Based on the chemical equation provided, the missing reactant in the reaction is an alkene.
Tertiary alcohols are alcohols in which the carbon atom attached to the hydroxyl group is bonded to three other carbon atoms. They can be formed by the hydration of tertiary alkenes, which are alkenes in which the carbon atom at the site of the double bond is bonded to three other carbon atoms.
In the given reaction, the hydrogen molecule is added to the double bond of a tertiary alkene to form a new carbon-carbon single bond, while the two hydrogen atoms are added to the two carbon atoms of the double bond. The resulting compound is a tertiary alcohol. Therefore, the missing reactant in the reaction is a tertiary alkene that would undergo the addition of H₂ to form the given tertiary alcohol product.
To know more about reaction, here
brainly.com/question/14690610
#SPJ4
--The complete reaction is, What is the missing reactant in this organic reaction?--
the reaction between solid sodium and iron iii oxide is one in a series of reactions that inflates an automobile airbag. as a single replacement reaction and a redox reaction
The reaction between solid sodium and iron III oxide is:
2 Na(s) + Fe2O3(s) → 2 NaFeO2(s) + 1/2 O2(g).
Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white metal that belongs to the alkali metal group in the periodic table. Sodium is highly reactive, particularly in the presence of water, and is never found free in nature. It was first isolated by Sir Humphry Davy in 1807 using electrolysis. Sodium is an essential element for all living organisms, and it plays a crucial role in various physiological processes, including fluid balance, nerve impulse transmission, and muscle function. Sodium is also widely used in the production of many industrial chemicals, including sodium hydroxide (caustic soda), sodium carbonate (washing soda), and sodium bicarbonate (baking soda). Sodium compounds are also used in the manufacturing of soaps, detergents, paper, and textiles. However, excessive sodium intake can lead to health problems such as high blood pressure and cardiovascular diseases.
Learn more about sodium here:
https://brainly.com/question/18723610
#SPJ1
For many purposes we can treat nitrogen as an ideal gas at temperatures above its boiling point of -196 degrees Celsius.Suppose the temperature of a sample of nitrogen gas is lowered from 19.0 degrees Celsius to -14.0 degrees Celsius, and at the same time the pressure is changed. If the initial pressure was 0.76 kPa and the volume increased by 35.0% what is the final pressure? Round your answer to the correct number of significant digits.
0.56 kPa is the final pressure.
The final pressure can be calculated using the ideal gas law equation, PV = nRT.
We know the initial pressure (P1) and initial volume (V1), the change in temperature (ΔT), and the change in volume (ΔV).
The number of moles (n) is not given, but can be calculated using the equation PV = nRT, where R is the ideal gas constant (8.314 J/molK).
[tex]n = \frac{P_1V_1 }{ RT_1}\\\\n=\frac{ (0.76 kPa)(V_1) }{ (8.314 J/molK)(19.0 + 273.15)}\\\\n = 0.039 moles[/tex]
Therefore, the final pressure (P2) can be calculated using the equation PV = nRT, where T2 is the final temperature in Kelvin and V2 is final volume.
[tex]P_2 =\frac{ nRT_2 }{ V_2}[/tex]
[tex]P_2 =\frac{ (0.039 moles)(8.314 J/molK)(-14.0 + 273.15) }{ (V_1 + \Delta V)}\\\\P_2 = 0.56 kPa[/tex]
Therefore, the final pressure is 0.56 kPa.
leran more about final pressure Refer:brainly.com/question/29283195
#SPJ1
solid aluminum reacts with hydrochloric acid to form aluminum chloride and hydrogen gas. how many liters of hydrogen gas would be produced by the complete reaction of 2.93 g of aluminum at stp?
Also, the conversion informs us that one mole at STP contains 22.4 litres of hydrogen. Hence, 2.93 g of aluminium would completely react at stp to form hydrogen gas, or 22.4 * 2.93 = 65.632.
What happens when aluminium is exposed to acids?Alkalis and acids both cause aluminium to react. It creates hydrogen gas and aluminium chloride when it interacts with an acid. It creates hydrogen gas and aluminium hydroxide when it interacts with an alkali.
How can I calculate the amount of hydrogen gas present at STP?We are aware that one mole of the any petrol takes up 22.4 litres at STP. This implies that at STP, one mole or hydrogen also takes up 22.4 litres of space. Hence, at STP, 10moles or hydrogen gas will take up =22.410=224litres of space.
To know more about mole visit:
https://brainly.com/question/26416088
#SPJ1
which of the following is an example of a secondary pollutant? (a) aerosols (b) vocs (c) photochemical oxidants (d) dust from soil erosion
An example of a secondary pollutant is option (c)- photochemical oxidants.
Secondary pollutants are formed when primary pollutants react with each other or with other substances in the atmosphere. Photochemical oxidants, such as ozone, are created through reactions involving sunlight and primary pollutants like VOCs (volatile organic compounds) and nitrogen oxides.
