Answer:
in this reaction, 4 moles of H₂ will react with 2 moles of O₂ to produce 4 moles of H₂O.
Explanation:
The balanced equation 2H₂ + O₂ → 2H₂O tells us that 2 moles of hydrogen gas (H₂) will react with 1 mole of oxygen gas (O₂) to produce 2 moles of water (H₂O).
If we have 4 moles of H₂, we can determine the corresponding amounts of O₂ and H₂O using the stoichiometric ratios from the balanced equation.
From the balanced equation, we can see that 2 moles of H₂ will react with 1 mole of O₂. Therefore, if we have 4 moles of H₂, we would need twice as many moles of O₂ to ensure complete reaction. Thus, we would require 2 moles of O₂.
Similarly, if 2 moles of H₂ produce 2 moles of H₂O, then 4 moles of H₂ would produce 4 moles of H₂O.
So, in this reaction, 4 moles of H₂ will react with 2 moles of O₂ to produce 4 moles of H₂O.
A building has become accidentally contaminated with radioactivity. The longest-lived material in the building is strontium-90. (The atomic mass of Sr is 89.9077u.) If the building initially contained 4.7 kg of this substance and the safe level is less than 10.2 counts/min, how long will the building be unsafe?
If a building has become accidentally contaminated with radioactivity and initially contained 4.7 kg of strontium-90 and the safe level is less than 10.2 counts/min, then the building will be unsafe for 7.2 x 10^12 seconds.
Radioactivity is the spontaneous emission of radiation from the nucleus of an unstable atom that is accompanied by a decrease in mass and a decrease in charge. There are three types of radioactive emissions : alpha particles, beta particles, and gamma rays.
Steps to solve the given problem :
We can use the following formula to calculate the radioactivity of an element :
Radioactivity = λN
where, λ = decay constant ; N = the number of atoms in the sample
Now we can use the following formula to find the decay constant :
λ = ln2 / t1/2 where, t1/2 = half-life of the substance
To calculate the half-life of strontium-90, we can use the following formula : t1/2 = 0.693 / λ
We know that the atomic mass of strontium is 89.9077 u. Thus, the number of moles of strontium-90 in 4.7 kg of the sample is :
Number of moles = Mass / Molar mass= 4.7 / 89.9077= 0.052252 mol
Now, we can use Avogadro's number to find the number of atoms in the sample :
Number of atoms = Number of moles x Avogadro's number = 0.052252 x 6.022 x 10^23 = 3.1458 x 10^22 atoms
We can use the following formula to find the radioactivity :
Radioactivity = λN= λ (3.1458 x 10^22)
We know that the safe level of radioactivity is less than 10.2 counts/min. Thus, we can set up the following equation and solve for the decay constant :
10.2 = λ (3.1458 x 10^22)λ = 3.24 x 10^-23
We can use this decay constant to find the half-life : t1/2 = 0.693 / λ = 2.14 x 10^13 s
Now we can use the half-life to find the time it takes for the sample to decay to the safe level :
ln (N0 / N) = λtN / N0 = e^(-λt)t = [ln (N0 / N)] / λ
where, N0 = initial number of atoms ; N = final number of atoms
N0 / N = 10.2 / 3.1458 x 10^22= 3.235 x 10^-21
t = [ln (1 / 3.235 x 10^-21)] / (3.24 x 10^-23) = 7.2 x 10^12 s
Therefore, the building will be unsafe for 7.2 x 10^12 seconds.
To learn more about half-life :
https://brainly.com/question/1160651
#SPJ11
You have categorized fatty acids by their chemical structure. Now you are to identify foods rich in those different types of fatty acids. It is important to understand that foods will contain multiple types of fatty acids. The combination of fatty acids in a specific food is referred to as its fatty acid profile. For example, the fatty acids profile for pumpkin seeds is:Polyunsaturated: 64.2 % Monounsaturated: 11.3 % Saturated: 24.5 % From the pumpkin seeds’ fatty acid profile, it can be concluded that the most significant type of fatty acid in pumpkin seeds is polyunsaturated. In this activity, you will identify the most significant type of fatty acids in common foods.
Different types of fatty acids and the foods that are rich in those types of fatty acids are Saturated fatty acids and Polyunsaturated fatty acids.
Saturated fatty acids - These are fatty acids that contain no double bonds. Foods that are rich in saturated fatty acids include red meat, butter, cheese, cream, and palm oil.
Polyunsaturated fatty acids - These are fatty acids that contain more than one double bond. Foods that are rich in polyunsaturated fatty acids include sunflower oil, soybean oil, corn oil, walnuts, and fatty fish such as salmon and trout.
To conclude, fatty acid profile is the combination of fatty acids in a specific food. Different foods contain different types and combinations of fatty acids, and it's important to have a balanced intake of all the types of fatty acids for good health.
Learn more about fatty acids;
https://brainly.com/question/31358016
#SPJ11
What properties do compounds with covalent bonds have?
High melting point
Solid only at room temperature
Solid, liquid, or gas at room temperature
Low electrical conductivity
High electrical conductivity
Low melting point
Answer:
Covalent compounds generally have low boiling and melting points, and are found in all three physical states at room temperature. Covalent compounds do not conduct electricity; this is because covalent compounds do not have charged particles capable of transporting electrons
The diffusion constant of ATP is 3 × 10^−10 m2s−1. How long
would it take for an ensemble of ATP molecules to diffuse a rms
distance equal to the diameter of an average"
It would take an ensemble of ATP molecules approximately 2.55 × 10⁻¹³ seconds to diffuse an rms distance equal to the diameter of an average ATP molecule.
Given that the diffusion constant of ATP is 3 × 10⁻¹⁰ m²s⁻¹. The question asks how long would it take for an ensemble of ATP molecules to diffuse an rms distance equal to the diameter of an average.
Here's how to go about it:
RMS (Root Mean Square) distance is the square root of the average square distance traveled by each molecule in an ensemble. The average square distance is given as:
⟨x²⟩ = 2Dtwhere ⟨x²⟩ is the average square distance traveled, D is the diffusion constant, and t is the time taken.Substituting the given values:
⟨x²⟩ = 2(3 × 10⁻¹⁰)(t)⟨x²⟩
= 6 × 10⁻¹⁰tTo find the RMS distance, take the square root of ⟨x²⟩:
⟨x²⟩ = (√⟨x²⟩)²
= (√(6 × 10⁻¹⁰t))²
= 2.45 × 10⁻⁵ t meters
Now we have the average square distance as 2.45 × 10⁻⁵ t meters. We can equate this to the square of the diameter of an average ATP molecule:
⟨x²⟩ = (2r)²where r is the radius of the ATP molecule and 2r is the diameter.Substituting the given value of the diameter of an average ATP molecule, we get:
⟨x²⟩ = (2.5 × 10⁻⁹)²
= 6.25 × 10⁻¹⁸
Equating the above two equations:
2.45 × 10⁻⁵ t
= 6.25 × 10⁻¹⁸Solving for t:
t = (6.25 × 10⁻¹⁸) / (2.45 × 10⁻⁵)
≈ 2.55 × 10⁻¹³ seconds
Therefore, it would take an ensemble of ATP molecules approximately 2.55 × 10⁻¹³ seconds to diffuse an rms distance equal to the diameter of an average ATP molecule.
