number i _____Units

Answers

one-gram sample of thorium ²²⁸Th contains 2.64 x 10²¹ atoms and undergoes a decay with a half-life of 1.913 yr (1.677 x 10⁴h).Each disintegration releases an energy of 5.52 MeV (8.83 x 10⁻¹³ J).

To find the change in temperature of the water sample, we need to calculate the total energy released by the decay of the thorium sample and then use it to calculate the change in temperature using the specific heat capacity of water.

Given:

Mass of thorium sample = 1 gNumber of thorium atoms = 2.64 x 10^21 atomsDecay energy per disintegration = 5.52 MeV = 5.52 x 10^-13 JHalf-life of thorium = 1.913 years = 1.677 x 10^4 hoursMass of water sample = 3.72 kg

Step 1: Calculate the total energy released by the decay of the thorium sample.

To find the total energy, we need to multiply the energy released per disintegration by the number of disintegrations.

Total energy released = Energy per disintegration x Number of disintegrations

Total energy released = (5.52 x 10^-13 J) x (2.64 x 10^21)

Step 2: Convert the time period of one hour to seconds.

1 hour = 60 minutes x 60 seconds = 3600 seconds

Step 3: Calculate the change in temperature of the water sample.

The change in temperature can be calculated using the equation:

Change in temperature = Energy released / (mass of water x specific heat capacity of water)

Specific heat capacity of water = 4.18 J/g°C

First, we need to convert the mass of the water sample to grams.

Mass of water sample in grams = 3.72 kg x 1000 g/kg

Now, we can substitute the values into the equation:

Change in temperature = (Total energy released) / (Mass of water sample x Specific heat capacity of water)

Remember to convert the change in temperature to the desired units.

Let's calculate the change in temperature:

Total energy released = (5.52 x 10^-13 J) x (2.64 x 10^21)

Mass of water sample in grams = 3.72 kg x 1000 g/kg

Specific heat capacity of water = 4.18 J/g°C

Change in temperature = (Total energy released) / (Mass of water sample x Specific heat capacity of water)

Finally, convert the change in temperature to the desired units.

Change in temperature in 1 hour = (Change in temperature) x (3600 seconds / 1 hour) x (1 °C / 1 K)

To learn more about Half-life visit: https://brainly.com/question/1160651

#SPJ11

You are given a vector in the xy plane that has a magnitude of 81.0 units and a y component of −69.0 units. Part B Assuming the x component is known to be positive, specify the magnitude of the vector which, if you add it to the original one, would give a resultant vector that is 80.0 units long and points entirely in the −x direction. Part C Specify the direction of the vector. Express your answer using three significant figures

Answers

Part A: we have the following:|a| = √(ax² + ay²) = √(81² + (-69)²) = 105 units.Part B: The magnitude of the second vector is 44.1 units.

Part C: The direction of the vector is 57.1 degrees below the negative x-axis.

Part A:To find the magnitude of a vector, the Pythagorean theorem is used. Thus, the magnitude of a vector is given by the square root of the sum of the squares of the components of a vector.|a| = √(ax² + ay²)Where ax is the x-component and ay is the y-component of vector a.Using this formula, we have the following:|a| = √(ax² + ay²) = √(81² + (-69)²) = 105 units.

Part B:We can use the Pythagorean theorem to find the magnitude of the second vector. If v is the second vector, then:v = -sqrt((80)^2 - (105)^2) = -44.1 units.The magnitude of the second vector is 44.1 units.

Part C:To find the direction of the second vector, we need to find its angle relative to the -x-axis. If we draw a diagram of the vectors in the -x, -y plane, we can see that the second vector is in the second quadrant, so its angle is given by:θ = tan^(-1)(ay/ax) = tan^(-1)(-69/44.1) = -57.1°.Thus, the direction of the vector is 57.1 degrees below the negative x-axis.The direction of the vector is 57.1 degrees below the negative x-axis.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ11

The acceleration due to gravity on planet X is 2,7 m-s-2. The radius of this planet is a third (⅓) of the radius of Earth.

1. Calculate the mass of planet X.​

Answers

To calculate the mass of planet X, we can use the formula for the acceleration due to gravity:

g = G * (M / R^2)

Where:
g is the acceleration due to gravity,
G is the gravitational constant,
M is the mass of the planet, and
R is the radius of the planet.

Given:
Acceleration due to gravity on planet X (g) = 2.7 m/s^2
Radius of planet X (r) = (1/3) * Radius of Earth (R)

Let's denote the mass of planet X as "Mx."

Substituting the values into the formula, we have:

2.7 m/s^2 = G * (Mx / (r^2))

Now, let's consider the ratio of the radii:

r = (1/3) * R

Substituting this into the equation:

2.7 m/s^2 = G * (Mx / ((1/3 * R)^2))

Simplifying further:

2.7 m/s^2 = G * (Mx / (1/9 * R^2))

Multiplying both sides by (1/9 * R^2):

2.7 m/s^2 * (1/9 * R^2) = G * Mx

Rearranging the equation to solve for Mx:

Mx = (2.7 m/s^2 * (1/9 * R^2)) / G

The value of G, the gravitational constant, is approximately 6.67430 × 10^-11 m^3/(kg * s^2).

Let's assume the radius of Earth (R) is approximately 6,371 km (or 6,371,000 meters).

Now, we can substitute these values into the equation to calculate the mass of planet X (Mx):

Mx = (2.7 m/s^2 * (1/9 * (6,371,000 m)^2)) / (6.67430 × 10^-11 m^3/(kg * s^2))

Calculating this expression will give us the mass of planet X.

QUESTION 5 An axon has a membrane capacitance of 3 x 10 F, membrane resistance of 1 ko. The time constant for this membrane circuit model is Answer ms.

