Answer: To find the value of f(x) for a given value of x, you need to substitute that value of x into the equation and simplify.
For example, if you want to find f(2), you would substitute x=2 into the equation:
f(x) = 6 + 3x
f(2) = 6 + 3(2)
f(2) = 6 + 6
f(2) = 12
Therefore, f(2) = 12.
Step-by-step explanation:
The value of f(x) is 18 given that the value of x is substituted as 4. The expression is usually solved with substitution method.
How to solve the expression?To find the value of f(x) for a given value of x, you need to substitute that value of x into the equation for f(x) and solve for f(x).
For example, if you want to find the value of f(x) when x = 4, you would substitute x = 4 into the equation for f(x) as follows:
f(4) = 6 + 3(4)
Simplifying the expression on the right-hand side:
f(4) = 6 + 12
f(4) = 18
Therefore, the value of f(x) when x = 4 is 18.
Find out more on substitution method here: https://brainly.com/question/22340165
#SPJ1
(Need help please and thank you!)
Answer:
Step-by-step explanation:
F
x=weeks
5=inital
y=total money saved
In a rice factory, if each kg of rice needs 1 5 th of total amount of raw paddy, how much amount of raw paddy will be needed to manufacture 3 kg of rice? Total amount of paddy available is 300 kg=
Proportionately, if each kilogram of rice needs ¹/₅ th of the total amount of raw paddy or 60 kg, to manufacture 3 kg of rice, the rice factory needs 180 kg of raw paddy.
How is the quantity determined?The quantity of raw paddy required to manufacture 3 kg of rice can be determined by proportions.
Proportion is the equation of two ratios.
The quantity of raw paddy required by each kg of rice = ¹/₅
The total raw paddy available = 300 kg
¹/₅ of 300 kg = 60 (300 x ¹/₅)
Proportionately, the quantity of raw paddy required for 3 kg of rice = 180 (60 x 3).
Learn more about proportions at https://brainly.com/question/1496357.
#SPJ1
Airplanes are sometimes used to fight fires. A certain airplane can deliver 4x10^4 liters of water in one trip. How much water can this airplane deliver in 38 trips?
Write your answer in scientific notation.
Answer:
1.52×10⁶ liters of water
Step-by-step explanation:
38(4×10⁴)
A boat is heading towards a lighthouse, whose beacon-light is 136 feet above the
water. From point A, the boat's crew measures the angle of elevation to the beacon,
6°, before they draw closer. They measure the angle of elevation a second time from
point B at some later time to be 19°. Find the distance from point A to point B.
Round vour answer to the nearest foot if necessary.
Answer:
Rounding to the nearest foot, the distance from point A to point B is 719 feet.
Write the equation of the line in slope-intercept form.
Answer:
y = (- 3/4)x + 8---------------------
Slope-intercept form is:
y = mx + b, where, m - is the slope, b - is the y-interceptUse two points on the line:
(0, 8) and (4, 5)The first point represents the y-intercept, b = 8.
Find the slope, using the slope equation:
m = (y₂ - y₁)/(x₂ - x₁)m = (5 - 8)/(4 - 0) = -3/4Substitute the found values to get the equation of the line:
y = (- 3/4)x + 8Prove the value of the expression (36^5-6^9)(38^9-38^8) is divisible by 30 or 37
Answer:
The given expression is divisible by both 30 and 37
Step-by-step explanation:
First, let's consider the expression (36^5-6^9). We can factor out 6^5 from both terms to get:
(36^5-6^9) = 6^5(6^10-36^3)
Next, let's consider the expression (38^9-38^8). We can factor out 38^8 from both terms to get:
(38^9-38^8) = 38^8(38-1)
Now, we can substitute these factorizations back into the original expression:
(36^5-6^9)(38^9-38^8) = 6^5(6^10-36^3)38^8(38-1)
To show that this expression is divisible by 30, we need to show that it is divisible by both 2 and 3. We can see that 6^5 is divisible by both 2 and 3, so the entire expression is divisible by 2 and 3, and hence divisible by 30.