Hence, an example of a secondary pollutant is option (c)- photochemical oxidants.
To know more about Secondary pollutants, refer here:
https://brainly.com/question/12806508#
#SPJ11
Hi help!!! please!!!
Which of the following statements is incorrect concerning BaF2?
Question 2 options:
The total number of fluoride ions present in one formula unit is 2(6.022 x 1023).
The total number of fluoride ions present in three moles of BaF2 is equal to 6 x (6.022 x 1023).
The mass of 0.600 moles of BaF2 is 105 grams.
0.600 moles of BaF2 is equivalent to 3.61 x 1023 formula units of BaF2.
The statement that is incorrect is "0.600 moles of BaF2 is equivalent to 3.61 x 10²³ formula units of BaF₂." The correct statement is that 0.600 moles of BaF2 is equivalent to 3.61 x 1022 formula units of BaF₂.
What is mole?Mole is a unit used in chemistry to measure the amount of a substance. It is based on the number of atoms or molecules in that substance. One mole of a substance is equal to 6.022 x 10²³ atoms or molecules of that substance. For example, one mole of water molecules is equal to 6.022 x 10²³ water molecules. The mole also helps scientists to measure the mass of a substance. One mole of a substance has a mass in grams equal to the molecular weight of the substance. For example, one mole of water molecules has a mass of 18.015 grams, which is the molecular weight of water.
To learn more about mole
https://brainly.com/question/29367909
#SPJ1
7-13 if the bod5 of two wastes having k values of 0.0800 d^-1 and 0.120 d^-1 is 280.0 ml/l, what would be the ultimate bod for each?
The ultimate BOD (BODu) is the BOD remaining after a long period of incubation (usually 20 days). The BOD of a waste can be modelled using the following equation:
BODt = BODu ( 1 - e^(-kt) )
where BODt is the BOD at time t, BODu is the ultimate BOD, k is the rate constant, and e is the base of the natural logarithm.
We can use the given k values and BOD5 to solve for the ultimate BOD for each waste.
For waste 1 (k = 0.0800 d^-1):
BOD5 = BODu ( 1 - e^(-k5) )
280.0 ml/L = BODu ( 1 - e^(-0.08005) )
280.0 ml/L = BODu ( 1 - e^(-0.4) )
280.0 ml/L = BODu ( 0.3297 )
BODu = 851.4 ml/L
Therefore, the ultimate BOD for waste 1 is 851.4 ml/L.
For waste 2 (k = 0.1200 d^-1):
BOD5 = BODu ( 1 - e^(-k5) )
280.0 ml/L = BODu ( 1 - e^(-0.12005) )
280.0 ml/L = BODu ( 1 - e^(-0.6) )
280.0 ml/L = BODu ( 0.4457 )
BODu = 628.4 ml/L
Therefore, the ultimate BOD for waste 2 is 628.4 ml/L.
To know more about BOD, visit the link given below:
https://brainly.com/question/31109333
#SPJ4
you have a 250ml sample of 1.09 molarity acetic acid assuming no volume change how much naoh must be added in order to make the best buffer
We need to add 10.90 g of NaOH to the 250 ml sample of 1.09 molarity acetic acid to make the best buffer.
To make the best buffer from a 250 ml sample of 1.09 molarity acetic acid, we need to find out how much NaOH must be added. The Henderson-Hasselbalch equation, which relates the pH of a buffer to its pKa and the ratio of its weak acid to weak base forms.pH = pKa + log([A-]/[HA])In this case, we are dealing with an acetic acid buffer, which has a pKa of 4.76.
We are given a 250 ml sample of 1.09 molarity acetic acid. The molar mass of acetic acid is 60.05 g/mol. Therefore, the number of moles of acetic acid in the sample is:n(acetic acid) = M(acetic acid) x V(acetic acid)n(acetic acid) = 1.09 mol/L x 0.250 Ln(acetic acid) = 0.2725 molNext, we need to find out the amount of NaOH we need to add to make the buffer.
This is a bit tricky because we are given the volume of the acetic acid solution, but not the volume of the final buffer. We also don't know the concentration of the NaOH solution. However, we can use the fact that the buffer is prepared by mixing a weak acid with its conjugate base. Therefore, we can assume that the final buffer will have approximately equal concentrations of acetic acid and acetate ions, which means we need to add an equal amount of NaOH to convert half of the acetic acid to acetate ions.
The balanced chemical equation for the neutralization reaction is:CH3COOH + NaOH → CH3COONa + H2OThe stoichiometry of the reaction is 1:1, which means we need to add an equal number of moles of NaOH to neutralize the acetic acid.n(NaOH) = n(acetic acid) = 0.2725 molNow we need to find out how much NaOH that is in grams.
We can use the molar mass of NaOH to convert from moles to grams.m(NaOH) = n(NaOH) x M(NaOH)m(NaOH) = 0.2725 mol x 40.00 g/molm(NaOH) = 10.90 gTherefore, we need to add 10.90 g of NaOH to the 250 ml sample of 1.09 molarity acetic acid to make the best buffer.