Answers

The time constant for this membrane circuit model is 3 seconds. To calculate the time constant for a membrane circuit model, we use the formula:

Time Constant (τ) = Membrane Resistance (R) * Membrane Capacitance (C)

In this case, the membrane capacitance is given as 3 x 10 F and the membrane resistance is given as 1 kΩ.

Converting 1 kΩ to ohms, we have 1 kΩ = 1000 Ω.

Substituting the values into the formula, we get:

Time Constant (τ) = (1 kΩ) * (3 x 10 F)

= 1000 Ω * 3 x 10 F

= 3000 x 10-3 s

= 3 s

Therefore, the time constant for this membrane circuit model is 3 seconds.

The time constant in a membrane circuit model is a measure of how quickly the membrane potential changes in response to a stimulus. It is determined by the product of the membrane resistance and the membrane capacitance.

The membrane resistance represents the resistance to the flow of ions across the cell membrane. It is influenced by factors such as the number and distribution of ion channels in the membrane.

The membrane capacitance represents the ability of the cell membrane to store electrical charge. It is determined by the surface area and thickness of the membrane.

The time constant is a characteristic property of the membrane circuit and determines the rate at which the membrane potential reaches equilibrium after a change in stimulus. A larger time constant indicates a slower response, while a smaller time constant indicates a faster response.

In the given question, the membrane capacitance is given as 3 x 10 F (Farads) and the membrane resistance is given as 1 kΩ (kiloohms). By multiplying these values together, we obtain the time constant of 3 seconds. This means that it would take approximately 3 seconds for the membrane potential to reach 63.2% of its final value in response to a stimulus.

To know more about Membrane Resistance

brainly.com/question/15201747

#SPJ11

Use Snel's Law to calculate the answer for the following question. If light comes from air enters to the water with 2.16 degree angle to the surface normal, what will be the refraction angle of it? (keep 2 digits after the decimal point). Index of refraction for alr=1. Index of refraction for water = 1,33.

Answers

The refraction angle of the light in water is approximately 1.48 degrees.

Snell's Law states that the ratio of the sine of the angle of incidence (θ₁) to the sine of the angle of refraction (θ₂) is equal to the ratio of the indices of refraction (n₁ and n₂) of the two media:

n₁ * sin(θ₁) = n₂ * sin(θ₂)

In this case, the light is coming from air (n₁ = 1) and entering water (n₂ = 1.33). The angle of incidence is given as 2.16 degrees.

Plugging in the values into Snell's Law:

1 * sin(2.16°) = 1.33 * sin(θ₂)

sin(θ₂) = (1 * sin(2.16°)) / 1.33

sin(θ₂) = 0.025902

To find the value of θ₂, we take the inverse sine (or arcsine) of both sides:

θ₂ = arcsin(0.025902)

Using a calculator, we find θ₂ ≈ 1.48 degrees.

To know more about Snell's Law

https://brainly.com/question/31432930

#SPJ11

A volleyball with a man of 0.200 kg approaches a player horizontally with a speed of 10.0 m/s. The player strikes the ball with her hand, which comes the ball to move in the opposite direction with a speed of 1.3 m/s ( What magnitude of impulsa (in kg min delivered to the ball by the buyer m/s (b) What is the direction of the impulse delivered to the ball by the player In the same direction as the ball's initial velocity Perpendicular to the ball's initial velocity Opposite to the ball's initial velocity The magnitude is zero. (c) If the player's hand is in contact with the ball for 0.0600 , what is the magnitude of the average force (In N) exerted on the player's hand by the ball? N

Answers

(a) the magnitude of the impulse delivered to the ball by the player is 1.34 kg m/s

(b) the answer is opposite to the ball's initial velocity.

(c) the magnitude of the average force exerted on the player's hand by the ball is 558.6 N. The direction of the force is opposite to the ball's initial velocity. Hence, the answer is opposite to the ball's initial velocity.

Given data:

Mass of man = m = 0.200 kg

Initial velocity of ball = u = 10.0 m/s

Final velocity of ball = v = 1.3 m/s

Time taken to strike the ball = t = 0.0600 s

(a) Impulse is defined as the product of force and time. The impulse momentum theorem states that the change in momentum of a body is equal to the impulse applied to it.

The initial momentum of the ball is m × u

Final momentum of the ball is m × v

Change in momentum of the ball = Final momentum - Initial momentum

= m × v - m × u

= m(v - u)

Now, Impulse = Change in momentum

= m(v - u)

= 0.200(1.3 - 10.0)

≈ -1.340 kg m/s

(b) As the final velocity of the ball is in opposite direction to the initial velocity, the direction of the impulse delivered to the ball by the player is in the opposite direction to the ball's initial velocity.

(c) Force is defined as the rate of change of momentum. Force = change in momentum / time

F = (mv - mu) / t

F = m(v - u) / t

F = 0.200 (1.3 - 10.0) / 0.0600

F ≈ -558.6 N

To learn more about magnitude, refer:-

https://brainly.com/question/31022175

#SPJ11

If a projectile is launched downwards, the value of v0y is: A. Zero B. Positive C. Negative
D. Cannot be determined from the problem.

Answers

When a projectile is launched downwards, the value of v0y is negative.

Let's define the variables: vy = vertical component of velocity.

v0y = initial vertical component of velocity. a = acceleration (due to gravity) = -9.8 m/s²

When a projectile is launched downwards, it means the angle of projection is downwards. The vertical component of velocity (v0y) will be negative. This is because the upward direction is conventionally defined as positive and the downward direction is defined as negative.

v0y = -|v0|sinθ

Here, θ is the angle of projection and |v0| is the initial velocity of the projectile. Since the angle of projection is downwards, sinθ is negative.

Therefore, v0y is negative. So the correct option is C. Negative.

Learn more about projectile: https://brainly.com/question/8104921

#SPJ11

How far apart (m) will two charges, each of magnitude 15 μC, be a force of 0.88 N on each other? Give your answer to two decimal places.

Answers

The two charges under a force of 0.88 N will be 2.36 meters apart.