To show that this expression is divisible by 37, we can use Fermat's Little Theorem, which states that if p is a prime number and a is any integer not divisible by p, then a^(p-1) is congruent to 1 mod p. In this case, p=37 and a=6, so we can write:
6^36 ≡ 1 (mod 37)
Multiplying both sides by 6^10 gives:
6^46 ≡ 6^10 (mod 37)
We can use this congruence to simplify the expression we are interested in:
(36^5-6^9)(38^9-38^8) ≡ (6^10-6^9)(1-38^-1) (mod 37)
Simplifying this expression further gives:
(6^10-6^9)(1-38^-1) ≡ 0 (mod 37)
Therefore, the expression (36^5-6^9)(38^9-38^8) is divisible by both 30 and 37.
Please help with this question!
Answer:
The distance between the library and museum is 400 yards
Step-by-step explanation:
find the value of 8w+6 given that -7w+1=8
Answer: -2
Step-by-step explanation:
-7w + 1 = 8
Subtract 1 from both sides
-7w + = 7
Divide -7 from both sides
w = -1
then
8(-1) = -8
-8 + 6 = -2
Set up a proportion and solve for x
Thus value of x in the given the proportion is 7.
How to find the value of x?Here, both triangles are congruent due to sss congruency,
Thus,
6 : 12
6k = 12
k = 12/6
k = 2
Also, The expressions are
(x+2) : 3x - 3
(x+2)k = 3x - 3
(x+2)2 = 3x - 3
2x + 4 = 3x - 3
3x - 2x = 4 + 3
x = 7
To know more about expression visit:
brainly.com/question/28637270
#SPJ1
What is the interquartile range (IQR) of the data set represented by this box
plot?
0
10
A. 55
B. 37
OC. 24
D. 12
← PREVIOUS
18 25 37
20
30
40
49 55
50
60
The interquartile range (IQR) of the data set represented by this box plot is 24.
What is IQR and how it is find?The interquartile range, or IQR, can be determined in four easy steps: Sort the facts in ascending order of importance. locate the centre. Do the lower and higher half of the data's median calculations. Upper and lower median differences make up the IQR.
We must determine the difference between the third quartile (Q3) and the first quartile (Q1) in order to determine the interquartile range (IQR) of the data set depicted by this box plot.
We can see from the box plot that the range of the box is 18 to 49, which implies that Q1 is 25 and Q3 is 49. Therefore,
IQR = Q3 - Q1 = 49 - 25 = 24
So, none of the choices provided are the correct response. The data collection represented by this box plot has an IQR of 24, which is 24.
Learn more about the interquartile range here:
https://brainly.com/question/29204101
#SPJ1
Complete question:
What is the interquartile range (IQR) of the data set represented by this box plot?
A. 55
B. 37
C. 24
D. 12
15) Find mMP
12x + 3
P
M
45°
S
R
3x + 12
Answer:
Determine the lengths of sides and measures of angles in a right triangle by ... 9 = 12x. Cross Products Property. 9 = 3x. Subtract 9x from each side. 3 = x.
If you are dealt five cards from a standard deck of 52 cards then find the probability of getting one ten and four kings.
Answer:
The probability of getting one ten from the deck of 52 cards is 4/52, since there are four tens in the deck. After one ten is drawn, there are only 51 cards remaining in the deck.
Step-by-step explanation:
The probability of getting four kings from the remaining 51 cards is (4/51) * (3/50) * (2/49) * (1/48), since there are four kings left in the deck after the ten is drawn, and the probability of drawing a king decreases with each card drawn.
Therefore, the probability of getting one ten and four kings is:
(4/52) * (4/51) * (3/50) * (2/49) * (1/48)
= 0.0000026
This is an extremely low probability, since the chances of getting this specific combination of cards is very low.
What are the ordered pair solutions
for this system of equations?
y = -x² + 2
y = x
First, set the equations equal to each other and
move everything to one side.
A:-x²+x+2=0
C:-x² + 2 = x
B:x²+x-2 = 0
D:x²+x+2=0
To find the ordered pair solutions, we need to solve the system of equations by setting them equal to each other:
-x² + x + 2 = x
Simplifying:
-x² + 2x + 2 = 0
We can solve for x using the quadratic formula:
x = (-2 ± sqrt(2^2 - 4(-1)(2))) / (2(-1))
x = (-2 ± sqrt(12)) / (-2)
x = 1 ± sqrt(3)
So the x-values of the ordered pair solutions are:
x = 1 + sqrt(3)
x = 1 - sqrt(3)
To find the corresponding y-values, we can substitute these x-values into either equation. Let's use y = x:
When x = 1 + sqrt(3):
y = 1 + sqrt(3)
When x = 1 - sqrt(3):
y = 1 - sqrt(3)
an angle measure 14.6 degrees more than the measure of its supplementary angle. what is the measure of each angle?
