On the same object as in the previous question, you have to pus
with 15 N to move it 10 meters. How much work do you do?

Answers

Answer 1

Answer:

150 J

Explanation:

To find the work done by pushing the object with a force of 15 N over a distance of 10 meters, we can use the equation:

Work = Force × Distance × cos(θ)

Where:

Force is the applied force (15 N)

Distance is the distance over which the force is applied (10 m)

θ is the angle between the force vector and the direction of motion. In this case, we assume that the force is applied in the same direction as the motion, so θ = 0 degrees, and cos(θ) = 1.

Substituting the given values:

Work = 15 N × 10 m × cos(0) = 150 J

.


Related Questions

HELP!!! Which simple machines represent variations of an inclined plane? Select all that apply.
screw
lever
wedge
pulley
wheel and axle

Answers

Screw screw screws screws

Given the equation = Ѧ and = 1.1 × 103, = 2.48 × 10−2, and = 6.000. What is w, in scientific notation and with the correct number of significant figures?​

Answers

w is 1.07 × 10^4, expressed in scientific notation with the correct number of significant figures.

How do we calculate the value of w?

The equation given is:

Ψ = w/(yz^2)

We Substitute the given values, we get:

Ψ = w/(y × z^2) = 1.1 × 10^3 × 2.48 × 10^-2 × 6.000 = 1.6464

solving  for w and rearranging  the equation as:

w = Ψ × y × z^2

We Substitute the given values, we get:

w = 1.6464 × 37 × (14)^2 = 10,722.7584

we  round the value of w to three significant figures, since the values of y, z, and Ψ are given with three significant figures, in order to express the result in scientific notation with the correct number of significant figures,

Rounding 10,722.7584 to three significant figures gives 10,700. Therefore, the value of w is:

w = 1.07 × 10^4

Learn more about scientific notation at:

https://brainly.com/question/1767229

#SPJ1

HELP
Complete the ray diagram below:

The image characteristics are ____. (2 points)

A concave mirror is shown with curvature positioned at 8 on a ruler that goes from 0 to 14 centimeters. The object is located at 5, and the focal point is located at 6.5.


upright, virtual, and smaller

upright, real, and same size

inverted, virtual, and smaller

inverted, real, and same size

Answers

Real, inverted, and same size are the features of the image. when A concave mirror with a curvature of 8 is displayed on a ruler with a range of 0 to 14 cm.

The mirror formula may be used to calculate the image distance for an item located 4 cm from a 1.5 cm focal length mirror.

1/f = 1/u+1/v

f is the focal length

u is the object distance

v is the image distance

Keep in mind that the concave mirror's image distance and focal length are both positive.

Given:

u = 4cm

f = 1.5cm

1/v = 1/1.5-1/4

1/v = 0.67-0.25

1/v = 0.42

v = 1/0.42

v = 2.38cm

The picture is Genuine and INVERTED since the image distance value is positive.

We shall find its magnification and see if it is magnified or lessened. It is amplified if the magnification is larger than 1, and it is decreased if it is less.

Magnification = v/u

Magnification = 2.38/4

Magnification = 0.595 or. 0.6

The picture is reduced in size since the magnification is less than one (SMALLER).

Learn more about Inverted here:

https://brainly.com/question/16150120

#SPJ1

A current of O.S.A flows in a circuit with resistance 60 calculate the potential difference of the circuit

Answers

Therefore, the potential difference of the circuit is 30 volts.

What in electricity is a potential difference?

The external effort required to move a charge from one position to another in an electric field is known as an electric potential difference, or voltage. A test charge that has an electric potential differential of +1 will experience a shift in potential energy.

To calculate the potential difference (V) of the circuit, we can use Ohm's Law, which states that V = IR, where I is the current flowing through the circuit and R is the resistance of the circuit.

In this case, the current (I) is given as 0.5 A and the resistance (R) is given as 60 Ω. Therefore, we can substitute these values into Ohm's Law to find the potential difference:

V = IR

V = 0.5 A × 60 Ω

V = 30 volts

To know more about potential difference visit:-

brainly.com/question/12198573

#SPJ9

What was the angle of application of the force of 35 if on a distance of 15 the work of 350 was done?

Answers

The Answer is 48.19 degrees

A similar device includes a transformer so that an MP3 player can also be charged. The primary coil has 300 turns.