Two charges are given as Q1 = Q2 = 15 μC each.

The force acting between the charges is F = 0.88 N.

The electric force between two point charges is given by Coulomb’s Law:

F = (1/4πε) * (Q1Q2)/r² Where ε is the permittivity of free space and r is the distance between two charges.

The force between charges is directly proportional to the magnitude of the charges and inversely proportional to the square of the distance between them. We need to calculate the distance between two charges. Using Coulomb’s law, we can find the distance:

r = √(Q1Q2/ F * 4πε)

The value of ε is 8.85 x 10^-12 C²/Nm²

Substitute the given values

:r = √(15 μC × 15 μC / 0.88 N * 4π × 8.85 × 10^-12 C²/Nm²)

r = 2.36 meters (approx)

Therefore, the two charges will be 2.36 meters apart.

Learn more about  force acting between the charges https://brainly.com/question/14696750

#SPJ11

QS1 KM1 F 1 20 U V W 5 M1 3~ QS2 KM2 U V W 99 M2 IV. Circuit design (25 points) 3~ F2 Two motors MI and M2, M2 shall be started before MI can be started, if press the stop button, Ml stops before M2 stops. Please design the control circuit and try to analyze the work process. 6/7

Answers

QS1 KM1 F 1 20 U V W 5 M1 3~ QS2 KM2 U V W 99 M2 IV. Circuit design (25 points) 3~ F2 Two motors MI and M2, M2 shall be started before MI can be started, if press the stop button, Ml stops before M2 stops.

The control circuit for the given problem can be designed by using the concept of ladder logic.

Working of the circuit:

When the start button (QS2) is pressed, power is supplied to the K1 contact of the KM2 coil. This makes the coil KM2 energized and its contact KM2 is latched. The contact KM2 of KM2 coil provides power supply to the coil KM1 through the F1 and F2 contacts. When the coil KM1 is energized, its contact KM1 is closed which provides power to the motor M2 and also to the coil M1.After some time delay, the F1 contact of KM1 is closed which provides power to the motor MI. If any of the stop button is pressed, the power supply to the M1 coil is cutoff which stops the motor MI immediately. But the power supply to M2 coil is not cutoff, and it stops after a while as there is no feedback control provided.The F2 contact of KM2 is provided to provide a hold-on condition to KM2 after the stop button is released. This ensures that M2 runs for some time delay before it stops.

Learn more about motors: https://brainly.com/question/25543272

#SPJ11

A closely wound circular coil of 70 turns has a radius of 25 cm. The plane of the coil is rotated from a position where it makes an angle of 45.0° with a magnetic field of 2.30 T to a position parallel to the field. The rotation takes 0.120 s. What is the magnitude of the average emf induced in the coil during the rotation?

Answers

The task is to determine the magnitude of the average electromotive force (emf) induced in a closely wound circular coil during a rotation from an angle of 45.0° to a position parallel to a magnetic field. The coil has 70 turns and a radius of 25 cm. The rotation takes 0.120 s.

When a coil rotates in a magnetic field, an emf is induced in the coil according to Faraday's law of electromagnetic induction. The magnitude of the induced emf can be calculated using the formula:

emf = NΔΦ/Δt,

where N is the number of turns in the coil, ΔΦ is the change in magnetic flux, and Δt is the time taken for the rotation.

In this case, the coil initially makes an angle of 45.0° with the magnetic field and is then rotated to a position parallel to the field. The change in magnetic flux, ΔΦ, is given by the product of the magnetic field strength, B, the area of the coil, A, and the cosine of the angle between the normal to the coil and the magnetic field direction:

ΔΦ = B A cosθ.

Since the coil is closely wound and has a circular shape, the area of the coil is πr^2, where r is the radius of the coil.

Substituting the given values of N = 70 turns, B = 2.30 T, r = 25 cm, θ = 45.0°, and Δt = 0.120 s into the equations, we can calculate the magnitude of the average emf induced in the coil during the rotation.

Learn more about electromotive here:

https://brainly.com/question/820393

#SPJ11

A mixture of ice and water with total volume 1 litre (and weight 1kg) is placed in a kettle which has a heat capacity of 2900 J/K and which delivers 2kW to the ice/water mixture. If the mixture is 82.4% ice, how long does it take for the kettle to boil? O a. 491 s O b. 566 s O c. 519 s O d. 547 s O e. 584 s

Answers

A mixture of ice and water with total volume 1 litre (and weight 1kg) is placed in a kettle. the time it takes for the kettle to boil the mixture is approximately 146.312 seconds.

To determine how long it takes for the kettle to boil the ice/water mixture, we need to calculate the amount of heat required to raise the temperature of the mixture from its initial temperature to the boiling point.

Given:

Total volume of the mixture = 1 liter

Weight of the mixture = 1 kg

Heat capacity of the kettle, C = 2900 J/K

Power delivered to the mixture = 2 kW = 2000 J/s

Percentage of ice in the mixture = 82.4%

First, we can calculate the mass of ice in the mixture:

Mass of ice = 82.4% * 1 kg = 0.824 kg

Next, we can calculate the heat required to raise the temperature of the ice to its melting point, which is 0°C:

Heat required = mass of ice * specific heat of ice * temperature change

Heat required = 0.824 kg * 2100 J/kg°C * (0 - (-10°C)) = 17208 J

Now, we need to calculate the heat required to convert the ice at 0°C to water at 0°C (latent heat of fusion):

Heat required = mass of ice * latent heat of fusion of ice

Heat required = 0.824 kg * 334000 J/kg = 275416 J

Total heat required = Heat required to raise the temperature + Heat required for phase change

Total heat required = 17208 J + 275416 J = 292624 J

Finally, we can calculate the time required using the formula:

Time = Total heat required / Power delivered

Time = 292624 J / 2000 J/s ≈ 146.312 s

Therefore, the time it takes for the kettle to boil the mixture is approximately 146.312 seconds.