The measure of the angles are 82. 7 degrees and 97. 3 degrees
What are supplementary angles?Supplementary angles are simply described as those angles whose sum is equal or equivalent to 180 degrees.
Note that pair of angles on a straight line are supplementary to each other.
From the information given, we have that;
Let the angle of one be x
Then,
Angle 1 = x
Angle 2 = 14. 6 + x
Equate the angles
x + 14. 6 + x = 180
collect the like terms, we get;
2x = 180 - 14. 6
subtract the values
2x = 165. 4
x = 82. 7 degrees
Then, the second angle = 82. 7 + 14. 6 = 97. 3 degrees
Learn about supplementary angles at: https://brainly.com/question/2046046
#SPJ1
Solve the equation. 72n–6 = 1
here you go i think im right
select the correct answer. of the students in gianna's math class, 28% of the students have Gianna's favorite book, and 36% of the students have seen the movie version of the book. she finds that 20% of the students have both read the book and seen the movie version. what is the probability that a randomly chosen student in gianna's math class has read her favorite book or seen the movie version of the book? (a) 44%, (b)64%, (c)24%, (d)84%.
As a result, the probability that a randomly selected student in Gianna's probability maths class has read or seen the movie adaptation of her favourite book is 44%.
What is probability?Probability is a measure of how likely an event is to occur. It is represented by a number between 0 and 1, with 0 representing a rare event and 1 representing an inescapable event. Switching a fair coin and coin flips has a chance of 0.5 or 50% because there are two equally likely outcomes. (Heads or tails). Probabilistic theory is an area of mathematics that studies random events rather than their attributes. It is applied in many fields, including statistics, economics, science, and engineering.
solve this problem,
P(A or B) = P(A) + P(B) - P(A and B)
P(A) = 28%
P(B) = 36%
P(A and B) = 20%
Using the formula, we can find:
P(A or B) = P(A) + P(B) - P(A and B)
P(A or B) = 28% + 36% - 20%
P(A or B) = 44%
As a result, the probability that a randomly selected student in Gianna's maths class has read or seen the movie adaptation of her favourite book is 44%.
As a result, the right answer is (a) 44%.
To know more about probability visit:
https://brainly.com/question/11234923
#SPJ1
Use the matrix calculator to solve this linear system for cost per hour of each machine. 100x1 + 130x2 + 16x3 = 3,528 120x1 + 180x2 + 28x3 = 4,864 160x1 + 190x2 + 10x3 = 4,920 x1 = x2 = x3 =
Answer:
x1 = 10
x2 = 16
x3 = 28
Step-by-step explanation:
edge 2023
Giving a test to a group of students, the grades and gender are summarized below
The probability that the student was male AND got A is 5/28.
Define probabilityProbability is a measure of the likelihood that an event will occur. It is expressed as a number between 0 and 1, where 0 represents an impossible event and 1 represents a certain event. A probability of 0.5 (or 50%) indicates that the event is equally likely to occur or not to occur.
There are 56 students total
There are 10 males who got a A.
P(male AND got a A) = (number of males who got a A)/(number total) = (10)/(56) =5/28
Answer in decimal form=0.17
To know more about event, visit:
https://brainly.com/question/12961938
#SPJ1
Use the spinner below.
P(>7) =
The probability of landing on a number greater than 7 is 4÷12 or 1÷3, which is approximately 0.333 or 33.3%.
What is Probability ?
Probability is a branch of mathematics that deals with the study of random events or outcomes. It is a measure of the likelihood or chance of an event occurring, expressed as a number between 0 and 1, where 0 represents an impossible event and 1 represents a certain event.
If the spinner has 12 sections labeled with the numbers 1 through 12, then the probability of landing on a number greater than 7 would be:
There are 12 equally likely outcomes when the spinner is spun.
Out of these 12 outcomes, 4 are greater than 7: 8, 9, 10, and 11.
Therefore, the probability of landing on a number greater than 7 is 4÷12 or 1÷3, which is approximately 0.333 or 33.3%.
So P(>7) = 1÷3 or 0.333 or 33.3%.