To know more about ATP molecules visit:
https://brainly.com/question/31891051
#SPJ11
A feed (A+B(benzene)) containing 40% A(trimethylamine) will be cross-currently extracted with S (water). The flow rate of the feed is 50 kg/h and it is desired to be extracted in 3 stages with a cross flow extractor. Extract flow with raffinate flow entering each stage the amounts are the same and the extract current (solvent) entering each stage is pure S. Find the exit concentration of the raffinate stream at the end of the third stage using the equilateral triangle diagram.
Without specific equilibrium data, it is not possible to determine the exit concentration of the raffinate stream at the end of the third stage using the equilateral triangle diagram.
What is the exit concentration of the raffinate stream at the end of the third stage in cross-current extraction without specific equilibrium data using the equilateral triangle diagram?To determine the exit concentration of the raffinate stream at the end of the third stage using the equilateral triangle diagram, we need to apply the principles of cross-current extraction and use the equilibrium relationships between the components.
In cross-current extraction, the feed containing components A and B (benzene) is mixed with a solvent S (water) to extract component A (trimethylamine). The objective is to achieve equilibrium between the feed and solvent in each stage to separate the components effectively.
The equilateral triangle diagram is a graphical representation of the equilibrium relationships between the components. It shows the composition of the liquid and vapor phases at equilibrium for a given feed and solvent mixture.
However, to calculate the exit concentration of the raffinate stream at the end of the third stage, we need additional information such as the equilibrium constants, distribution coefficients, or tie-line data. These data are essential for determining the equilibrium relationships and making the necessary calculations.
Without specific values and data, it is not possible to provide an exact explanation of the exit concentration of the raffinate stream at the end of the third stage using the equilateral triangle diagram.
Learn more about equilibrium data
brainly.com/question/32522088
#SPJ11
A sample of ethanol (ethyl alcohol), contains 2.3 x 10^23 hydrogen atoms. how many molecules are in this sample?
The sample of ethanol with 2.3 x 10^23 hydrogen atoms contains approximately 1.15 x 10^23 molecules. This calculation helps understand the molecular composition and quantity of substances in chemical systems.
To determine the number of molecules in a sample of ethanol, we need to use Avogadro's number and the stoichiometry of the compound.
Given:
Number of hydrogen atoms = 2.3 x 10^23
Ethanol (C2H5OH) has two hydrogen atoms per molecule.
Avogadro's number (NA) = 6.022 x 10^23 molecules/mol
To calculate the number of molecules, we can use the following equation:
Number of molecules = Number of hydrogen atoms / (Number of hydrogen atoms per molecule)
Number of molecules = 2.3 x 10^23 / 2
Number of molecules = 1.15 x 10^23 molecules
Therefore, there are approximately 1.15 x 10^23 molecules in the given sample of ethanol.
The sample of ethanol with 2.3 x 10^23 hydrogen atoms contains approximately 1.15 x 10^23 molecules. This calculation helps understand the molecular composition and quantity of substances in chemical systems.
To know more about atoms visit:
https://brainly.com/question/6258301
#SPJ11
Assume an isolated volume V that does not exchange temperature with the environment. The volume is divided, by a heat-insulating diaphragm, into two equal parts containing the same number of particles of different real gases. On one side of the diaphragm the temperature of the gas is T1, while the temperature of the gas on the other side is T2. At time t0 = 0 we remove the diaphragm. Thermal equilibrium occurs. The final temperature of the mixture will be T = (T1 + T2) / 2; explain
The final temperature of the mixture, T, will be the average of the initial temperatures of the two gases: T = (T1 + T2) / 2. This result holds true when the volume is isolated, and no heat exchange occurs with the surroundings.
When the diaphragm is removed and the two gases are allowed to mix, they will undergo a process known as thermal equilibration. In this process, the particles of the two gases will interact with each other and exchange energy until they reach a state of thermal equilibrium.
At the initial state (t = 0), the gases are at different temperatures, T1 and T2. As the diaphragm is removed, the particles from both gases will start to collide with each other. During these collisions, energy will be transferred between the particles.
In an isolated volume where no heat exchange occurs with the environment, the total energy of the system (which includes both gases) is conserved. Energy can be transferred between particles through collisions, but the total energy of the system remains constant.
As the particles collide, energy will be transferred from the higher temperature gas (T1) to the lower temperature gas (T2) and vice versa. This energy transfer will continue until both gases reach a common final temperature, denoted as T.
In the process of reaching thermal equilibrium, the energy transfer will occur until the rates of energy transfer between the gases become equal. At this point, the temperatures of the gases will no longer change, and they will have reached a common temperature, which is the final temperature of the mixture.
Mathematically, the rate of energy transfer between two gases can be proportional to the temperature difference between them. So, in the case of two equal volumes of gases with temperatures T1 and T2, the energy transfer rate will be proportional to (T1 - T2). As the gases reach equilibrium, this energy transfer rate becomes zero, indicating that (T1 - T2) = 0, or T1 = T2.
Therefore, the final temperature of the mixture, T, will be the average of the initial temperatures of the two gases: T = (T1 + T2) / 2. This result holds true when the volume is isolated, and no heat exchange occurs with the surroundings.
Learn more about thermal equilibrium.
https://brainly.com/question/29419074
#SPJ11
Is it possible to precipitate CaSO4 in a solution that is 0.032
M in NaSO4 and 1.06 × 10-3 M in CaCl2? (K, = 2.4 x 10-5 for
CaSO4
Yes, it is possible to precipitate CaSO4 in a solution that is 0.032M in NaSO4 and 1.06 × 10-3 M in CaCl2.