Learn more about Heat capacity  here:

https://brainly.com/question/28302909

#SPJ11

Radon (Rn) is a radioactive, colourless, odourless, tasteless noble gas that accounts for more than half of the total radiation dose received by the Irish population. Radon-222 has a half-life of 3.8 days and the activity of 1 g is 3.7 x 10¹⁰ Bq. (i) Radon-222 undergoes alpha decay. Show the decay equation for this including atomic number, mass and element symbols in your answer. (ii) Calculate the decay constant for Radon-222. (iii) Calculate the number of Radon-222 atoms present in 1g.

Answers

Radon-222 has a half-life of 3.8 days and the activity of 1 g is 3.7 x 10¹⁰ Bq. (I)an atom of radon-222 (atomic number 86, mass number 222) decays into an atom of polonium-218 (atomic number 84, mass number 218) by emitting an alpha particle (helium nucleus, 2 protons and 2 neutrons).(II)The decay constant for Radon-222 is 3.16 × 10⁻⁵ s⁻¹.(iii)There are 1.1 × 10¹⁵ radon-222 atoms present in 1 g.

(i) The decay equation for the alpha decay of radon-222 is as follows:

86 222 Rn → 2 4 He + 84 218 Po

This means that an atom of radon-222 (atomic number 86, mass number 222) decays into an atom of polonium-218 (atomic number 84, mass number 218) by emitting an alpha particle (helium nucleus, 2 protons and 2 neutrons).

(ii) The decay constant for radon-222 can be calculated using the following equation:

λ = ln(2) / T

where:

   λ is the decay constant (s⁻¹)

   ln(2) is the natural logarithm of 2 (0.693)

   T is the half-life (s)

Substituting the values for T, we get:

λ = ln(2) / 3.8 days

= 0.063 days⁻¹

= 3.16 × 10⁻⁵ s⁻¹

(iii) The number of radon-222 atoms present in 1 g can be calculated using the following equation:

N = A / λ

where:

   N is the number of atoms

   A is the activity (Bq)

   λ is the decay constant (s⁻¹)

Substituting the values for A and λ, we get:

N = 3.7 × 10¹⁰ Bq / 3.16 × 10⁻⁵ s⁻¹

= 1.1 × 10¹⁵ atom

Therefore, there are 1.1 × 10¹⁵ radon-222 atoms present in 1 g.

To learn more about half-life visit: https://brainly.com/question/1160651

#SPJ11

Is an asteroid orbiting the Sun with a velocity of 585 kilometers per second more than one astronomical unit away from the Sun? The equation of orbital velocity may be a useful reference

Answers

The asteroid is not more than one astronomical unit away from the Sun based on the given velocity.

Given that an asteroid is orbiting the Sun with a velocity of 585 kilometers per second. We need to determine if it is more than one astronomical unit away from the Sun.

In order to solve this problem, we need to use the equation of orbital velocity. The equation of orbital velocity is given by:v = [tex]√(GM / r)[/tex]

Where, G is the universal gravitational constant, M is the mass of the central body (in this case, the Sun), r is the distance between the asteroid and the Sun, and v is the orbital velocity of the asteroid.

Substituting the given values, we have:v =[tex]√[(6.674 × 10^-11 Nm^2/kg^2) × (1.989 × 10^30 kg) / (1 AU)][/tex]where 1 astronomical unit (AU) is equal to[tex]1.496 * 10^(11)[/tex] meters.

v = [tex]√[(6.674 × 10^-11 Nm^2/kg^2) × (1.989 × 10^30 kg) / (1.496 × 10^11 m)]v = 29.29 km/s[/tex]

Therefore, the asteroid's velocity of 585 kilometers per second is much greater than the calculated orbital velocity of 29.29 km/s. This implies that the asteroid cannot be in a stable orbit around the Sun.

Hence, the asteroid is not more than one astronomical unit away from the Sun.


Learn more about velocity here:

https://brainly.com/question/31036269


#SPJ11

Heidi is floating in a raft in a lake. She estimates that waves are hitting the shore once every 14.0 seconds. The wave crests appear to be 18.0 meters apart. What is the speed of these waves? 3.5 m/s O 0.78 m/s O 1.3 m/s O252 m/s

Answers

The speed of the waves is approximately 1.29 m/s.

The speed of waves can be calculated using the formula:

Speed = Wavelength / Time

Given:

Time between wave crests = 14.0 seconds

Wavelength (distance between wave crests) = 18.0 meters

Substituting the given values into the formula:

Speed = 18.0 meters / 14.0 seconds

After performing the calculation, the result is approximately 1.29 m/s.

Learn more about Wavelength here:

https://brainly.com/question/7143261

#SPJ11

Three charges are arranged in a straight line. In which case does the electric field at the location shown by the dot have the largest magnitude? All the positive (+) or negative (-) charges in the figure have the same magnitude. The dot is not a charge, just a location marker. Assume the charges are separated by the same distance d or multiples of d, i.e. 2d or 3d. A. (-) (+) ⋅ (+) B. (-) ⋅ (+) (-)
C. (-) (-) ⋅ (+) D. (+) ⋅ (-) (+)
E. (-) (-) ⋅ (+)

Answers

Answer: Option A is the correct answer.

The electric field is the physical phenomenon that is produced when an electric charge is placed in space. It can be viewed as the influence on a test charge that is in proximity to the charge producing the field. The direction of the field is determined by the charge that is producing it and the magnitude of the field is proportional to the strength of the charge producing it.

It is a vector quantity. The electric field due to a point charge is given by

E = kQ/r²

where E is the electric field, k is Coulomb's constant (9 x 10⁹ Nm²/C²), Q is the charge of the point charge, and r is the distance between the point charge and the test charge. Three charges are arranged in a straight line. In which case does the electric field at the location shown by the dot have the largest magnitude?We can solve this problem using the principle of superposition.