To learn more about Probability from given link.
brainly.com/question/29221515
#SPJ1
Find the coordinates of the circumcenter of triangle ABC with vertices of A(0,3), B(0,-1), and C(6,1).
Answer:
the circumcenter of triangle ABC is the point (3, 7/3).
Step-by-step explanation:
To find the circumcenter of triangle ABC, we need to find the intersection point of the perpendicular bisectors of its sides.
First, let's find the midpoint and slope of each side of the triangle:
Side AB: midpoint = (0,1), slope = undefined (vertical line)
Side AC: midpoint = (3,2), slope = -1/3
Side BC: midpoint = (3,-1/2), slope = 3/2
Next, we need to find the equations of the perpendicular bisectors of each side. The perpendicular bisector of a segment is the line that passes through its midpoint and is perpendicular to the segment.
Perpendicular bisector of AB: x = 0 (it is a vertical line passing through the midpoint of AB)
Perpendicular bisector of AC: passes through the midpoint (3,2) and has a slope of the negative reciprocal of AC's slope, which is 3
Therefore, the equation of the perpendicular bisector of AC is y - 2 = -1/3 (x - 3), which simplifies to y = -x/3 + 8/3
Perpendicular bisector of BC: passes through the midpoint (3,-1/2) and has a slope of the negative reciprocal of BC's slope, which is -2/3
Therefore, the equation of the perpendicular bisector of BC is y + 1/2 = -2/3 (x - 3), which simplifies to y = -2x/3 + 7/2
Now we need to find the intersection point of any two of these perpendicular bisectors. We can choose any two, but it is usually easier to choose the ones that have equations in slope-intercept form, which are the perpendicular bisectors of AC and BC.
Solving the system of equations y = -x/3 + 8/3 and y = -2x/3 + 7/2, we get x = 3 and y = 7/3.
Therefore, the circumcenter of triangle ABC is the point (3, 7/3).
To make blackberry jam, you must cook blackberries until they become juice. If 4 cups of blackberries give you 1 1/3 cups of juice, find the constant of proportionality of juice to blackberries.
I don't need sleep, I need answers.
The constant of proportionality of juice to blackberries is 3. This means that for every cup of blackberries, you will get 1/3 cup of juice.
Describe Constant of proportionality ?The constant of proportionality is a mathematical term used to describe the relationship between two quantities that are directly proportional to each other. When two quantities are directly proportional, they vary in proportion to each other such that if one quantity doubles, the other also doubles. The constant of proportionality is the number that relates the two quantities together.
To find the constant of proportionality, we need to divide the amount of juice by the amount of blackberries.
Let x be the amount of blackberries required to make 1 cup of juice. Then we have:
4 cups of blackberries = 1 1/3 cups of juice
Divide both sides by 1 1/3 cups of juice:
4 cups of blackberries / (4/3) cups of juice = 3 cups of blackberries / cup of juice
So the constant of proportionality of juice to blackberries is 3. This means that for every cup of blackberries, you will get 1/3 cup of juice.
To know more about proportion visit:
https://brainly.com/question/17979828
#SPJ1
The outside of a closed glass display case measure 22 inches by 15 inches by 12 inches. The glass is half an inch thick. how much air is contained in the case?k
Answer:
V_air = V_inside = 2,600 cubic inches.
Step-by-step explanation:
To find the amount of air contained in the display case, we need to subtract the volume of the glass from the volume of the outside dimensions.
The volume of the outside dimensions of the display case is:
V_outside = 22 * 15 * 12 = 3,960 cubic inches
The glass is half an inch thick, which means it adds 1 inch to each dimension of the display case. Therefore, the inside dimensions of the display case are:
22 - 2(1) = 20 inches
15 - 2(1) = 13 inches
12 - 2(1) = 10 inches
The volume of the inside dimensions of the display case is:
V_inside = 20 * 13 * 10 = 2,600 cubic inches
The volume of the glass is the difference between the outside and inside volumes:
V_glass = V_outside - V_inside = 3,960 - 2,600 = 1,360 cubic inches
Therefore, the amount of air contained in the display case is:
V_air = V_inside = 2,600 cubic inches.