To know more about molarity refer to-
brainly.com/question/8732513#
#SPJ11
Esterification of propane 1,2,3-triol and unsaturated higher carboxylic acids will produce
Propan-1-ol and ethanoate are esterified Ethanoic acid and propan-1-ol combine to generate an ester. Propan-1-ol and strong acid acid ethyl ester are two isomers that make up this ester.
What byproducts of esterification are there?Esterification is a chemical reaction that produces at least one ester molecule by reacting a lactic substances (RCOOH) with such an ethanol (ROH) to create an ether (RCOOR) and water.
How is esterification rate determined?Up to around 1 moldm3, redox reactions are linked to [H+] concentration. The third kinetic equation controls with a forward reaction rate at constant [H+] concentration. where kH is the constant of proportionality of ester hydrolysis and kE is a rate constant for esterification.
To know more about Ethanoic acid visit :
https://brainly.com/question/28166727
#SPJ9
a piece of magnesium reacts with 5.98 l of a 2.88 m solution of hydrochloric acid. how many grams of magnesium chloride will be formed?
A piece of magnesium with 8.63 mol of magnesium will react with 17.26 mol of HCl to form 820.9 g of magnesium chloride, given the reaction Mg + 2HCl → MgCl2 + H2.
The fair substance condition for the response among magnesium and hydrochloric corrosive is Mg + 2HCl → MgCl2 + H2. From the situation, it tends to be seen that one mole of magnesium responds with two moles of hydrochloric corrosive to shape one mole of magnesium chloride. To decide the quantity of moles of hydrochloric corrosive present in the arrangement, we can utilize the condition: Molarity = moles/volume.
Thusly, moles of HCl = Molarity × volume = 2.88 mol/L × 5.98 L = 17.26 mol. Since two moles of HCl respond with one mole of magnesium to shape one mole of magnesium chloride, the quantity of moles of magnesium utilized in the response is around 50% of the quantity of moles of hydrochloric corrosive, i.e., 17.26/2 = 8.63 mol. At long last, we can utilize the molar mass of magnesium chloride (95.21 g/mol) to work out the mass of magnesium chloride shaped: Mass of MgCl2 = 8.63 mol × 95.21 g/mol = 820.9 g. Accordingly, 820.9 g of magnesium chloride will be shaped.
To learn more about reactions, refer:
https://brainly.com/question/5425816
#SPJ4
2. Use Data Table 1 to answer the following: In a paragraph, describe the relationship of how the salinity and temperature will change the density of water in the tropical ocean. Use specific data to support your answer.
The density of a ocean water rises as the temperature falls. As a result, it water gets colder the denser it is. As salinity grows, seawater's density rises as well.
What connection exists between ocean density, temperature, and salinity?As the salinity rises, the density of the water rises. At all temperatures just above freezing point, seawater with a salinity more than 24.7 becomes denser as the temperature drops. Pressure increases cause seawater's density to rise.
What connection exists between the water's salinity and temperature?Fresh water is introduced into the sea as a result of rising surface temperatures, melting ice, and increased precipitation, which reduces salinity. Seawater with a lower salinity has a lower density so won't sink as far as water with a higher density. Ocean currents are modified by this process.
To know more about colder visit:
https://brainly.com/question/11211564
#SPJ1
write the balanced chemical equations for those reactions that actually occurred. 2. using your experimental data, list the metals in order of increasing activity. explain how you arrived at your list. 3. based on your response to question 3, do you think zinc or magnesium would react with kcl solution?
We can predict that magnesium would not react with KCl solution.
Here are some examples of balanced chemical equations for reactions that might have occurred:
a) Zinc + Hydrochloric acid → Zinc chloride + Hydrogen gas
Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g)
b) Magnesium + Nitric acid → Magnesium nitrate + Hydrogen gas
Mg(s) + 2HNO3(aq) → Mg(NO3)2(aq) + H2(g)
c) Copper + Silver nitrate → Copper nitrate + Silver
Cu(s) + 2AgNO3(aq) → Cu(NO3)2(aq) + 2Ag(s)
To list the metals in order of increasing activity based on experimental data, we need to observe and compare their reactivity towards a certain reaction or set of reactions. For example, we can immerse different metals in the same solution and observe which ones react and which ones don't, or we can compare the rate or extent of their reactions.
Assuming that we have data from an experiment involving different metals and a solution or compound, we can rank the metals in order of increasing activity as follows:
copper
Zinc
Magnesium
The order is based on the observation that copper did not react with the solution, while zinc and magnesium did. Zinc reacted faster and more vigorously than magnesium, indicating that it is more active.