The electric field at the location of the dot is the sum of the electric fields produced by each of the charges.Q1 is negative, Q2 is positive, and Q3 is positive.

The electric field due to Q1 is directed toward the charge, while the electric field due to Q2 and Q3 is directed away from the charges.

Thus, the electric field due to Q1 is stronger than the electric field due to Q2 and Q3. Therefore, the configuration that produces the largest electric field at the location of the dot is (-) (+) ⋅ (+).

Option A is the correct answer.

Learn more about electric field : https://brainly.com/question/19878202

#SPJ11

A sinusoidal electromagnetic wave in vacuum delivers energy at an average rate of 5.00 μW/m 2
. What are is amplitude of the electric field of this wave? (Note, μ 0

=4π×10 −7
T∙ m/A,ε 0

=8.85×10 −12
C 2
/N⋅m 2
) 0.15 V/m
0.061 V/m
2.05×10 −10
V/m
3.5×10 −6
V/m

Answers

Therefore, the amplitude of the electric field of this wave is 0.061 V/m.

The average power of a sinusoidal electromagnetic wave can be defined as follows:Pav=⟨S⟩where Pav is the average power and ⟨S⟩ is the average Poynting vector. The magnitude of the Poynting vector can be expressed as follows:⟨S⟩=12E0B0

where E0 and B0 are the magnitudes of the electric and magnetic fields, respectively. In a vacuum, the speed of light c can be expressed as follows:c=1√μ0ε0where μ0 and ε0 are the permeability and permittivity of free space,

respectively. Given the average power Pav and the permittivity of free space ε0, we can solve for the electric field E0 of the wave as follows:E0=√2Pavε0

The electric field amplitude of a sinusoidal electromagnetic wave in a vacuum that delivers energy at an average rate of 5.00 μW/m2 can be

calculated as follows:E0=√2Pavε0E0=√(2×5×10−6 W/m2×8.85×10−12 C2/N⋅m2)E0=0.061 V/m

Therefore, the amplitude of the electric field of this wave is 0.061 V/m.

to know more about electromagnetic

https://brainly.com/question/14527830?

The wavelength and frequency of an electromagnetic wave are related to each other through the following equation c = λv where c is the speed of light, is the wavelength, and v is the frequency. Rearrange the equation to solve for v. v = _____________________ An electromagnetic wave has a wavelength of 6.09 × 10−7 m. What is the frequency of the electromagnetic wave? v = _____________________Hz

Answers

The frequency of the electromagnetic wave is 4.93 × 10^14 Hz` (to two significant figures),

The given equation is `c = λv` where `c` is the speed of light, `λ` is the wavelength, and `v` is the frequency.

To solve for `v`, we need to isolate `v`.

So, first, we will divide both sides by λ:

`c/λ = v` or

v = c/λ`

Now, let's calculate the frequency of the electromagnetic wave whose wavelength is 6.09 × 10^−7 m using the above equation.

`v = c/λ``

v = 3 × 10^8 m/s / (6.09 × 10^−7 m)`

Frequency `v` is given by the formula:

v = c / λ where `c` is the speed of light and `λ` is the wavelength.

Rearranging the formula to solve for `v`:

v = c / λ

Therefore, the frequency of the electromagnetic wave is:` v = 4.93 × 10^14 Hz` (to two significant figures)

Learn more about electromagnetic wave https://brainly.com/question/13874687

#SPJ11

6. The primary line current of an open delta connected
transformer is measured to be 100 A.If the turns ratio between the
primary and secondary coils 2 : 1, the line current in the primary
is.

Answers

The line current in the primary of an open delta-connected transformer with a measured primary line current of 100 A and a turns ratio of 2:1 between the primary and secondary coils will be 200 A.

In an open delta connection, also known as a V-V connection, two transformers are used to create a three-phase system. One transformer acts as a standard three-phase transformer, while the other transformer is a reduced-capacity transformer. The primary coils of the two transformers are connected in a triangular or delta configuration, hence the name "open delta."

When measuring the line current in the primary of the open delta transformer, the turns ratio between the primary and secondary coils is essential. In this case, the turns ratio is 2:1, which means for every 2 turns in the primary coil, there is 1 turn in the secondary coil.

Since the line current in the primary is measured to be 100 A, we can determine the line current in the secondary by applying the turns ratio. Multiplying the measured primary line current by the turns ratio (2) gives us the secondary line current, 200 A.

Therefore, the line current in the primary of the open delta-connected transformer is 200 A.

To know more about delta-connected transformers click here:

https://brainly.com/question/31748033

#SPJ11

Pls answer this question

Answers

Answer:

3

Explanation:im almost certain thats what it is

(T=2,A=2,C=2) Two go-carts, A and B, race each other around a 1.0 km track. Go-cart A travels at a constant speed of 20 m/s. Go- cart B accelerates uniformly from rest at a rate of 0.333 m/s 2
. Which go-cart wins the race and by how much time?

Answers

Go-cart B takes approximately 60.06 seconds to complete the race. The time difference between go-cart A and go-cart B is approximately 60.06 seconds - 50 seconds = 10.06 seconds, which is approximately 11.22 seconds.

Go-cart A travels at a constant speed of 20 m/s, which means it maintains the same velocity throughout the race. Since the track is 1.0 km long, go-cart A takes 1.0 km / 20 m/s = 50 seconds to complete the race.

Go-cart B, on the other hand, starts from rest and accelerates uniformly at a rate of 0.333 m/s². To determine how long it takes for go-cart B to reach its final velocity, we can use the formula v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Since go-cart B starts from rest, its initial velocity u is 0 m/s. We can rearrange the formula to solve for time: t = (v - u) / a.

The final velocity of go-cart B is obtained by multiplying its acceleration by the time it takes to reach that velocity. In this case, the final velocity is 20 m/s (the same as go-cart A) because they both need to travel the same distance. Thus, 20 m/s = 0 m/s + 0.333 m/s² * t. Solving for t, we get t = 20 m/s / 0.333 m/s² ≈ 60.06 seconds.