(a) How many turns are needed in the secondary winding if the voltage is stepped up from 6.2 V to 15.5 V?

(b) Given that the current in the primary winding is 10 mA, what power is transmitted to the secondary windings if the transformer is 77% efficient?​

Answers

The secondary coil needs 120 turns.The power transmitted to the secondary winding is 0.155 W.

How does the voltage change between the primary and secondary coil in a transformer?

A transformer works by using electromagnetic induction to transfer electrical energy between two circuits. The voltage changes between the primary and secondary coil based on the ratio of the number of turns in each coil. In a step-up transformer, the voltage is increased from the primary to the secondary coil, while in a step-down transformer, the voltage is decreased.

What are some common uses for transformers in electronic devices?

Transformers are commonly used in electronic devices to convert voltage levels, isolate circuits, and match impedances. They are often used in power supplies to step down the voltage from the wall outlet to a level that can be used by the device. They are also used in audio amplifiers to match the impedance of the output to the speaker, and in radio and television receivers to tune in to different frequencies.

To know more about voltage,visit:

https://brainly.com/question/29445057

#SPJ1

A 2.9 kg solid cylinder (radius = 0.20 m , length = 0.70 m ) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.75 m high and 5.0 m long.

Answers

The final velocity of the cylinder is 1.22 m/s when it reaches the bottom of the ramp.

To solve this problem, we need to use conservation of energy and rotational kinematics.

Calculate the gravitational potential energy (GPE) of the cylinder at the top of the ramp:

GPE = mgh = (2.9 kg)(9.81)(0.75 m) = 21.39 J

Calculate the final kinetic energy (KE) of the cylinder when it reaches the bottom of the ramp:

[tex]KE = 1/2 mv^2 + 1/2 Iω^2[/tex]

where v is the linear velocity, I is the moment of inertia, and ω is the angular velocity.

Since the cylinder rolls without slipping, we know that v = ωr, where r is the radius of the cylinder.

[tex]KE = 1/2 mv^2 + 1/4 mv^2 = 3/4 mv^2 = 3/8 mgh[/tex]

Substituting the values we have:

KE = 3/8 (2.9 kg)(9.81)(0.75 m) = 63.56 J

Finally, we can use conservation of energy to find the final velocity of the cylinder:

GPE = KE

[tex]mgh = 3/8 mgh + 1/2 mv^2 + 1/2 Iω^2[/tex]

Solving for velocity:

[tex]v = \sqrt (2gh/5) = \sqrt(29.81 m/s^20.75 m/5) = 1.22 m/s[/tex]

learn more about conservation of energy here:

https://brainly.com/question/2137260

#SPJ1

the complete question is:

At the top of a ramp, a 2.9 kg solid cylinder (radius = 0.20 m, length = 0.70 m) is released from rest and allowed to roll without slipping. The ramp measures 0.75 m in height and 5.0 m in length. calculate the final velocity when it reaches the bottom of the ramp

What is a force that acts upon a projectile launched into the air?

1. Centripetal

2. Gravity

3. Trajectory

Answers

The force that acts upon a projectile launched into the air is gravity.

What is gravity?

Gravity is a fundamental force of nature that causes all physical objects to attract each other. It is the force that pulls objects towards each other, and it is the reason why objects with mass are attracted towards the center of the Earth.

When an object is launched into the air, it is subject to the force of gravity, which pulls the object down towards the Earth. As the object moves through the air, the force of gravity causes it to follow a curved path, known as a trajectory, until it eventually hits the ground. While other forces such as air resistance may also act upon the projectile, gravity is the primary force that determines the path of the projectile.

Learn about gravity here https://brainly.com/question/557206

#SPJ1

The cross-sectional area of vessel A is 50 cm² and it contains water to a height 30 cm. The vessel B has an area of cross-section of 25 cm². The two vessels are connected with a thin tube as shown in the figure, When the tap is slowly opened, and the water attained an equilibrium in both vessels. The reduction in the potential energy of the water is (Density of water is 1000 kgm-³)

1) 7.5 J
2) 22.5 J
3) 0.75 J
4) 8.5 J
5) 75 J

Please show the working along with a brief explanation.​

Answers

The reduction in the potential energy of the water is approximately 7.5 J.

option 1

What is the reduction in potential energy?

We can use the principle of conservation of energy to determine the reduction in potential energy of the water.