Based on the ranking of metals in question 2, we can predict that zinc would react with KCl solution, while magnesium would not. Zinc is more active than magnesium, so it can displace magnesium from its compounds. KCl is a soluble salt, so we can write the balanced chemical equation for the reaction between zinc and KCl as:
Zn(s) + 2KCl(aq) → ZnCl2(aq) + 2K(s)
This reaction releases metallic zinc and forms zinc chloride, while the potassium ions in KCl remain in solution. Magnesium, on the other hand, is less active than zinc, so it cannot displace zinc from its compounds. Therefore, we can predict that magnesium would not react with KCl solution.
For more such questions on KCL solution
https://brainly.com/question/19863389
#SPJ11
which statement is true about the electrons in the bohr model of an atom?responsesthey exist at specific energy levels.they exist at specific energy levels.they give off energy as they jump to a higher level.they give off energy as they jump to a higher level.they cannot move from one orbital to another.they cannot move from one orbital to another.they are equally close to the nucleus.they are equally close to the nucleus.
In the Bohr model of an atom, the true statement about electrons is that they exist at specific energy levels.
This model, proposed by Niels Bohr in 1913, describes electrons as occupying distinct energy levels or shells around the nucleus of an atom. These energy levels are quantized, meaning that electrons can only exist in specific, discrete orbits with fixed energies.
When electrons absorb energy, they can move to a higher energy level or shell, which is called an excited state. Conversely, when they release energy, they return to a lower energy level, known as the ground state. This process is called an electron transition. However, the statement that electrons give off energy as they jump to a higher level is incorrect, as they actually absorb energy when moving to higher energy levels and release energy when returning to lower energy levels.
The statement that electrons cannot move from one orbital to another is also incorrect, as electrons can move between energy levels through the process of absorption or emission of energy, as mentioned above.
Lastly, the claim that electrons are equally close to the nucleus is incorrect. In the Bohr model, electrons in higher energy levels are generally further away from the nucleus than those in lower energy levels. This is because each successive energy level has a larger radius, allowing electrons to be found at various distances from the nucleus depending on their energy level.
Know more about Bohr model here :
brainly.com/question/28825274
#SPJ11
sodium phosphate is added to a solution that contains 0.0076 m aluminum nitrate and 0.047 m calcium chloride. the concentration of the first ion to precipitate (either al3 or ca2 ) decreases as its precipitate forms. what is the concentration of this ion when the second ion begins to precipitate? answer:
When sodium phosphate is added to a solution containing 0.0076 M aluminium nitrate and 0.047 M calcium chloride, the concentration of the second ion begins to precipitate is 6.87 x 10⁻⁸ M.
The concentration of this ion when the second ion begins to precipitate is determined by comparing their solubility products (Ksp) and using the ion product (IP) concept.
For aluminum phosphate (AlPO₄): Ksp = 9.84 x 10⁻²¹For calcium phosphate (Ca₃(PO₄)₂): Ksp = 2.07 x 10⁻³³First, determine which ion will precipitate first by comparing the ion product (IP) to the solubility product (Ksp) for each compound. The ion with the higher IP/Ksp ratio will precipitate first.
IP(AlPO₄) / Ksp(AlPO₄) = [Al₃+][PO4³⁻] / (9.84 x 10⁻²¹)
IP(Ca₃(PO₄)₂) / Ksp(Ca₃(PO₄)₂) = [Ca²⁺]³[PO₄³⁻]² / (2.07 x 10⁻³³)
Since the IP/Ksp ratio for aluminium phosphate is larger than that for calcium phosphate, Al³⁺ will precipitate first as AlPO₄.
Next, find the concentration of Al³⁺ when Ca²⁺ begins to precipitate. At this point, the IP for Ca₃(PO₄)₂ will equal its Ksp.
Ksp(Ca₃(PO₄)₂) = = [Ca²⁺]³[PO₄³⁻]²
2.07 x 10⁻³³ = (0.047)³[PO₄³⁻]²
Solve for PO₄³⁻, then use the IP equation for AlPO₄:
9.84 x 10⁻²¹ = [Al³⁺][PO₄³⁻]
Finally, solve for the concentration of Al³⁺ when Ca²⁺ begins to precipitate. The concentration of Al³⁺ when the second ion (Ca²⁺) begins to precipitate is approximately 6.87 x 10⁻⁸ M.
Learn more about ions; https://brainly.com/question/14190265
#SPJ11
Calculate the energy required to melt 5.8 g of ice at 0 oC.
The molar heat of fusion for ice is 6.02 kJ/mol.
The energy required to melt 5.8 g of ice at 0°C is 1.94 kJ.
What is Energy?
Energy is the capacity of a physical system to do work or produce heat. It is a scalar physical quantity that is often associated with the ability of a system to cause changes in other physical systems or to do work on them. Energy exists in various forms, such as kinetic energy, potential energy, thermal energy, chemical energy, nuclear energy, and electromagnetic energy, and can be transformed from one form to another.
First, we need to calculate the number of moles of ice:
n = m/M
where n is the number of moles, m is the mass of ice, and M is the molar mass of ice.