Therefore, go-cart B takes approximately 60.06 seconds to complete the race. The time difference between go-cart A and go-cart B is approximately 60.06 seconds - 50 seconds = 10.06 seconds, which is approximately 11.22 seconds. Hence, go-cart A wins the race against go-cart B by approximately 11.22 seconds.

Learn more about final velocity here:

https://brainly.com/question/28608160

#SPJ11

c) Give three disadvantages of digital circuit compared to analog. (3 marks)

Answers

Three disadvantages of digital circuits compared to analog circuits are: Limited precision, Complexity and Higher power consumption.

Limited precision: Digital circuits operate using discrete values or levels, which limits their precision compared to analog circuits. Analog circuits can represent a continuous range of values, allowing for more precise and smooth representations of signals.

Complexity: Digital circuits often require more complex design and implementation compared to analog circuits. They involve the use of digital logic gates, flip-flops, and other digital components, which can increase the complexity of the circuitry.

Higher power consumption: Digital circuits typically require higher power consumption compared to analog circuits. This is because digital circuits use binary states (0s and 1s) and switching operations, which can lead to increased power dissipation and energy consumption. In contrast, analog circuits operate with continuous signals, which can be more power-efficient in certain applications.

To know more about digital circuits

https://brainly.com/question/31676489

#SPJ11

Two similar waves are described by the equations y1 = 11cos(1100t - 0.59x) and y2 = 12.5cos(1125t - 0.59x) What is the beat frequency produced by the two waves when they interfere?

Answers

When the two waves y1 = 11cos(1100t - 0.59x) and y2 = 12.5cos(1125t - 0.59x) interfere, they produce a beat frequency of 4 Hz.

To determine the beat frequency produced by the interference of the two waves, we need to find the difference in frequencies between the two waves.

The general equation for a wave is given by y = A*cos(ωt - kx), where A is the amplitude, ω is the angular frequency, t is time, and x is position.

Comparing the equations y1 = 11cos(1100t - 0.59x) and y2 = 12.5cos(1125t - 0.59x), we can see that the angular frequencies are different: ω1 = 1100 and ω2 = 1125.

The beat frequency (fbeat) is given by the difference in frequencies:

fbeat = |f1 - f2| = |(ω1 / 2π) - (ω2 / 2π)| = |(1100 / 2π) - (1125 / 2π)| = |25 / 2π| ≈ 3.98 Hz

Rounding to the nearest whole number, the beat frequency is approximately 4 Hz.Therefore, the beat frequency produced by the interference of the two waves is 4 Hz.

Learn more about beat frequency here:

https://brainly.com/question/32064210

#SPJ11

Light of 580 nm passing through a single slit, shows a diffraction pattern on a screen 4.50 m behind the all
as the one in the graph below.
a) What is the width of the central maximum?
b) Can we consider small angle approximation? Consider first minimum for order of magnitude (show
calculations that support your answer)
c) What is the width of the slit?
d) What is the distance from the central maximum to the 5th minimum?
e) If the length between the screen and the slit was increased, would the central maximum get wider,
narrower or it will not change?
f) If the width of the slit was increased, would the central maximum get wider, narrower or it will not
change?
The graph:
Question 2: The camera of a satellite has a diameter of 40cm. The satellite is orbiting 250 km from the surface of earth. What is the minimum distance 2 objects could be on the surface of earth to be result by this camera? Consider 500 cm light.

Answers

a) the width of the central maximum is 2.36 mm.b)Small angle approximation is valid.c)The width of the slit is 41.7 µm.

a) Width of the central maximumUsing the relation formula (the distance between the minima):d sin θ = (m + ½)λFor the first minimum: sin θ = (1/2)L / √(L² + b²)≈ (1/2)L / L = 1/2b ≈ tan θThus d ≈ 1.22λ / b= 1.22 × 580 nm / 0.30 mm≈ 2.36 × 10⁻³ m = 2.36 mmThe width of the central maximum is 2.36 mm.

b) Small angle approximation Let us use the approximation:sin θ ≈ θ ≈ tan θWhen the first minimum occurs at sin θ = λ/b, we have an upper limit for θ of:θ = sin⁻¹(λ/b) = tan⁻¹(λ/b)And the tangent of this angle is:tan θ = λ/bUsing λ = 580 nm and b = 0.3 mm, we get:tan θ ≈ 0.002 ≈ θThe small angle approximation is valid.

c) Width of the slitUsing the formula, where m is the number of the order of the diffraction minimum:d sin θ = mλThe angle of the first minimum θ can be approximated by θ ≈ tan θ ≈ sin θ.Thus sin θ = λ/b and d = mλ/Dwhere D is the distance from the slit to the screen and m = 1.Let's find D by using the ratio of the triangle's sides:D / b = L / √(L² + b²).

Then D = bL / √(L² + b²)We have:b = 0.3 mmL = 4.50 mD = bL / √(L² + b²)≈ 0.0139 mλ = 580 nmUsing the formula, we get:d = mλ / D≈ 0.000580 / 0.0139 m≈ 4.17 × 10⁻⁵ m = 41.7 µmThe width of the slit is 41.7 µm.

Learn more about angle here,

https://brainly.com/question/1309590

#SPJ11

Early 20th-century models predicted that a hydrogen atom would be approximately 10⁻¹⁰ in "size." (a) Assuming that the electron and proton are separated by r = 1.0 x 10⁻¹⁰ m, calculate the magnitude (in N) of the electrostatic force attracting the particles to each other. _________ N (b) Calculate the electrostatic potential energy (in eV) of a hydrogen atom (an atom containing one electron, one proton, and possibly one, two, or three neutrons-which do not participate in electrostatic interactions). ____________ eV

Answers

(a) Assuming that the electron and proton are separated by r = 1.0 x 10⁻¹⁰ m, calculate the magnitude (in N) of the electrostatic force attracting the particles to each other2.304N.(b)The electrostatic potential energy of a hydrogen atom is approximately -14.4 × 10^(19) eV.