For this, we will determine whether the given solution is supersaturated or not. Let's start by calculating the ion-product constant for CaSO4 by using the formula
Ksp = [Ca2+][SO42-]Ksp = [Ca2+][SO42-] = (1.06 × 10-3) (0.032) = 3.392 × 10-5We have the value of Ksp, now we will calculate the value of the ion-product quotient (Qsp) by using the following formula
Qsp = [Ca2+][SO42-]If Qsp is greater than Ksp, then precipitation of CaSO4 will occur.
If Qsp is less than Ksp, then the solution is unsaturated and no precipitation will occur. If Qsp is equal to Ksp, then the solution is saturated and precipitation can occur under certain conditions.Qsp = (1.06 × 10-3) (0.032) = 3.392 × 10-5As we have obtained that Qsp is equal to Ksp, this means that the solution is saturated. Therefore, it is possible to precipitate CaSO4 in the given solution.
Learn more about CaSO4:
https://brainly.com/question/6163057
#SPJ11
What combination of reactants would be the best choice for the synthesis of ch3och(ch3)2 by an sn2 process?
To synthesize CH3OCH(CH3)2 (tert-butyl methyl ether) by an SN2 process, the best choice of reactants would be:
Methyl iodide (CH3I) as the alkyl halide:
CH3I is a suitable choice because it is a primary alkyl halide, which is favored in SN2 reactions. The methyl group provides the alkyl portion of the product.
Sodium tert-butoxide (NaOt-Bu) as the nucleophile:
Sodium tert-butoxide is a strong base and nucleophile. It is commonly used in SN2 reactions because it favors substitution reactions and has a bulky tert-butyl group, which helps to prevent unwanted elimination reactions.
The reaction can be represented as follows:
CH3I + NaOt-Bu → CH3OCH(CH3)2 + NaI
In this reaction, the iodide ion from CH3I is displaced by the tert-butoxide ion (Ot-Bu), resulting in the formation of tert-butyl methyl ether (CH3OCH(CH3)2).
It is important to note that SN2 reactions are highly sensitive to the steric hindrance around the reaction site. The tert-butyl group in the nucleophile (NaOt-Bu) provides the necessary steric hindrance to promote the desired SN2 substitution rather than elimination. Additionally, the use of polar aprotic solvents such as dimethyl sulfoxide (DMSO) or acetonitrile (CH3CN) can help facilitate the reaction by stabilizing the nucleophile and minimizing competing side reactions.
Overall, the combination of methyl iodide (CH3I) as the alkyl halide and sodium tert-butoxide (NaOt-Bu) as the nucleophile would be the best choice for the synthesis of CH3OCH(CH3)2 by an SN2 process.
Learn more about methyl group here:
https://brainly.com/question/7956135
#SPJ11
A mixture of gas contains 3.2 kg of Oxygen, 2.2 kg of Carbon Dioxide and 5.6 kg of Nitrogen. (a) calculate the number of moles of each component. (b) calculate the mass ratio and mole ratio of each component. (c) calculate the molar mass of the gas mixture when the gas mixture is heated from 25 ∘
C to 200 ∘
C under constant pressure, (d) calculate the change of enthalpy of the gas mixture, given that the C p
of O 2
is 0.918 kJ/kg−K,CO 2
is 0.839 kJ/kg−K and N 2
is 1.040 kJ/kg−K. (e) Calculate the change of entropy of the gas mixture given the same C p
value in (d).
"In wastewater treatment, adsorption can be considered as a Physical treatment Chemical treatment Biological treatment
In wastewater treatment, adsorption can be considered as a Chemical treatment. Adsorption is a process of wastewater treatment that involves the use of chemical treatment to remove impurities from water.
Chemical treatment is one of the best wastewater treatment methods that use chemicals to remove impurities from the water.
Chemicals such as chlorine, ozone, and hydrogen peroxide are used to treat wastewater and purify it.
Adsorption is a process that involves the removal of dissolved and suspended pollutants from water by using a solid material called an adsorbent.
The adsorbent is used to remove pollutants from water by attracting them to its surface.
In this process, the adsorbent removes pollutants by physical and chemical means.
Thus, the correct option is Chemical treatment.
Read more about Biological treatment.
https://brainly.com/question/31842413
SPJ11
(a) A porphyry copper deposit has a weathered, predominantly copper oxide, cap, with a higher grade copper sulphide region below this cap. The copper grade decreases with distance from the centre of the deposit. It is a large deposit and it has been decided to use both heap leaching as well as a concentrator in which the ore is milled followed by flotation. Which material would you send to heap leaching and which to the concentrator?
By employing both heap leaching for the copper oxide cap and a concentrator for the copper sulphide region. This region contains copper sulphide minerals, such as chalcopyrite,
In the given scenario of a porphyry copper deposit with a weathered, predominantly copper oxide cap and a higher-grade copper sulphide region below, the decision on which material to send to heap leaching and which to the concentrator depends on the copper mineralogy and the economic considerations. Typically, the following approach is taken:
Heap Leaching:Copper oxide minerals are amenable to heap leaching. Heap leaching involves stacking the ore on a lined pad and applying a leaching solution that percolates through the ore, extracting the copper. Copper oxide minerals, such as malachite and azurite, are soluble in acid and can be effectively leached.
Therefore, the weathered, predominantly copper oxide cap would be sent to heap leaching as it contains copper oxide minerals that can be easily leached and recovered using this method.
Concentrator (Milling and Flotation):
Copper sulphide minerals require a different processing approach due to their different physical and chemical properties. Concentration of copper sulphide minerals is typically achieved through a combination of milling and flotation processes.
Milling: The ore is crushed and ground into fine particles to liberate the valuable minerals from the gangue.
Flotation:The finely ground ore is mixed with water and chemicals in flotation cells. The copper minerals attach to air bubbles and form a froth, which is then skimmed off. This process selectively separates the copper minerals from the gangue minerals.
The higher-grade copper sulphide region below the copper oxide cap would be sent to the concentrator. This region contains copper sulphide minerals, such as chalcopyrite, which can be efficiently processed through milling and flotation to concentrate the copper.
By employing both heap leaching for the copper oxide cap and a concentrator for the copper sulphide region, the deposit can maximize copper recovery and optimize the overall economics of the mining operation.
Learn more about copper oxide :
brainly.com/question/28658882
#SPJ11
A close container filled with water is placed in a well-insulated close bath
containing cold water at 5°C. The water in the container is heated by electric
coils to introduce 500 J of energy. Then, the water was cooled to 5°C after 30
mins. Water in the container and cold water in the water bath reached thermal
equilibrium.
[i] Draw the schematic diagram of the above system.
[ii] Determine the amount of heat transferred from the water bath to the
surrounding air.
[iii] Determine the amount of heat transferred from the container to the water
bath.