Initially, the water in vessel A has a certain amount of potential energy due to its height above the bottom of the vessel. When the water flows through the tube and reaches vessel B, its height above the bottom of vessel B is lower than that of vessel A, which means that its potential energy has decreased.

The potential energy of the water in vessel A is given by:

PE_A = mgh_A

The mass of the water in vessel A is given by:

m = density x volume

volume = A x h_A

Substituting for m and simplifying, we get:

PE_A = density x A x h_A x g

Similarly, the potential energy of the water in vessel B is:

PE_B = density x A_B x h_B x g

At equilibrium, the height of the water in the two vessels will be the same, so we can set h_A = h_B = h.

Also, since the water is in equilibrium, the pressure at the bottom of both vessels must be the same. This means that the pressure difference between the top and bottom of the water column in vessel A (due to the weight of the water) must be balanced by the pressure difference between the top and bottom of the water column in vessel B.

The pressure difference in vessel A is:

P_A = density x g x h_A

and the pressure difference in vessel B is:

P_B = density x g x h_B

Since the pressure difference must be balanced, we have:

P_A - P_B = density x g x h_A - density x g x h_B = 0

which simplifies to:

h_A = h_B x A_B / A

Substituting for h_A and h_B in the expressions for PE_A and PE_B, we get:

PE_A = density x A x h x g

PE_B = density x A_B x h x g x A / A_B

The reduction in potential energy of the water is:

ΔPE = PE_A - PE_B = density x g x h x (A - A_B x A / A_B)

which simplifies to:

ΔPE = density x g x h x (A - A_B)

Substituting the given values, we get:

ΔPE = 1000 kg/m³ x 9.8 m/s² x 0.3 m x (50 cm² - 25 cm²)

Converting the area units to m², we get:

ΔPE = 1000 kg/m³ x 9.8 m/s² x 0.3 m x (0.005 m² - 0.0025 m²)

Simplifying, we get:

ΔPE = 7.4 J

Learn more about potential energy here: https://brainly.com/question/1242059

#SPJ1

At 5220J, a temperature increase occurs from 10 degrees Celsius to 60 degrees Celsius. What is the mass of the water?

Answers

The mass of water that undergoes a change in temperature from 10 degrees celsius to 60 degrees celsius is 24.9 g.

What is mass?

Mass is the quantity of matter a body contained.

To calculate the mass of  the water, we use the formula below

Formula:

m = Q/cΔt................... Equation 1

Where:

m = Mass of waterQ = Amount of heatc = Specific heat capacity of waterΔt = Change in temperature

From the question,

Given:

Q = 5220 Jc = 4200 J/kg.KΔt = 60-10 = 50 degree celsius

Substitute these values into equation 1

Q = 5220/(4200×50)Q = 0.0249 kgQ = 24.9 g

Hence, the mass of water is 24.9 g.

Learn more about mass here: https://brainly.com/question/28409714

#SPJ1

This is 20% my grade please and also give an explanation for it cause I don’t understand it

Answers

Thank you for reaching out to me with your question. From what I understand, you are curious about the importance of an assignment or exam that is worth 20% of your grade.

To put it simply, any assignment or exam that is worth a certain percentage of your grade is an indicator of how much weight that particular task carries in determining your overall grade for the course. In other words, if you were to score poorly on an assignment that is worth 20% of your grade, it could significantly impact your final grade.
It is important to note that each assignment or exam may be worth a different percentage, and it is up to the instructor to determine the weight of each task. Generally, assignments and exams that are worth a higher percentage of your grade carry more weight and have a greater impact on your final grade.
Therefore, it is crucial to take each assignment or exam seriously and give it your best effort, especially those that carry a higher percentage of your grade. It is also important to keep track of your grades throughout the semester and identify any areas that may need improvement, so you can work towards improving your overall grade.
I hope this explanation helps clarify the importance of an assignment or exam that is worth a certain percentage of your grade. Please let me know if you have any further questions or concerns.

for more such questions on importance

https://brainly.com/question/628845

#SPJ11

An athlete whirls a 7.66 kg hammer tied to the end of a 1.4 m chain in a simple horizontal circle where you should ignore any vertical deviations. The hammer moves at the rate of 0.372 rev/s. What is the tension in the chain? Answer in units of N.

Answers

The hammer's centripetal acceleration is therefore 100.59 m/s².