(a) To calculate the magnitude of the electrostatic force between the electron and proton in a hydrogen atom, we can use Coulomb's law. Coulomb's law states that the force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

Coulomb's law equation:

F = k × (|q₁| × |q₂|) / r^2

where F is the force, k is the electrostatic constant (9 × 10^9 N m²/C²), q₁ and q₂ are the magnitudes of the charges, and r is the distance between the charges.

In the case of a hydrogen atom, the charges involved are the charge of the electron (e = 1.6 × 10^(-19) C) and the charge of the proton (e = 1.6 × 10^(-19) C). The distance between them is given as r = 1.0 × 10^(-10) m.

Substituting the values into the equation:

F = (9 × 10^9 N m²/C²) × ((1.6 × 10^(-19) C) × (1.6 × 10^(-19) C)) / (1.0 × 10^(-10) m)²

F ≈ 2.304 N

Therefore, the magnitude of the electrostatic force attracting the electron and proton in a hydrogen atom is approximately 2.304 N.

(b) The electrostatic potential energy of a hydrogen atom can be calculated using the equation:

Potential energy = -k × (|q₁| * |q₂|) / r

In this case, we consider the potential energy of the electron and proton interaction.

Substituting the given values:

Potential energy = -(9 × 10^9 N m²/C²) × ((1.6 × 10^(-19) C) × (1.6 × 10^(-19) C)) / (1.0 × 10^(-10) m)

Potential energy ≈ -2.304 J

To convert the potential energy from joules (J) to electron volts (eV), we can use the conversion factor:

1 eV = 1.6 × 10^(-19) J

Converting the potential energy:

Potential energy = (-2.304 J) / (1.6 × 10^(-19) J/eV)

Potential energy ≈ -14.4 × 10^(19) eV

Therefore, the electrostatic potential energy of a hydrogen atom is approximately -14.4 × 10^(19) eV.

To learn more about Coulomb's law visit: https://brainly.com/question/506926

#SPJ11

a hedrogen atom moves from the n=3 level to the n=2 level, then i moved from the n=3 level to thr n=1level. which transmission leads to the emission of photon with the longest wavelength

Answers

The transition from the n=3 level to the n=2 level in a hydrogen atom leads to the emission of a photon with a longer wavelength compared to the transition from the n=3 level to the n=1 level. Therefore, the transition from n=3 to n=2 results in the emission of a photon with the longest wavelength.

In hydrogen atom transitions, the emitted photon's wavelength is inversely proportional to the difference in energy levels of the atom. The energy of a hydrogen atom at a particular level is given by the equation

E=−13.6eV/[tex]n^{2}[/tex], where

n is the principal quantum number.

When an electron transitions from a higher energy level to a lower energy level, it emits a photon. The difference in energy levels corresponds to the energy of the photon, and longer wavelength photons have lower energy.

Comparing the transitions mentioned, the difference in energy levels between n=3 and n=2 is smaller than between n=3 and n=1. Consequently, the transition from n=3 to n=2 leads to the emission of a photon with a longer wavelength compared to the transition from n=3 to n=1. Therefore, the transition from n=3 to n=2 results in the emission of a photon with the longest wavelength among the given options.

Learn more about photon

https://brainly.com/question/30858842

#SPJ11

Required information A train, traveling at a constant speed of 22.0 ms. comes to an incline with a constant slope. While going up the incline, the train slows down with a constant acceleration of magnitude 1.40 m/s2 66 Sped How far has the train traveled up the incline after 6.60 s? m

Answers

The train has traveled up the incline for 176 m after 6.60 s, using the given data: Speed of train = 22.0 m/s, Constant acceleration = 1.40 m/s², Time = 6.60 s

Formula used: The formula used to calculate the distance covered by the train is given by: `d = vit + 1/2 at²`, where `v` is the initial velocity, `a` is the acceleration, `t` is the time taken and `d` is the distance covered.

Initial speed of the train, u = 22.0 m/s Acceleration of the train, a = 1.40 m/s²Time taken by the train, t = 6.60 s.

Using the formula, d = vit + 1/2 at²`d = 22.0 × 6.60 + 1/2 × 1.40 × (6.60)²``d = 145.2 + 1/2 × 1.40 × 43.56``d = 145.2 + 30.576`d = 175.776 ≈ 176 m

Learn more about acceleration:

https://brainly.com/question/460763

#SPJ11

An RL circuit is composed of a 12 V battery, a 6.0 Hinductor and a 0.050 Ohm resistor. The switch is closed at t = 0 The time constant is 2.0 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V. The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is zero. The time constant is 2.0 minutes and after the switch has been closed a long time the current is The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V.

Answers

With a long time of charging, the voltage across the inductor will be zero, and the current will be constant. In contrast, with a long time of discharging, the voltage across the inductor will be zero, and the current will stabilize.

To determine the behavior of the RL circuit in each scenario, we need to understand the concept of the time constant (τ) and the behavior of the circuit during charging and discharging.

The time constant (τ) of an RL circuit is given by the formula: τ = L / R, where L is the inductance and R is the resistance. It represents the time it takes for the current or voltage to reach approximately 63.2% of its maximum or minimum value, respectively.

(a) In the scenario with a time constant of 2.0 minutes and the voltage across the inductor as 12 V, we can infer that the circuit has been charged for a long time. In a charged RL circuit, when the switch is closed, the inductor acts as a current source and maintains a steady current. Thus, the current flowing through the circuit will be constant.

(b) In the scenario with a time constant of 1.2 minutes and the voltage across the inductor as zero, we can conclude that the circuit has been discharged for a long time. In a discharged RL circuit, when the switch is closed, the inductor initially resists the change in current and behaves as an open circuit. Therefore, the voltage across the inductor is initially high but gradually decreases to zero as the current stabilizes.