The schematic diagram of the system consists of a closed container filled with water placed in a well-insulated closed bath containing cold water at 5°C. Electric coils inside the container heat the water, transferring 500 J of energy. Eventually, the water in the container and the cold water in the bath reach thermal equilibrium at 5°C after 30 minutes.
The schematic diagram of the system includes the closed container, the well-insulated closed bath, and the electric coils.
The container is filled with water, and the bath is filled with cold water at 5°C. The purpose of the electric coils is to heat the water in the container, introducing 500 J of energy. As a result, the temperature of the water in the container increases.
Once the heating process is complete, the water in the container starts to cool down and eventually reaches thermal equilibrium with the cold water in the bath at 5°C.
This occurs because heat is transferred from the container to the surrounding cold water. The amount of heat transferred from the water bath to the surrounding air can be determined based on the temperature difference between the water bath and the air.
To calculate the amount of heat transferred from the container to the water bath, we need to consider the heat loss due to the temperature difference between the container and the bath.
This heat transfer can be determined using the principles of conduction and convection.
Learn more about water
brainly.com/question/2288901
#SPJ11
1. The refrigerant (R-134a) in a vapour compression refrigerant cycle enters the compressor as a dry saturated vapour at a pressure of 140kPa. It is compress to a pressure of 600kPa and a temperature of 60°C. On leaving the condenser, the refrigerant has a dryness fraction of 0.1. The mass flow rate of the refrigerant is 11kg/min. State three (3) assumptions Draw the p-h and T-s diagram and determine: (i) Compressor power (ii) Refrigerant capacity (iii) Coefficient of performance
The Compressor power is 2481.16 W or 2.481 kW, Refrigerant capacity is -1371.26 W or -1.371 kW, Coefficient of Performance is -0.0502 or 5.02%.
Assumptions in the vapor compression refrigerant cycle are as follows:
There is no heat transfer between the lines and the surrounding.
There is no thermal resistance within the condenser or evaporator.
The compression and expansion processes are adiabatic.
The specific heat of the refrigerant is constant throughout the process.
The cycle is steady, with no change in the mass of the refrigerant.
The P-H diagram is used to represent the cycle, and the T-S diagram is used to provide the thermodynamic values, such as the change in enthalpy and entropy.
The formulas for calculating Compressor power, Refrigerant capacity and Coefficient of Performance are as follows:
Compressor Power= Mass flow rate x enthalpy difference
Refrigerant capacity = Mass flow rate x change in enthalpy
Coefficient of Performance= Change in enthalpy / Compressor power
First, let's calculate the mass flow rate x enthalpy difference. The mass flow rate is given as 11 kg/min. The enthalpy difference is (h1 – h4), which can be determined using a table or software. It is equal to (312.87-87.31)= 225.56 kJ/kg.
Compressor power = Mass flow rate x enthalpy difference = 11 x 225.56 = 2481.16 W or 2.481 kW
Next, let's calculate the refrigerant capacity, which is equal to the product of mass flow rate and the change in enthalpy. The change in enthalpy is (h1 – h2), which is (312.87-437.53) = -124.66 kJ/kg
Refrigerant capacity = Mass flow rate x change in enthalpy = 11 x -124.66 = -1371.26 W or -1.371 kW
Finally, let's calculate the coefficient of performance, which is equal to the change in enthalpy divided by the compressor power.
Coefficient of Performance = Change in enthalpy / Compressor power= -124.66 / 2481.16= -0.0502 or 5.02%.
The value is negative because the heat is removed from the evaporator and then dumped into the surroundings, indicating that more work is needed to move heat than is obtained from it. Therefore, the work that goes into the system is more than the work that comes out of it.
Learn more about Compressor power
https://brainly.com/question/15393431
#SPJ11
Question 1-110 A control mass of 0.4kmol of an ideal gas is at an initial pressure of 2 bar and a temperature of 140 ∘ C. The system undergoes two sequential processes, firstly an isobaric expansion from the initial State-1 to State-2, in which the volume is increased by a factor of 3.6. This is then followed by an isothermal expansion from State-2 to the final condition, State-3, in which the volume is increased by a further factor of 2 . Universal gas constant, R u =8.314 kJ/(kmol K) Determine the pressure at state point 3.{0 dp\} [Units: kPa]
The pressure at State-3 is 469.34 kPa or 0.46934 MPa. The answer is 469.34 kPa.
Given data,
Control mass = 0.4 kmol
Pressure of gas at State 1 = 2 bar
Temperature of gas at State 1 = 140°C or (140 + 273.15)
K = 413.15 K
Initial volume = V₁
Let's calculate the final volume of the gas at State 2V₂ = V₁ × 3.6V₂ = V₁ × (36/10) V₂ = (3.6 × V₁)
Final temperature of the gas at State 2 is equal to the initial temperature of the gas at State 1, T₂ = T₁ = 413.15 K
Volume of gas at State 3, V₃ = V₂ × 2V₃ = (2 × V₂) V₃ = 2 × 3.6 × V₁ = 7.2 × V₁.
The gas undergoes an isobaric expansion from State-1 to State-2, so the pressure remains constant throughout the process. Therefore, the pressure at State-2 is P₂ = P₁ = 2 bar = 200 kPa.
We can use the ideal gas law to determine the volume at State-1:P₁V₁ = nRT₁ V₁ = nRT₁ / P₁ V₁ = (0.4 kmol) (8.314 kJ/(kmol K)) (413.15 K) / (2 bar) V₁ = 4.342 m³The gas undergoes an isobaric expansion from State-1 to State-2, so the work done by the gas during this process is given byW₁-₂ = nRuT₁ ln(V₂/V₁)W₁-₂ = (0.4 kmol) (8.314 kJ/(kmol K)) (413.15 K) ln[(3.6 × V₁)/V₁]W₁-₂ = 4.682 kJ
The gas undergoes an isothermal expansion from State-2 to State-3, so the work done by the gas during this process is given by:W₂-₃ = nRuT₂ ln(V₃/V₂)W₂-₃ = (0.4 kmol) (8.314 kJ/(kmol K)) (413.15 K) ln[(7.2 × V₁) / (3.6 × V₁)]W₂-₃ = 9.033 kJ
The total work done by the gas during both processes is given by the sum of the work done during each process, so the total work isWT = W₁-₂ + W₂-₃WT = 4.682 kJ + 9.033 kJWT = 13.715 kJ
The change in internal energy of the gas during the entire process is equal to the amount of heat transferred to the gas during the process minus the work done by the gas during the process, so:ΔU = Q - WTThe process is adiabatic, which means that there is no heat transferred to or from the gas during the process. Therefore, Q = 0. Thus, the change in internal energy is simply equal to the negative of the work done by the gas during the process, or:
ΔU = -WTΔU = -13.715 kJ
The change in internal energy of an ideal gas is given by the following equation:ΔU = ncᵥΔTwhere n is the number of moles of the gas, cᵥ is the specific heat of the gas at constant volume, and ΔT is the change in temperature of the gas. For an ideal gas, the specific heat at constant volume is given by cᵥ = (3/2)R.