A student is solving the equation 3(x−12)=9x . Which describes a first step the student could use to solve the equation correctly? Responses The student can distribute 3 on the left side of the equation, resulting in 3x−36=9x . The student can distribute 3 on the left side of the equation, resulting in 3 x − − 36 = 9 x . The student can distribute 3 on the left side of the equation, resulting in 3x−12=9x . The student can distribute 3 on the left side of the equation, resulting in 3 x − − 12 = 9 x . The student can divide both sides of the equation by 3 , resulting in x−12=6x . The student can divide both sides of the equation by 3 , resulting in x − − 12 = 6 x . The student can divide both sides of the equation by 3 , resulting in x−4=3x .
Step-by-step explanation:
The correct first step the student could use to solve the equation 3(x-12)=9x is to distribute 3 on the left side of the equation, resulting in 3x - 36 = 9x.
This is because the distributive property states that a(b + c) = ab + ac. In this case, we have 3(x - 12), so we can distribute the 3 by multiplying it by both terms inside the parentheses: 3(x - 12) = 3x - 36.
Then, we can simplify the equation by subtracting 3x from both sides: -36 = 6x. Finally, we can solve for x by dividing both sides by 6: x = -6.
Therefore, the correct option is: "The student can distribute 3 on the left side of the equation, resulting in 3x−36=9x."
The first step in solving the equation 3(x−12)=9x is to distribute the 3 on the left-hand side of the equation. You multiply each term inside the parentheses by 3, resulting in a simplified equation: 3x - 36 = 9x.
Explanation:If you're aiming to solve the equation 3(x−12)=9x, the initial step would be to distribute the 3 into the parentheses on the left side of the equation. This is achieved by multiplying each term inside the parenthesis by 3. Here's the process in detail:
Step 1: Start with the initial equation, which is 3(x−12)=9x.
Step 2: Remove the parentheses by distributing 3, resulting in 3x - 36 = 9x.
This is a viable initial step because now you have simplified equations on both sides, which helps you to get closer towards isolating the variable x.
Learn more about Distributive Property here:https://brainly.com/question/6276874
#SPJ2
If you bet $5 in a Pick 4 lottery game, you either lose $5 or gain $9,995. (The winning prize is $10,000, but your $5 bet is not returned, so the net gain is $9,995.) The game is played by selecting
a four-digit number between 0000 and 9999. What is the probability of winning? If you bet $5 on 1234, what is the expected value of your gain or loss? What is the probability of winning?
Answer:
the expected value of your gain or loss is a net loss of $0.5006.
The probability of winning is 1/10,000 = 0.0001.
Step-by-step explanation:
There are 10,000 possible four-digit numbers between 0000 and 9999. Only one of those numbers is the winning number. Therefore, the probability of winning the Pick 4 game is:
Probability of winning = 1/10,000 = 0.0001
If you bet $5 on 1234, there are two possible outcomes:
-You lose $5 with probability 0.9999
-You gain $9,995 with probability 0.0001
The expected value of your gain or loss is the sum of the products of each outcome and its probability:
Expected value = (-$5 x 0.9999) + ($9,995 x 0.0001)
Expected value = -$0.5006
Answer:
Step-by-step explanation:
The length of a radius of a circle, measured in centimeters, is represented by the expression x + 1.5. The diameter of the circle is 9 2/5
cm.
What is the value of x?
Enter your answer as a decimal or mixed number in simplest form in the box.
X =
Answer:
The value of x of a circle with radius x + 1.5 and diameter of 9 2 / 5 cm is 7.9 cm
Radius of a circle
Radius of a circle is half of the diameter of a circle. The radius extend from the centre of the circle to the circumference.
Mathematically,
radius = 1 / 2 (diameter)
Therefore,
radius = (x + 1.5) cm
diameter = 9 2 / 5 cm = 47 / 5 cm
let's find x with the relationship above.
Therefore,
x + 1.5 = 47 / 5
subtract 1.5 from both sides
x + 1.5 - 1.5 = 9.4 - 1.5
x = 7.9 cm
Step-by-step explanation:
Let G := {a1, . . . , an} be a finite abelian group such that n := |G| is odd. Prove that
a1 + · · · + an = 0.
We have shown that the sum of the elements in G is equal to zero, as required.
What is abelian group?An abelian group, also known as a commutative group in mathematics, is a set of elements where the outcome of applying the group operation on two elements of the set does not depend on the order in which the elements are written. The group operation is hence commutative. The integers and real numbers both form abelian groups when addition is used as an operation, and the idea of an abelian group can be seen as a generalisation of these cases.