Learn more about RL circuit here:

https://brainly.com/question/17050299

#SPJ11

Other Questions
Which of the following concepts BEST describes tracking and documenting changes to software and managing access to files and systems?A.Version controlB.Continuous monitoringC.Stored proceduresD.Automation Which option is a clear example of a non sequitur?OA. The musician will not be allowed to perform because it is notpermitted.B. The soundness of the theory is proven by how sound the theory is.C. Anyone who is a fan of Major League Baseball will hate modernart.OD. The last two doctors I visited were rude, so all doctors must berude. Question 79 Poor sleeping habits cause diabetes, a difficult temperament, and anxiety deficits in attention, memory, and critical thinking O a difficult attachment, emotional instability, and memory O Work in groups. Research a food item of cultural significance in your community. Then, write a set of instruction to prepare it and share it in class. Find a parametric representation of the hyperline in R^4 passing through the point P(42,3,1) in the direction of [2,5,7,8] You are asked to design a cyclic modulo-6 synchronous binary counter using J-K flip-flops. The counter starts at 0 and finishes at 5. (a) Construct the state diagram for the counter. (3 marks) (b) Construct the next-state table for the counter. (3 marks) (c) Construct the transition table for the J-K flip-flop. (3 marks) (d) Use K-map to determine the simplest logic functions for each stage of the counter. (9 marks) (e) Draw the logic circuit of the counter using J-K flip-flops and necessary logic gates. (7 marks) (Total: 25 marks) Most radical chain polymerizations show a one-half-order dependence of the poly- merization rate on the initiation rate R; (or the initiator concentration [I]). Describe and explain under what reaction conditions [i.e., what type(s) of initiation and/or termina- tion] radical chain polymerizations will show the following dependencies: a. First-order b. Zero-order Explain clearly the polymerization mechanisms that give rise to these different kinetic orders. What is the order of dependence of Rp on monomer concentration in each of these cases. Derive the appropriate kinetic expressions for Rp for at least one case where Rp is first-order in [I] and one where Rp is zero-order in [I]. The armature (stator) synchronous reactance of a 100 hp. 440 volt rms, 50 Hz, 4 pale, delta connected synchronous motor is 2.6 ohms. The motor does not operate in nominal condition. The load connected to the motor shaft draws 40 hp. The sum of the friction&wind&core losses of the motor is 2700W. The motor operates at 0.85 reverse power factor. (a) Calculate the power drawn by the motor from the grid. (b) Calculate the line current drawn by the motor from the network. (c) Calculate the phase current drawn by the motor from the mains. (d) Calculate the internal voltage Ea of the motor. (e), Calculate the power converted from the electrical power of the motor to mechanical power. (35 p.) (f) Calculate the torque applied to the shaft of the motor. Chemical vapor deposition (CVD) of the diamond on the silicon wafer can be done with the following steps; Activation: CH4 +H + CH3 + H2 Adsorption: CH3 +S + CH3-S Surface Rxn: CH3-S C+S-H+H2 Desorption: S-H+H+ S + H2 Assume the surface reaction is the rate limiting step. The concentration of CH3 can not be determined, we could set up the reaction equilibrium constant (KE) to identify the concentration of CH3 as the followingKE = ([CH3][H2])/([CH4][H]a. Please write down the rate laws for all elementary steps of this process.b** (please answer). Write down the rate limiting step in term of the concentration of CH4, H, H2, and total surface sites (CT) A PD controller with a time-domain equation v=Pe+PD dtde+v 0has a gain P=0.25, a derivative action time constant D=1.3, and initial output v 0=55%. The graph of the error signal is given below. Calculate the value of the controller output v (in %) at the instant of time t=(2+)sec and t=5sec. 6. How does the compressive strength, impact resistance and plastic shrinkage resistance of concretes are effected by increased volme % of fibers? ? programs written using pthreads are portable across machines O True O False Question 2 because threads have access to global variables, we need some kind of synchronization amongst the threads O True O False Question 3 pthreads creates a new process much similar to fork function O True O False Question 4 pthreads have access to all global variables O True O False Question 5 pthreads take a function to execute O True O False A proton accelerates from rest in a uniform electric field of 610 NC At one later moment, its speed is 1.60 Mnys (nonrelativistic because is much less than the speed of light) (a) Find the acceleration of the proton(b) Over what time interval does the proton reach this speed ?(c) How far does it move in this time interval?(d) What is its kinetic energy at the end of this interval? 1. What is your attitude if you are Transformational leader2. What is the most important aspect to have positive energy to regulate your emotion3. How Intrinsic motivation help you to be a good leader4. How understand the conflict process make you a charismatic leader5. Elaborate your positive attitude you should show during Role Taking in Leader-Member Exchange theory (b) Draw a diagram showing a star-connected source supplying a delta-connected load. Show clearly labelled phase voltages, line voltages, phase currents and line currents. help please its due in 2 hrs The gusset plate is subjected to the forces of three members. Determine angle O for equilibrium. The forces are concurrent at point O. Take D as 12 kN, and F as 7 kN 7 MARKS DEN Q7) At what depth below the surface of oil, relative density 0.88, will produce a pressure of 120 kN/m? What depth of water is this equivalent to? Find parametric equations for the line that is tangent to the given curve at the given parameter value. r(t) = (412) i+(21+3)j + (51) k. t=to=5 What is the standard parameterization for the tangent line? X = y = Z = (Type expressions using t as the variable.) A tension member consists of a 150 x 75 x 15 single unequal angle whose ends are connected to gusset plates through the larger leg by a single row of four 22 mm bolts in 24 mm holes at 60 mm centers. Check the member for a design tension force of Need = 250 kN, if the angle is of S355 steel and has a gross area of 31.60 cm^2?