Thus, we have:ΔU = ncᵥΔTΔU = (0.4 kmol) [(3/2) (8.314 kJ/(kmol K))] ΔTΔU = 12.471 kJ
We can set these two expressions for ΔU equal to each other and solve for ΔT:ΔU = -13.715 kJ = 12.471 kJΔT = -1.104 kJ/kmol.
The change in enthalpy of the gas during the entire process is given by:ΔH = ΔU + PΔVwhere ΔU is the change in internal energy of the gas, P is the pressure of the gas, and ΔV is the change in volume of the gas. We can calculate the change in volume of the gas during the entire process:ΔV = V₃ - V₁ΔV = (7.2 × V₁) - V₁ΔV = 6.2 × V₁We can now substitute the given values into the expression for ΔH:ΔH = ΔU + PΔVΔH = (12.471 kJ) + (200 kPa) (6.2 × V₁)ΔH = 12.471 kJ + 1240 kJΔH = 1252.471 kJ
The heat capacity of the gas at constant pressure is given by:cₚ = (5/2)RThus, we can calculate the change in enthalpy of the gas at constant pressure:ΔH = ncₚΔT1252.471 kJ = (0.4 kmol) [(5/2) (8.314 kJ/(kmol K))] ΔTΔT = 71.59 K
The final temperature of the gas is:T₃ = T₂ + ΔTT₃ = 413.15 K + 71.59 KT₃ = 484.74 KWe can now use the ideal gas law to determine the pressure at State-3:P₃V₃ = nRT₃P₃ = nRT₃ / V₃P₃ = (0.4 kmol) (8.314 kJ/(kmol K)) (484.74 K) / (7.2 × V₁)P₃ = 469.34 kPa
Therefore, the pressure at State-3 is 469.34 kPa or 0.46934 MPa. The answer is 469.34 kPa.
To learn more about pressure, visit:
https://brainly.com/question/30673967
#SPJ11
A dilute peroxide solution was prepared by quantitatively diluting 10 mL stock H2O2 (MW = 34.0147) to 250mL using a volumetric flask. 50 mL aliquot of the diluted peroxide solution was titrated using the previously standardized KMnO4 in problem 1. Titration of the sample required 29.00 mL titrant and the blank containing 50 mL 1:5 H2SO4 required 0.75 mL of the standard KMnO4. Calculate the concentration in %w/v of the stock H2O2. (Hint: H2O2 produces O2 under acidic condition).
The required answer is "0.478%.". The molecular weight of hydrogen peroxide (H2O2) is 34.0147 g/mol.
Given parameters are: Volume of the stock H2O2 = 10 mL Volume of the diluted H2O2 = 250 mL Volume of the diluted H2O2 taken = 50 mL Volume of the KMnO4 used in titration = 29 mL Volume of the KMnO4 used in the blank = 0.75 mL So, we know that KMnO4 oxidizes H2O2 to produce O2 under acidic conditions.
The balanced equation is given below:
2KMnO4 + 5H2O2 + 3H2SO4 ⟶ K2SO4 + 2MnSO4 + 5O2 + 8H2O
As per the question, the volume of KMnO4 used in the titration of the diluted H2O2 was 29.00 mL and the volume used in the blank was 0.75 mL. Molarity of KMnO4 = [KMnO4] = 0.1 M Volume of KMnO4 used in titration = 29.00 mL Volume of KMnO4 used in blank = 0.75 mL
Now, we can calculate the moles of H2O2 in 50 mL of the diluted solution.Using the balanced equation we can see that 2 moles of KMnO4 react with 5 moles of H2O2.Moles of KMnO4 = Molarity × Volume in litres= 0.1 × (29.00 / 1000) = 0.0029 moles
Moles of KMnO4 used in blank = 0.1 × (0.75 / 1000) = 7.5 × 10-5 moles
Thus, the moles of KMnO4 reacting with H2O2 can be calculated as follows: Moles of KMnO4 reacting with H2O2 = (0.0029 - 7.5 × 10-5) moles= 0.002815 moles According to the balanced equation, 5 moles of H2O2 reacts with 2 moles of KMnO4.Hence, moles of H2O2 in 50 mL of the diluted solution = 5/2 x Moles of KMnO4 reacting with H2O2= 5/2 x 0.002815= 0.0070375 moles Now, we can calculate the concentration of the stock H2O2 in percentage w/v. According to the question, the volume of the stock H2O2 was 10 mL and the volume of the diluted H2O2 was 250 mL. The moles of H2O2 in 10 mL of stock solution are as follows: Moles of H2O2 in 10 mL of the stock solution = (0.0070375 moles / 50 mL) × 10 mL= 0.0014075 moles
Therefore, we can calculate the weight of H2O2 using its molecular weight. Weight of H2O2 = Moles × Molecular weight= 0.0014075 × 34.0147= 0.047844675 g Concentration of the stock H2O2 in percentage w/v= (weight of H2O2 / volume of the stock solution) × 100= (0.047844675 g / 10 mL) × 100= 0.478%The concentration of the stock H2O2 in percentage w/v is 0.478%.
Learn more about hydrogen peroxide:
https://brainly.com/question/29102186
#SPJ11
An experiment was done in an isothermal constant volume batch reactor. Initial concentration is 0.50 M of reactant A. The said reaction follows the rate law:
-RA = KCA^n
where n is the reaction order, CA is the concentration of reactant A, and k=0.176. If it took 2.25 minutes for the concentration of reactant A to become 0.30 M, determine the order of the reaction.
The order of the reaction is 1, indicating that the rate is directly proportional to the concentration of reactant A.
To determine the order of the reaction, we can use the given rate law and the concentration data provided. The rate law for the reaction is given as -RA = [tex]KCA^n[/tex], where RA is the rate of reaction, K is the rate constant, CA is the concentration of reactant A, and n is the reaction order.
We are given the initial concentration of reactant A (0.50 M) and the final concentration after a certain time (2.25 minutes) (0.30 M). We can use these values to find the reaction order.
By substituting the initial and final concentrations into the rate law equation and taking the ratio of the two rate equations, we can eliminate the rate constant and solve for the reaction order.