Using an example, what is acceleration?

An object has positive acceleration when it is going faster than it was previously. Positive acceleration was demonstrated by the moving car in the first scenario. Positive forward motion is being made by the car.

Hammer mass, m, is 6.55 kg. chain length, including the length of the arms, r = 1.3 m, Hammer's angular velocity is given by the formula: = 1.4 rev/s = 8.79646 rad/s (1 rev = 6.28 rad).

The formula a = V2/r, where V is the transverse velocity of the hammer, yields the centripetal acceleration.

V = r, hence

As a result, a = r²

A = 1.3 x 8.796462, or 100.59 m/s², is obtained by substituting the supplied numbers in the equation above.

The hammer's centripetal acceleration is therefore 100.59 m/s².

To know more about Acceleration visit:

brainly.com/question/30499732

#SPJ1

Work Energy Theorem Question:: A 0.0025 kg bullet traveling straight horizontally at 350 m/s hits a tree and slows uniformly to a stop while penetrating a distance of 0.12 m into the tree’s trunk. What is the initial KE of the bullet? What is the final KE of the bullet? What the the change in KE of the bullet? What is the force exerted?

Answers


Answer:

To solve this problem, we can use the Work-Energy Theorem, which states that the net work done on an object is equal to its change in kinetic energy.

The initial kinetic energy of the bullet can be calculated using the formula:

KE = 0.5 * m * v^2
where KE is the kinetic energy, m is the mass, and v is the velocity.

Substituting the given values, we get:
KE = 0.5 * 0.0025 kg * (350 m/s)^2
KE = 306.25 J

Therefore, the initial kinetic energy of the bullet is 306.25 J.

When the bullet hits the tree, it slows down uniformly to a stop while penetrating a distance of 0.12 m into the tree's trunk. We can assume that the work done by the force of friction between the bullet and the tree is equal to the change in kinetic energy of the bullet.

The final kinetic energy of the bullet is zero because it comes to a stop. Therefore, the change in kinetic energy is:

ΔKE = final KE - initial KE
ΔKE = 0 - 306.25 J
ΔKE = -306.25 J

The negative sign indicates that the kinetic energy of the bullet has decreased.

To calculate the force exerted on the bullet, we can use the formula for work:

W = F * d * cos(θ)
where W is the work done, F is the force, d is the distance, and θ is the angle between the force and the displacement.

Since the force is acting in the opposite direction to the displacement, the angle θ is 180 degrees (cos(180) = -1). Therefore, the formula becomes:

W = -F * d

Substituting the given values, we get:

-306.25 J = -F * 0.12 m
F = 2552.08 N

Therefore, the force exerted on the bullet is 2552.08 N.

QUESTION 7
Which of the following statements best summarizes the energy conversion taking place in the every day item shown below? (a flashlight)

a. Chemical energy from the battery is converted to electrical energy in the flashlight.
b. Nuclear energy from the battery is converted to thermal energy that heats up the light.
c. Thermal energy from the battery is converted to electrical energy in the flashlight.
d. Electrical energy from the battery is converted to potential energy.

Answers

Answer:

a. Chemical energy from the battery is converted to electrical energy in the flashlight.

A block of mass m1=3.0kg rests on a frictionless horizontal surface. A second block of m2=2.0kg hangs from an ideal cord of negligible mass that runs over an ideal pulley and then is connected to the first block . the blocks are released from rest . determine the displacement of the velocityA block of mass m1=3.0kg rests on a frictionless horizontal surface. A second block of m2=2.0kg hangs from an ideal cord of negligible mass that runs over an ideal pulley and then is connected to the first block . the blocks are released from rest . Determine how far has block 1 moved during the 1.2-s interval?
A) 13.4 m
B) 2.1 m
C) 28.2m
D) 7.6m​

Answers

The answer is:

D. 7.6m

waves are generated in a rope of length 6m. What is the speed of the wave if its period is 2s

Answers

The speed of the wave with the period given above would be = 3m/s

How to calculate the speed of the wave?

The wave length generated by the rope = 6m

The period of the wave = 2s

But the formula use for calculate the speed of a wave = v=λf

Where v = speed

λ= wavelength = 6m

f = Frequency.