Molar mass of H2O = 18.015 g/mol
n = 5.8 g / 18.015 g/mol
n = 0.322 mol
Next, we can calculate the energy required to melt the ice using the molar heat of fusion:
q = nΔHf
where q is the energy required, n is the number of moles of ice, and ΔHf is the molar heat of fusion.
ΔHf for ice = 6.02 kJ/mol
q = 0.322 mol x 6.02 kJ/mol
q = 1.94 kJ
Learn more about Energy from the given link
https://brainly.com/question/13881533
#SPJ1
THIS IS FOR BOTANY ZOOLOGY (please help)
A brief explanation of bilateral, radial, and asymmetric can be found below.
Definition of zoological termsBilateral, radial, and asymmetric are terms used in zoology to describe the symmetry of an animal's body.
Bilateral symmetry refers to an animal's body being divided into two equal and opposite halves along a central axis. This type of symmetry is common in animals with a distinct head and tail end, such as humans.
Radial symmetry refers to an animal's body being arranged in a circular or radial pattern around a central axis. This type of symmetry is common in animals such as jellyfish, where the body parts are arranged around a central mouth.
Asymmetric refers to an animal that lacks any kind of symmetry. This type of body plan is uncommon in animals, but is seen in some types of sponges and other primitive organisms.
More on zoology can be found here: https://brainly.com/question/15970176
#SPJ1
which one of the following is characteristic of a base? group of answer choices has a slippery, soapy feel produces h3o in water is insoluble in water has a sour taste turns blue litmus red
A base is a type of chemical compound that is characterized by the fact that it has a slippery, soapy feel when touched. The correct option is (a).
The slippery, soapy feel is one of the most distinguishing characteristics of a base, and it is due to the fact that bases are able to react with fats and oils on the skin, creating soap-like substances that feel slippery and greasy to the touch.
Bases are also known for their ability to turn red litmus to blue, which is another common characteristic. This is due to the fact that bases are capable of producing hydroxide ions ([tex]OH^{-}[/tex]) when they are dissolved in water.
These hydroxide ions are basic in nature, and they are able to neutralize any acidic substances that they come into contact with. As a result, when blue litmus paper treated with an acidic substance will turn red when it comes into contact with a base.
Acidic substances, on the other hand, produce [tex]H^{+}[/tex] ions when they are dissolved in water. These ions are able to neutralize any basic substances that they come into contact with, and as a result, they will turn litmus paper red.
Overall, bases are a very important class of chemical compounds that are used in a wide range of industrial, scientific, and medical applications.
The complete question is,
which one of the following is characteristic of a base? explain in 200 words.
a. has a slippery, soapy feel
b. produces [tex]H_{3}O[/tex] in water
c. is insoluble in water
d. has a sour taste turns blue litmus red
Learn more about basic substances here:
brainly.com/question/23082305
#SPJ11
Sulfur Dioxide (SO^2) emissions from smokestacks are reduced by a scrubbing mechanism in which SO^2 gas reacts with crushed limestone (CaCO) to produce removable solid waste. The quation for the balanced reaction can be found below. How many grams of CaCO, are needed to completely react with 1250 g of SO^2
3906.114 grams of CaCO₃ is required to completely react with 1250 grams of SO₂.
What is Scrubbing mechanism?Scrubbing mechanism is a method of removing pollutants, such as sulfur dioxide (SO₂), from industrial exhaust gases. In this mechanism, a substance, such as limestone or lime, is added to the exhaust gases, which react with the pollutants to form solid waste products that can be easily removed.
Equation:The balanced chemical equation for the reaction of SO₂ gas and CaCO₃ is:
SO₂ + CaCO₃ → CaSO₃ + CO₂
From the equation, we can see that one mole of SO₂ reacts with one mole of CaCO₃. Therefore, we need to first determine the number of moles of SO₂ in 1250 g of SO₂:
molar mass of SO₂ = 32.066 g/mol
moles of SO₂ = mass of SO₂ / molar mass of SO₂
moles of SO₂ = 1250 g / 32.066 g/mol
moles of SO₂ = 39.012 mol
Since one mole of SO₂ reacts with one mole of CaCO₃, we need 39.012 moles of CaCO₃ to react with the 39.012 moles of SO₂. The molar mass of CaCO₃ is 100.086 g/mol, so we can calculate the mass of CaCO₃ needed as:
mass of CaCO₃ = moles of CaCO3₃ × molar mass of CaCO₃
mass of CaCO₃ = 39.012 mol × 100.086 g/mol
mass of CaCO₃ = 3906.114 g
Therefore, we need 3906.114 grams of CaCO₃ to completely react with 1250 grams of SO₂.
To know more about scrubbing mechanism, click here
https://brainly.com/question/30207790
#SPJ1
is reaction 1 exothermic under standard conditions? a) yes, because heat must be added to initiate the reaction b) yes, because the standard enthalpy change is negative c) no, because the percent yield of nh3 is greatest at high pressure d) no, because the standard enthalpy change is negative
D) is reaction 1 exothermic under standard conditions? "no, because the standard enthalpy change is negative. "
When a reaction is exothermic, it releases heat as it proceeds. In this case, the given question is asking if Reaction 1 is exothermic under standard conditions.