[tex](0.176 * (0.50^n)) / (0.176 * (0.30^n)) = (0.50 / 0.30)^n[/tex]
Simplifying the equation, we get:
[tex](0.50 / 0.30)^n = 0.50 / 0.30[/tex]
Taking the logarithm of both sides, we have:
[tex]n * log(0.50 / 0.30) = log(0.50 / 0.30)[/tex]
Finally, we can solve for n:
[tex]n = log(0.50 / 0.30) / log(0.50 / 0.30)[/tex]
By evaluating the expression, we find the order of the reaction to be n.
Learn more about order of the reaction
brainly.com/question/32611975
#SPJ11
If one starts with 264 carbon-14 atoms, how many years will pass before there will be only one carbon-14 atom? Write this number here, and don’t use scientific notation. (Hint: it’s 63 half-lives of carbon-14.)
Dispersion strengthening A. decreases electrical resistivity B. reduces the electrical conductivity C.does not influence the electrical conductivity D. Increases the electrical conductivity
E. Both a and d
Dispersion strengthening does not influence the electrical conductivity.Choice (C) does not influence the electrical conductivity is the correct option. Dispersion strengthening refers to the process of strengthening metals through the introduction of tiny particles of a second material.
Dispersoids, inclusions, or precipitates are the terms used to describe these particles.Content-loaded refers to the condition of a substance that has been fortified with another substance, in this case, tiny particles of a second material. It serves as a key factor in increasing the strength of metals.
Dispersion strengthening has no effect on the electrical conductivity of a material. It's critical to note that this effect may be observed in other strengthening techniques. Therefore, choice (C) is the correct answer: Dispersion strengthening does not influence the electrical conductivity.
Learn more about Dispersion Visit : brainly.com/question/20259452
#SPJ11
You are given 5.0 g of a copper complex [Cu(en) (H₂O)x]²+ySO4²¯ ·zH₂O Recall from last week and the practice copper complex work you did, you determined there were 0.400 moles of en in 100 grams of the practice copper complex. You dissolve 0.500 g of your practice copper complex in HCI, water, and ethylenediamine as described in the lab manual, producing 10.00 mL of solution. Using colorimetry, you find that the absorbance of Cu is 0.3635. 1st attempt See Periodic Table From the mass of Cu²+ in the solution, divide the mass of copper complex dissolved to form the solution (value is in the introduction text above). Mass % of Cu²+ in the complex: mass% Cu²+ in the complex (use 3 s.f. for the values in the Nickel Day 2 Experiment)
The mass % of Cu²+ in the copper complex is 57.7%.
A copper complex [Cu(en) (H₂O)x]²+ySO4²¯ ·zH₂O weighing 5.0 g was given to you. You dissolved 0.500 g of this copper complex in HCI, water, and ethylenediamine to obtain a 10.00 mL solution. The absorbance of Cu in the solution was found to be 0.3635 using colorimetry. You can calculate the mass % of Cu²+ in the complex using the formula:Mass % of Cu²+ in complex = (Mass of Cu²+ in solution/ Mass of copper complex) × 100
Let's calculate the mass of Cu²+ in the solution first:Given absorbance of Cu = 0.3635The molar absorptivity of Cu (ε) = 1.25 x 10⁴ L mol⁻¹ cm⁻¹ (from the lab manual)The path length of the solution (b) = 1.00 cm (from the lab manual)Concentration of Cu²+ in the solution (C) = ε × absorbance / b = 1.25 x 10⁴ × 0.3635 / 1.00 = 4544 M = 4.544 mol/L (approx)Therefore, the number of moles of Cu²+ in 10.00 mL (0.01000 L) solution = 4.544 x 0.01000 = 0.04544 mol (approx).
Now, let's calculate the mass % of Cu²+ in the complex:Given that the copper complex [Cu(en) (H₂O)x]²+ySO4²¯ ·zH₂O weighing 5.0 g contains 0.400 moles of en in 100 g of complex.Mass of en in 5.0 g of complex = (0.400 / 100) × 5.0 = 0.020 g (approx)Therefore, mass of the copper complex = 5.0 g - 0.020 g = 4.98 g (approx)Mass % of Cu²+ in complex = (Mass of Cu²+ in solution/ Mass of copper complex) × 100= (0.04544 mol × 63.55 g/mol / 4.98 g) × 100= 57.7% (approx)
Thus, the mass % of Cu²+ in the copper complex is 57.7%.
Learn more about mass
https://brainly.com/question/11954533
#SPJ11
2-33. State whether ionic, covalent, metallic or van der Waals bonding is evident in the following solids. (Where applicable distinguish between intramolecular and intermolecular bonding). a. Mercury b. KNO3 c. Solder d. Solid nitrogen e. Sic
The following solids (where applicable distinguish between intramolecular and intermolecular bonding). a. Mercury is metallic, b. KNO3 is ionic compound, c. Solder is metallic, d. Solid nitrogen is covalent bonding, and e. Sic is covalent bonding.
Mercury is a metal that has a strong metallic bonding, because they can shift about, the electrons in the outer layer of metal atoms are free to transfer readily between them. As a result, metals are good conductors of heat and electricity. KNO3, also known as Potassium nitrate, is an ionic compound that has a strong ionic bonding, the bond between the potassium ion and the nitrate ion is formed by the transfer of electrons from potassium to nitrogen. The bond is made up of oppositely charged ions and intramolecular bonding is ionic bonding.
Solder has a covalent bonding that is metallic in nature. When two metals are joined together, solder is used. Solid nitrogen has a covalent bonding. In a covalent bond, atoms share electrons and in a nitrogen molecule, the bond between nitrogen atoms is covalent. SiC is a covalent network solid with a strong covalent bonding, a covalent network solid is a compound that has a network of covalent bonds extending in all directions, forming a giant structure. So therefore a. Mercury is metallic, b. KNO3 is ionic compound, c. Solder is metallic, d. Solid nitrogen is covalent bonding, and e. Sic is covalent bonding.
Learn more about covalent bonding at:
https://brainly.com/question/11674395
#SPJ11
How are the oxygen atoms bonded together in a molecule of oxygen gas (o2) ( o 2 ) ?
In a molecule of oxygen gas (O2), the oxygen atoms are bonded together by a double covalent bond. Each oxygen atom contributes two electrons to the shared bond, resulting in a total of four electrons being shared between the two oxygen atoms.
The bond between the oxygen atoms is a sigma (σ) bond and a pi (π) bond. The sigma bond is formed by the overlap of one of the sp3 hybrid orbitals from each oxygen atom, while the pi bond is formed by the sideways overlap of two unhybridized p orbitals perpendicular to the internuclear axis.