Also F = 1/T

Where T = period = 2s

F = 1/2 = 0.5 Hz

V = 6× 0.5

V = 3m/s

Learn more about speed here:

https://brainly.com/question/24739297

#SPJ1

What is Albert Einstein theory?​

Answers

Albert Einstein was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics.

Where is the contradiction between quantum physics and Einstein’s gravity?

Rμν−12gμνR=8πGT^μν.

This is Einstein’s field equation. Essentially, this equation is general relativity. The left-hand side represents the geometry of spacetime. The right-hand side, the energy, momentum, and stresses of matter.

What this equation describes, in the words of Wheeler, is this: Spacetime tells matter how to move; matter tells spacetime how to curve.

But look closely. That T

on the right-hand side. It has a hat.

It has a hat because it is a quantum-mechanical operator. Because we know that matter consists of quantum fields. So it is described by operator-valued quantities (Dirac called them q-numbers). They are unlike ordinary numbers. For instance, when you multiply them, the order in which they appear matters. That is, when you have two operators p^

and q^

, p^q^≠q^p^

most of the time. So they are definitely not like numbers.

When Einstein wrote down his field equation over 100 years ago, the T

did not have a hat. But that’s because they didn’t know about operator-valued quantities at the time. Now we do. So I have to put the hat there.

But there are no hats on the left-hand side. And because of that, my equation might as well say something like, some apples = some oranges. It makes no sense. The stuff on the left-hand side (which consists of numbers) can never equal the stuff on the right-hand side (which definitely does not consist of numbers.)

I can make it work, though. I can replace that operator with its so-called expectation value:

Rμν−12gμνR=8πG⟨Tμν⟩.

This is called semiclassical gravity. And it works well, very well indeed. A little too well, as a matter of fact. Gravity is so weak, quantum effects are so irrelevant, this equation accurately describes Nature everywhere we can look. But we still don’t like it, because using that expectation value trick is a cheat, a cop-out.

Now you might wonder, why don’t I put hats on top of the things on the left-hand side? I would… if I knew how to quantize spacetime. That is, how to turn the numbers that describe gravity into quantum-mechanical operators.

But I do not. And nobody does. The standard methods all fail, leading to equations that make no sense at all.

So we are kind of stuck… we don’t know how to quantize gravity, and our observations don’t help us, don’t offer any hints as to how to get beyond semiclassical gravity. Theorists keep trying to come up with new ideas (or recycle old ones) but basically, we’ve been pretty much just spinning our wheels for decades.

PLS ANWSER QUICK

1. Compare the relative light-gathering power of a telescope with a 40-inch primary lens with an otherwise identical telescope with a smaller 20-inch lens. Then, analyze the limitations and importance of space telescope data across the electromagnetic spectrum. In your answer, describe one way such telescope data can help astronomers determine distances between celestial objects and how this relates to how astronomers use observational astronomy methods like the cosmic distance ladder.

Answers

The relative light-gathering power of a telescope is directly proportional to the square of its primary lens diameter. Therefore, a telescope with a 40-inch primary lens will have four times the light-gathering power of an otherwise identical telescope with a 20-inch lens. This means that the larger telescope will be able to collect more light and produce brighter and clearer images of celestial objects.

However, the limitations of telescopes are not solely dependent on their size. Factors such as atmospheric turbulence, light pollution, and the quality of the optics and detectors used in the telescope can also affect the quality of the images produced. Additionally, space telescopes have the advantage of being above the Earth's atmosphere, which can distort and absorb light, allowing for clearer and more precise observations of celestial objects.

Space telescopes can gather data across the electromagnetic spectrum, including wavelengths that cannot be observed from the ground, such as ultraviolet and X-ray radiation. This allows astronomers to study a wide range of celestial objects, from stars and galaxies to black holes and supernovae, in greater detail.

One way in which space telescope data can help astronomers determine distances between celestial objects is through the use of standard candles, which are objects of known luminosity. By measuring the apparent brightness of these objects, astronomers can calculate their distances using the inverse-square law of light. This method is one of several techniques used in observational astronomy to determine the distances of celestial objects, known as the cosmic distance ladder.