We can prove this statement using the fact that the sum of the elements in an abelian group is always equal to zero.
Since G is a finite abelian group, every element ai in G has an inverse, denoted by -ai. Furthermore, since G is abelian, the order in which we add the elements does not matter. Therefore, we can rearrange the terms in the sum a1 + a2 + ... + an so that all of the terms are paired with their inverse:
a1 + a2 + ... + an = (a1 + (-a1)) + (a2 + (-a2)) + ... + (an + (-an))
Since n is odd, we have an odd number of elements in G, which means that we have an odd number of pairs of the form ai + (-ai). Therefore, there is exactly one element in the sum that is not paired with its inverse, which is either ai or -ai for some i.
Without loss of generality, suppose that ai is the element that is not paired with its inverse. Then, we have:
a1 + a2 + ... + ai + ... + an = (a1 + (-a1)) + (a2 + (-a2)) + ... + (ai + (-ai)) + ... + (an + (-an))
= 0 + 0 + ... + 0 + ai + (-ai) + ... + 0
= ai - ai
= 0
Therefore, we have shown that the sum of the elements in G is equal to zero, as required.
Learn more about abelian group on:
https://brainly.com/question/29031350
#SPJ1
What is the probability that out of 175 chicks hatched on Peeper Farm, at
least 90 will be female? Assume that males and females are equally probable,
and round your answer to the nearest tenth of a percent.
OA. 3.5%
OB. 99.7%
C. 38.1%
D. 88.7%
The pentagonal prism below has a height of 13.4 units and a volume of 321.6 units ^3 . Find the area of one of its bases.
The area of one of the bases of the pentagonal prism is approximately 172.96 square units.
What is Area ?
Area is a measure of the amount of space inside a two-dimensional shape, such as a square, rectangle, triangle, circle, or any other shape that has a length and a width. It is usually measured in square units, such as square inches, square feet, or square meters.
To find the area of one of the bases of the pentagonal prism, we need to use the formula for the volume of a pentagonal prism, which is:
V = (1÷2)Ph,
where V is the volume, P is the perimeter of the base, h is the height of the prism.
Since we know that the height of the prism is 13.4 units and the volume is 321.6 , we can solve for the perimeter of the base:
V = (1÷2)Ph
321.6 = (1÷2)P(13.4)
P = 48
The perimeter of the base is 48 units.
To find the area of one of the bases, we can use the formula for the area of a regular pentagon, which is:
A = (5÷4) [tex]s^{2}[/tex]* tan(π÷5)
where A is the area of the pentagon and s is the length of a side.
Since the pentagon is regular, all sides have the same length. Let's call this length "x".
The perimeter of the pentagon is 48 units, so we have:
5x = 48
x = 9.6
Now we can use the formula for the area of a regular pentagon to find the area of one of the bases:
A = (5÷4)[tex]x^{2}[/tex] * tan(π÷5)
A = (5÷4)(9.6*9.6) * tan(π÷5)
A ≈ 172.96
Therefore, the area of one of the bases of the pentagonal prism is approximately 172.96 square units.
To learn more about Area from given link.
brainly.com/question/12187609
#SPJ1
Determine any data values that are missing from the table, assuming that the data represent a linear function. x y 1 6 2 10 3 a. 6 c. 16 b. 15 d. 14 Please select the best answer from the choices provided
The missing data value in the table of values is y = 14
Determining the missing data valuesWe can use the two given data points (1,6) and (2,10) to find the equation of the linear function that represents the data.
First, we can use the slope formula to find the slope of the line:
slope = (change in y) / (change in x) = (10-6) / (2-1) = 4/1 = 4
Next, we can use the point-slope formula to find the equation of the line using one of the given points. Let's use (1,6):
y - 6 = 4(x - 1)
We can simplify this equation to slope-intercept form (y = mx + b) by solving for y:
y = 4x + 2
Now we can use this equation to find the missing data value when x = 3:
y = 4(3) + 2 = 14
Therefore, the missing data value is y = 14, and the correct answer is (d) 14.
Read more about linear relation at
https://brainly.com/question/30318449
#SPJ1
what is .00024 as simple fraction
[tex]0.\underline{00024}\implies \cfrac{000024}{1\underline{00000}}\implies \cfrac{24}{100000}\implies \cfrac{8\cdot 3}{8\cdot 12500}\implies \cfrac{3}{12500}[/tex]