The answer is no, because the standard enthalpy change is negative.A negative standard enthalpy change means that the reaction is endothermic, not exothermic. Endothermic reactions absorb heat from the surroundings as they proceed. Therefore, heat is not released and added to the system,
which rules out option a). The percent yield of NH₃ being greatest at high pressure, as stated in option c), is not relevant to whether the reaction is exothermic or endothermic.
For more such questions on exothermic
brainly.com/question/14221476
#SPJ11
acetone and 2-propanol have similar mass values. compare the t value of 2 propanol to acetone. explain the cause of the difference in the t values
The T value of 2-propanol is higher than acetone due to the presence of hydrogen bonding in 2-propanol, which results from its hydroxyl group. This stronger intermolecular force requires more energy to break, leading to a higher boiling point.
The boiling points of acetone and 2-propanol are 56.05°C and 82.6°C, respectively. The T value of 2-propanol is higher than acetone. This difference is caused by the difference in their molecular structures and intermolecular forces.
Acetone is a ketone (CH3COCH3), while 2-propanol is alcohol (CH3CH(OH)CH3). Although both compounds have similar mass values, 2-propanol contains a hydroxyl group (-OH) in its structure, which allows it to form hydrogen bonds with neighboring molecules. Hydrogen bonding is a strong intermolecular force that requires more energy to break and thus, raises the boiling point of the compound.
In contrast, acetone only has a carbonyl group (C=O), and it cannot form hydrogen bonds with itself. It experiences dipole-dipole interactions and London dispersion forces, both of which are weaker intermolecular forces compared to hydrogen bonding.
to know more about intermolecular force refer here:
https://brainly.com/question/9007693#
#SPJ11
what are the products of the citric acid cycle (krebs cycle, tricarboxylic acid [tca] cycle)?
The citric acid cycle is also called the Krebs cycle or tricarboxylic acid (TCA) cycle. In this cycle, a series of chemical reactions that take place in living organisms' cells generate energy through oxidation of acetate derivatives.
The citric acid cycle has eight stages, and the products are as follows: Carbon dioxide (CO2), which is a byproduct of the conversion of pyruvate to acetyl-CoA, NADH (Nicotinamide Adenine Dinucleotide) and FADH2 (Flavin Adenine Dinucleotide), which are coenzymes involved in the oxidation of the acetyl-CoA, ATP (Adenosine Triphosphate), which is produced by substrate-level phosphorylation when the phosphate group is transferred from GTP to ADP, and Water (H2O), which is generated during the transfer of electrons from FADH2 to O2.
The citric acid cycle is an energy-producing cycle in cells that operates through oxidation of acetate derivatives. In this cycle, a series of chemical reactions that take place in living organisms' cells generate energy. The cycle happens in the matrix of the mitochondria in eukaryotic cells and in the cytoplasm of prokaryotic cells.
The citric acid cycle has eight stages, and each stage has a specific enzyme that catalyzes the reaction that converts one molecule to another. The cycle is a central metabolic pathway of aerobic organisms, and it is involved in various metabolic pathways.
To know more about citric acid cycle refer to-
brainly.com/question/29857075#
#SPJ11
potassium fluoride is added to water at a temperature of 298 k. if the initial concentration of that potassium fluoride in water is 0.251 m, then what is the ph of this solution? facts you may need: kw
The pH of the solution is 3.53 when potassium fluoride is added to water at a temperature of 298 k.
How to determine pH ?
Fluoride ion (F-) and then convert it to the dissociation constant (Ka) of its conjugate acid (HF) using the relationship:
Kw = Ka x Kb
where Kw is the ion product constant for water (1.0 x 10⁻¹⁴ at 298 K).
The Kb of fluoride ion is 1.5 x 10⁻¹¹ at 298 K. Therefore, the Ka of HF is:
Ka = Kw / Kb = (1.0 x 10⁻¹⁴) / (1.5 x 10⁻¹¹) = 6.67 x 10⁻⁴
The dissociation of HF in water is:
HF + H2O ⇌ H3O+ + F-
The equilibrium constant expression for this reaction is:
Ka = [H3O+][F-] / [HF]
At equilibrium, the concentration of HF will be equal to the initial concentration of KF, since KF is a salt of HF. Let x be the concentration of F- and [HF] = 0.251 M.
Then,
Ka = [H3O+][F-] / [HF]
6.67 x 10⁻⁴ = x² / 0.251
x = 1.13 x 10⁻³ M
The concentration of H3O+ can be calculated using the equilibrium constant expression:
Ka = [H3O+][F-] / [HF]
6.67 x 10⁻⁴ = [H3O+](1.13 x 10⁻³) / 0.251
[H3O+] = 2.95 x 10⁻⁴ M
Therefore, the pH of the solution is:
pH = -log[H3O+]
pH = -log(2.95 x 10⁻⁴)
pH = 3.53
Thus, the pH of the solution is 3.53.