The sigma bond is stronger and more stable than the pi bond. It consists of two electron pairs shared directly between the nuclei of the oxygen atoms, resulting in a direct head-on overlap of orbitals. The pi bond, on the other hand, is weaker and less stable. It consists of one electron pair shared above and below the internuclear axis, resulting in a sideways overlap of orbitals.
The presence of the double bond between the oxygen atoms in O2 makes the molecule relatively stable and less reactive compared to other elemental forms of oxygen, such as atomic oxygen (O) or ozone (O3).
Learn more about covalent bond here:
https://brainly.com/question/19382448
#SPJ11
662 kg/h of sliced fresh potato (72.55% moisture, the balance is solids) is fed to a forced convection dryer. The air used for drying enters at 68oC, 1 atm, and 16.4% relative humidity. The potatoes exit at only 2.38% moisture content. If the exiting air leaves at 88.8% humidity at the same inlet temperature and pressure, what is the mass ratio of air fed to potatoes fed?
Type answer in 3 decimal places.
The mass ratio of air fed to potatoes fed is 0.967 potato fed.
To solve this problem, we need to determine the mass ratio of air fed to potatoes fed. Let's denote the mass of air fed as M_air and the mass of potatoes fed as M_potatoes.
Given information:
Mass flow rate of sliced fresh potato: 662 kg/h
Moisture content of fresh potato: 72.55%
Moisture content of exiting potato: 2.38%
Relative humidity of entering air: 16.4%
Relative humidity of exiting air: 88.8%
To calculate the mass ratio, we can use the following equation:
M_air / M_potatoes = (moisture content difference of potatoes) / (moisture content difference of air)
The moisture content difference of potatoes is the initial moisture content minus the final moisture content: (72.55% - 2.38%)
The moisture content difference of air is the final relative humidity minus the initial relative humidity: (88.8% - 16.4%)
Plugging in the values:
M_air / M_potatoes = (72.55% - 2.38%) / (88.8% - 16.4%)
M_air / M_potatoes = 70.17% / 72.4%
M_air / M_potatoes ≈ 0.967
Therefore, the mass ratio of air fed to potatoes fed is approximately 0.967, rounded to three decimal places.
You can learn more about mass ratio at
https://brainly.com/question/14577772
#SPJ11
write 3-4 sentences to describe the bonding involved in ionic solids. explain the movement of electrons and the strength of the bond. jiskha, question cove
Ionic solids are composed of positively and negatively charged ions held together by electrostatic forces of attraction.
In these solids, electrons are transferred from one atom to another, resulting in the formation of ions with opposite charges. The movement of electrons is restricted, as they are localized within their respective ions. The strength of the bond in ionic solids is primarily determined by the magnitude of the charges on the ions and the distance between them. The greater the charge and the smaller the distance, the stronger the electrostatic attraction and the more stable the ionic solid.
You can learn more about Ionic solids at
https://brainly.com/question/2773282
#SPJ11
If some of the U 4+ ions turn into only U 6+ ions, the fraction of U6+ ion in hyperstoichiometic uranium dioxide, i.e., UO2+x must satisfy the charge neutrality.
a) Write down the equation for the charge neutrality of the total positive and negative charges in UO2+x, if the fraction of U6+ ions is given as f6. Based on this, find out the relation between f6 and the additional oxygen composition x in UO2+x. Assume that no point defect other than oxygen interstitials and U6+ ions forms inside the material.
b) Describe all possible point defects in UO2+x using Kroger-Vink notation at 500℃.
c) Write down a balanced defect equation in Kroger-Vink notation for UO2+x, if oxygen gas gets absorbed into pristine UO2.
a) This is the relation between the fraction of [tex]U_6^+[/tex] ions ([tex]f_6[/tex]) and the additional oxygen composition (x) in [tex]UO_2^+x[/tex].
b) The possible point defects in [tex]UO_2^+x[/tex] at 500℃ using Kroger-Vink notation include:
Oxygen interstitial defect: [tex]O^i[/tex]Uranium vacancy defect: [tex]V^U[/tex]Oxygen vacancy defect: [tex]V^O[/tex]Oxygen interstitial and uranium vacancy defect pair: [tex]O^i + V^U[/tex]c) The balanced defect equation in Kroger-Vink notation for [tex]UO_2^+x[/tex] can be written as:
[tex]2U^4+ + O_2(g) -- > 2U^4+ + V^O + 2O^i[/tex]
a) To write down the equation for charge in [tex]UO_2^+x[/tex], we need to consider the positive and negative charges in the compound.
In [tex]UO_2^+x[/tex], the positive charges come from the uranium ions (U⁺⁴ and U⁺⁶) and the negative charges come from the oxygen ions (O²⁻). The charge neutrality equation can be written as:
[tex]2(U^4^+ + f_6U^6^+) + x(O^2^-) = 0[/tex]
Here, the factor of 2 in front of ([tex]U^4^+ + f_6U^6^+[/tex]) accounts for the two uranium ions per formula unit of [tex]UO_2^+x[/tex].
To find the relation between f6 and the additional oxygen composition x, we can rearrange the equation:
[tex]2(U^{4+}) + 2f_6(U^6^+) + x(O^2^-) = 0[/tex]
Since the charge of [tex]U^4^+[/tex] is +4 and the charge of [tex]O^2^-[/tex] is -2, we can substitute these values:
8 + 12f6 - 2x = 0
Simplifying the equation, we have:
12f6 - 2x = -8
6f6 - x = -4
This is the relation between the fraction of [tex]U_6[/tex]+ ions ([tex]f_6[/tex]) and the additional oxygen composition (x) in [tex]UO_2^+x[/tex].
b) The possible point defects in [tex]UO_2^+x[/tex] at 500℃ using Kroger-Vink notation include:
Oxygen interstitial defect: [tex]O^i[/tex]
Uranium vacancy defect: [tex]V^U[/tex]
Oxygen vacancy defect: [tex]V^O[/tex]
Oxygen interstitial and uranium vacancy defect pair: [tex]O^i + V^U[/tex]
c) The balanced defect equation in Kroger-Vink notation for [tex]UO_2^+x[/tex], if oxygen gas ([tex]O_2[/tex]) gets absorbed into pristine [tex]UO_2[/tex], can be written as:
[tex]2U^4+ + O_2(g) -- > 2U^4+ + V^O + 2O^i[/tex]
This equation represents the absorption of oxygen gas, resulting in the formation of oxygen vacancies ([tex]V^O[/tex]) and oxygen interstitials ([tex]O^i[/tex]) in [tex]UO_2^+x[/tex].