Learn more about pH
brainly.com/question/15289741
#SPJ11
if lead metal is added to a 0.100 m cr3 (aq) solution. what are the concentrations of pb2 (aq), cr2 (aq), and cr3 (aq) when the reaction is at equilibrium?
The concentrations of Pb₂⁺ and Cr₂⁺ at equilibrium are 0 M and 0.100 M, respectively. The concentration of Cr₃⁺ at equilibrium is 0.200 M.
To determine the concentrations of the different species at equilibrium, we need to write the balanced chemical equation for the reaction between lead metal and chromium(III) ion:
Pb(s) + 2Cr₃⁺(aq) → Pb₂⁺(aq) + 2Cr₂⁺(aq)
We also need to know the initial concentration of chromium(III) ion, which is given as 0.100 M.
Since lead metal is a solid, it does not have a concentration. Instead, its presence affects the equilibrium concentrations of the other species. We assume that the reaction goes to completion, which means that all the chromium(III) ion will react with the lead metal.
At equilibrium, we can use an ICE table to determine the concentrations of the different species:
Initial: 0.100 M 0 M 0 M
Change: -0.100 M +0.100 M +0.200 M
Equilibrium: 0 M 0.100 M 0.200 M
At equilibrium, the concentrations of Pb₂⁺ and Cr₂⁺ are 0 M and 0.100 M, respectively. At equilibrium, the concentration of Cr₃⁺ is 0.200 M.
To know more about the Equilibrium, here
https://brainly.com/question/12676702
#SPJ4
what is the molarity of a lioh solution if 18.80 ml of lioh is neutralized by 28.50 ml of 0.10 m hno3?
The molarity of the LiOH solution is 0.075 M.
To calculate the molarity of the LiOH solution, we need to use the equation for neutralization reactions, which states that the number of moles of acid (HNO₃) is equal to the number of moles of base (LiOH). We can calculate the number of moles of HNO₃ from the volume and concentration given:
Moles HNO₃ = concentration x volume = 0.10 M x 28.50 mL = 2.85 x 10⁻³ moles
Since the reaction is 1:1, this also represents the number of moles of LiOH used in the reaction. We can now calculate the molarity of the LiOH solution using the volume of LiOH used:
Moles LiOH = 2.85 x 10⁻³ moles
Volume LiOH = 18.80 mL = 0.01880 L
Molarity LiOH = moles LiOH / volume LiOH
= 2.85 x 10⁻³ moles / 0.01880 L
= 0.075 M
Therefore, the LiOH solution has a molarity of 0.075 M..
To know more about the Molarity, here
https://brainly.com/question/16587536
#SPJ4
in a reaction, there are multiple ways to discuss the amount of compound produced. identify the definition of each term related to the reaction yield. the calculated amount of product under ideal conditions choose... the amount of product experimentally produced choose... the comparison of the experimental amount of product to the calculated amount choose...
In a reaction, there are multiple ways to discuss the amount of compound produced, the definition of each term related to the reaction yield. The calculated amount of product under ideal conditions is theoretical yield, the amount of product experimentally produced is actual yield, the comparison of the experimental amount of product to the calculated amount is the percent yield
In a reaction, there are multiple ways to discuss the amount of compound produced, the definition of each term related to the reaction yield is are 1. The calculated amount of product under ideal conditions is theoretical yield, the calculated amount of product under ideal conditions. The theoretical yield is calculated using stoichiometry or by utilizing the balanced equation. 2. The amount of product experimentally produced is actual yield, the amount of product experimentally produced. Actual yield is determined by performing a chemical reaction in a laboratory, measuring the mass of the products, and calculating the amount of products produced.
3. The comparison of the experimental amount of product to the calculated amount is the percent yield compares the experimental amount of product to the calculated amount. The percent yield is calculated using the following formula: percent yield = (actual yield / theoretical yield) x 100%Thus, these are the definitions of each term related to the reaction yield. So therefore the answer are theoretical yield, actual yield, and the percent yield.
Learn more about actual yield at:
https://brainly.com/question/14408642
#SPJ11
How many moles exist in 390 g of silver nitrate ?
Answer:
1 mole of silver nitrate has a mass = 169.87g
169.87g of silver nitrate corresponds to 1 mole of silver nitrate
Therefore 80.00g of silver nitrate corresponds to:
80.00g silver nitrate divided by 169.87g. = 0.4709 moles of silver nitrate
Answer:
there are approximately 2.3 moles of silver nitrate in 390 g.
Explanation:
To find the number of moles in 390 g of silver nitrate, we first need to determine the molar mass of silver nitrate.
The molar mass of silver nitrate (AgNO3) is:
Ag: 107.87 g/mol
N: 14.01 g/mol
O (3): 15.99 g/mol x 3 = 47.97 g/mol
Total molar mass of AgNO3: 107.87 + 14.01 + 47.97 = 169.85 g/mol
Next, we can use the following formula to calculate the number of moles:
moles = mass (in grams) / molar mass
Plugging in the given values, we get:
moles = 390 g / 169.85 g/mol
moles = 2.296 mol (rounded to three significant figures)
Therefore, there are approximately 2.3 moles of silver nitrate in 390 g.
What is the scientific term used for the chemical reaction when a fuel burns?
Answer:combustion
Explanation:combustion, a chemical reaction between substances, usually including oxygen and usually accompanied by the generation of heat and light in the form of flame.
Answer:
The scientific term used for the chemical reaction when a fuel burns is combustion.
ammonium hydroxide is a weak base because . group of answer choices it is only slightly soluble in water it forms a dilute solution it dissociates only slightly in water it is completely ionized in aqueous solution is a poor acceptor of protons
Ammonium hydroxide is a weak base because c. it dissociates only slightly in water.
When dissolved in water, ammonium hydroxide donates a proton to form the ammonium ion and hydroxide ion. However, this reaction is only partially reversible because the ammonium ion is not a strong enough acid to accept a proton and regenerate the ammonium hydroxide. Therefore, the hydroxide ion concentration in the solution is relatively low, making it a weak base. In chemistry, a substance is referred to as a base if it has the ability to accept protons (H+ ions).
Ammonium hydroxide is a weak base because, when dissolved in water, it donates a proton to form the ammonium ion (NH4+) and hydroxide ion (OH−). This reaction is reversible, as represented by the chemical equation below: NH4+ (aq) + OH− (aq) ⇌ NH3 (aq) + H2O (l)However, this reaction is only partially reversible because the ammonium ion is not a strong enough acid to accept a proton and regenerate the ammonium hydroxide. Therefore, the hydroxide ion concentration in the solution is relatively low, making it a weak base.
Learn more about ammonium hydroxide at:
https://brainly.com/question/22547992
#SPJ11
in this experiment, you will be heating under reflux. what glassware equipment do you need to set up the apparatus? distillation head, fractionating column, round-bottom flask distillation head, condenser, round-bottom flask round-bottom flask, condenser, drying tube separatory funnel, erlenmeyer flask, beaker
When heating under reflux, you will need the following glassware equipment to set up the apparatus: Round bottom flask, condenser, hot plate, thermometer, adapter, clamps and stands, water supply.
When heating under reflux, you will need the following glassware equipment to set up the apparatus:
1. Round-bottom flask: This is the flask that contains the reaction mixture that needs to be heated.
2. Condenser: This is a glass tube that is attached to the round-bottom flask and has a water jacket around it. The water is circulated through the jacket to cool down the hot vapours and condense them back into liquid form.
3. Heating mantle or hot plate: This is the equipment that provides heat to the round-bottom flask.
4. Thermometer: This is an instrument used to measure the temperature of the reaction mixture.
5. Adapter: This is a glassware piece that connects the condenser to the round-bottom flask.
6. Clamps and stands: These are used to hold the glassware in place during the heating process.
7. Water supply: This is required to run water through the condenser's jacket to cool down the vapours.
To know more about glassware equipments go through:-
https://brainly.com/question/30244991
#SPJ4
50cm³ of carbon(iv)oxide was exploded with 150cm³ of air containing 20% oxygen by volume.which of the reactant was in excess
Explanation:
V(CO) = 50 cm^3 = 50 ml = 0.05 l
V(air) = 150 cm^3 = 150 ml = 0.15 l
V(O2)/V(air) = 20%
_____________________________
2 CO + O2 = 2CO2
n(CO) = V(CO)/V(M) = 0.05/22.4 = 0.0022mol
V(O2)/V(air) = x/150 x=150×0.2 =30 ml=0.03l
n(O2) = V(O2)/V(M) =0.03/22.4 = 0.0013 mol
From the reaction ratio n(CO): n(O2) = 2:1
For explosing 0.0022 mol CO need 0.0011 mol O2. We have 0.0013 mol O2, then , 0.0003 mol O2 is excess.
Answer: O2 was in excess
What is the outcome of a catalyst as a result of its involvement in a chemical reaction?
It is consumed and slows down a reaction.
It is consumed and speeds up a reaction.
It is not consumed and slows down a reaction.
It is not consumed and speeds up a reaction.
It is not consumed and speeds up a reaction.
What is Catalyst?
A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the process. It works by lowering the activation energy required for the reaction to occur, which allows the reaction to proceed more quickly and with less energy input. Catalysts can be used in a wide range of industrial processes, from the production of chemicals and fuels to the manufacture of pharmaceuticals and food products.
A catalyst is a substance that speeds up a chemical reaction without being consumed in the process. Catalysts work by lowering the activation energy required for a reaction to occur, which allows the reaction to proceed at a faster rate.
Learn more about Catalyst from the given link
https://brainly.com/question/21598276
#SPJ1