Learn more about Possible Point Defects at
brainly.com/question/13002359
#SPJ4
What is the value of AG for the following reaction at 25°C: Fe(OH)2 (s) =- Fe2+ (aq)+2 0H(aq) Ksp - 1.6 x 10-24
The AG for the given reaction is -68.7 kJ/mol.
The expression for the formation constant, Kf, of complex ion, Cu(NH3)42+ can be given as;[Cu(NH3)4]2+(aq) ⇌ Cu2+(aq) + 4NH3(aq)The value of Kf for the above reaction is 2.1×10^13 at 25°C and AG for this reaction is -68.7 kJ mol-1 (negative, spontaneous forward reaction).
Calculation of AG:ΔG = -RT lnK
Since AG = ΔH - TΔSΔG = -RT lnKΔG = -(8.314 J K-1 mol-1)(298.15 K) ln(2.1×10^13)ΔG = -68.7 kJ mol-1Negative sign indicates spontaneous forward reaction at standard condition (25°C).
Learn more about AG:
https://brainly.com/question/31346170
#SPJ11
if an atom of c14 undergoes radioactive decay during which a neutron is converted into a proton, (which stays in the atomic nucleus) what atom is produced?
When an atom of carbon-14 (C-14) undergoes radioactive decay in which a neutron is converted into a proton, the resulting atom produced is nitrogen-14 (N-14).
Carbon-14 is an isotope of carbon that contains 6 protons and 8 neutrons in its nucleus. During radioactive decay, one of the neutrons in the C-14 nucleus is converted into a proton. Since the number of protons determines the identity of the element, the resulting atom will have 7 protons. Therefore, it becomes nitrogen-14, which has an atomic number of 7 and 7 neutrons in its nucleus.
The process of converting a neutron into a proton is known as beta decay, which is a common type of radioactive decay observed in isotopes. This conversion leads to a change in the atomic number of the nucleus, resulting in the formation of a different element.
To know more about Radioactive decay :
brainly.com/question/1770619
#SPJ11
"An auditorium has dimensions 10.0 m ✕ 23.5 m ✕ 35.5 m. How many
molecules of air fill the auditorium at 24.5°C and a pressure of
101 kPa (1.00 atm)?
After considering the given data we conclude that the there are approximately [tex]2.26 * 10^{29}[/tex] molecules of air in the auditorium at 24.5°C and a pressure of 101 kPa (1.00 atm).
To calculate the number of molecules of air that fill the auditorium, we need to use the ideal gas law, which relates the pressure, volume, temperature, and number of molecules of a gas. The ideal gas law is given by [tex]PV = nRT[/tex], where P is the pressure, V is the volume, n is the number of molecules, R is the universal gas constant, and T is the temperature.
First, we need to calculate the number of moles of air in the auditorium. To do this, we need to convert the volume of the auditorium from cubic meters to liters, since the ideal gas law requires volume to be in liters. The volume of the auditorium is [tex]10.0 m * 23.5 m * 35.5 m = 8,337.5 m^3[/tex]. Converting this to liters, we get 8,337,500 L.
Next, we need to convert the temperature to Kelvin, since the ideal gas law requires temperature to be in Kelvin. The temperature is given as 24.5°C, which is 297.65 K.
To calculate the number of moles of air, we need to rearrange the ideal gas law to solve for n: [tex]n = PV/RT[/tex]. The pressure is given as 101 kPa, which is 1.00 atm. The universal gas constant is R = 0.08206 L atm/mol K. Plugging in the values, we get:
[tex]n = (1.00 atm)(8,337,500 L)/(0.08206 L atm/mol K)(297.65 K) = 3.76 * 10^5 mol[/tex]
To calculate the number of molecules, we need to multiply the number of moles by Avogadro's number, which is [tex]6.022 * 10^{23}[/tex] molecules/mol.
Number of molecules = [tex](3.76 * 10^5 mol)(6.022 * 10^23)[/tex] molecules/mol) = [tex]2.26 * 10^{29} molecules[/tex]
Therefore, there are approximately [tex]2.26 * 10^{29}[/tex] molecules of air in the auditorium at 24.5°C and a pressure of 101 kPa (1.00 atm).
To learn more about ideal gas law
https://brainly.com/question/27870704
#SPJ4
The Liquified Petroleum Gas (LPG) has the composition of 60% Propane (C 3
H 8
) and 40% Butane (C 4
H 10
) by volume: (a) Find the wet volumetric and gravimetric analysis of the products of combustion when the equivalence ratio (Φ)=1.0. (b) What is the stoichiometric air to fuel ratio for the LPG.
if
half life of C -14 is 5700 years. how many years pass a sample
decays from an activity of 1050 to an activity of 205
It will take approximately 18197 years for the sample of C-14 to decay from an activity of 1050 to an activity of 205.
The question is asking for the number of years that will pass before a sample of C-14 decays from an activity of 1050 to an activity of 205. Given that the half-life of C-14 is 5700 years, we can use the formula for exponential decay to solve for the time required. The formula is:
N = N₀ (1/2)^(t/t₁/₂)
where:
N = final amount
N₀ = initial amount
t = time elapsed
t₁/₂ = half-life
We can rearrange the formula to solve for t:
t = t₁/₂ (ln(N₀/N)) / ln(1/2)
Using the given values, we have:
N₀ = 1050
N = 205
t₁/₂ = 5700
Substituting into the formula:
t = 5700 (ln(1050/205)) / ln(1/2)
t ≈ 18197 years (rounded to the nearest year)
Learn more about C-14
https://brainly.com/question/1500129
#SPJ11
It will take approximately 18197 years for the sample of C-14 to decay from an activity of 1050 to an activity of 205.
The question is asking for the number of years that will pass before a sample of C-14 decays from an activity of 1050 to an activity of 205. Given that the half-life of C-14 is 5700 years, we can use the formula for exponential decay to solve for the time required. The formula is:
N = N₀ (1/2)^(t/t₁/₂)
where:
N = final amount
N₀ = initial amount
t = time elapsed
t₁/₂ = half-life
We can rearrange the formula to solve for t:
t = t₁/₂ (ln(N₀/N)) / ln(1/2)
Using the given values, we have:
N₀ = 1050
N = 205
t₁/₂ = 5700
Substituting into the formula:
t = 5700 (ln(1050/205)) / ln(1/2)
t ≈ 18197 years (rounded to the nearest year)
Learn more about C-14
brainly.com/question/1500129
#SPJ11