In conclusion, while a larger primary lens can improve the light-gathering power of a telescope, other factors also influence the quality of the images produced. Space telescopes have the advantage of being able to gather data across the electromagnetic spectrum, providing astronomers with a wealth of information about celestial objects. This information can help astronomers determine distances between objects using techniques such as the cosmic distance ladder, advancing our understanding of the universe.
Final answer:

A telescope with a 40-inch primary lens has four times the light-gathering power compared to a telescope with a 20-inch lens. Space telescope data is important for studying celestial objects across the electromagnetic spectrum and provides comprehensive information. Telescopic data helps determine distances between objects through techniques like redshift measurement and the cosmic distance ladder.

Explanation:

The relative light-gathering power of a telescope is determined by the area of its primary lens or mirror. In this case, the telescope with the 40-inch primary lens has four times the light-gathering power compared to the telescope with the 20-inch lens. This is because the area of the 40-inch lens is four times larger than the area of the 20-inch lens.

Space telescope data is important across the electromagnetic spectrum because it allows astronomers to study celestial objects in different wavelengths, revealing information that is not accessible through visible light observations alone. By using data from telescopes that operate in various parts of the electromagnetic spectrum, astronomers can gather more comprehensive information about the universe.

One way telescope data helps determine distances between celestial objects is through the measurement of redshift. Redshift occurs when light from distant objects is stretched to longer wavelengths due to the expansion of the universe. By analyzing the amount of redshift in the light from a celestial object, astronomers can estimate its distance. This method is a part of the cosmic distance ladder—a set of techniques used to determine distances to different objects in the universe.

Learn more about Telescope Light-Gathering Power and Space Telescope Data here:

https://brainly.com/question/31942374

#SPJ2

I need help with this question

Answers

The Large Hadron Collider is a product of and is used for

A. scientific investigations, technological development.

What is Large Hadron Collider

The Large Hadron Collider (LHC) was designed and built for scientific investigations in the field of particle physics. Its primary purpose is to collide particles at very high energies and observe the resulting interactions to gain insights into the fundamental nature of matter and the universe.

However, the construction and operation of the LHC have also contributed to technological development in fields such as superconductivity, cryogenics, and data processing.

Learn more about Large Hadron Collider at:

https://brainly.com/question/2492364

#SPJ1

How much heat is necessary to change 10 g of ice at -20°C into water at 10°C?

Answers

Answer:

Explanation:

The process can be broken down into two steps:

Heat required to raise the temperature of ice from -20°C to 0°C.

Heat required to melt ice at 0°C and raise the temperature of water from 0°C to 10°C.

Step 1:

The heat required to raise the temperature of ice can be calculated using the specific heat capacity of ice, which is 2.09 J/g°C.

Heat required = mass × specific heat capacity × change in temperature

Heat required = 10 g × 2.09 J/g°C × (0°C - (-20°C))

Heat required = 418 J

Step 2:

The heat required to melt ice and raise the temperature of water can be calculated using the heat of fusion of ice and the specific heat capacity of water.

Heat required to melt ice = mass × heat of fusion of ice

Heat required to melt ice = 10 g × 334 J/g

Heat required to melt ice = 3340 J

Heat required to raise the temperature of water can be calculated using the specific heat capacity of water, which is 4.18 J/g°C.

Heat required = mass × specific heat capacity × change in temperature

Heat required = 10 g × 4.18 J/g°C × (10°C - 0°C)

Heat required = 418 J

Total heat required = Heat required in Step 1 + Heat required to melt ice + Heat required in Step 2

Total heat required = 418 J + 3340 J + 418 J

Total heat required = 4176 J

Therefore, 4176 J of heat is required to change 10 g of ice at -20°C into water at 10°C.

The thickness of the glass block in front of a fish tank is 9cm. An insect is present at O in air in front of the glass block. The apparent displacement front point O of the insect to the fish which is observing from the water (refractive index of water = 4/3, glass = 3/2)

1) appears 2cm towards
2) appears 2cm away
3) appears 3cm away
4) appears 4 cm away
5) appears appears 4cm towards

Please show me how you worked it out, along with a brief explanation.​

Answers

The insect  appears 3cm away from the image shown.

What is the refractive index in terms of apparent depth?

The refractive index is the ratio of the speed of light in a vacuum to the speed of light in a given medium. However, when light passes through a medium with a different refractive index than the surrounding medium, it appears to change direction at the boundary between the two media. This phenomenon is called refraction.

Refractive index = Real depth/ Apparent Depth

3/2 = 9/A

A = 18/3

A = 6 cm

Displacement = 9 cm - 6 cm = 3cm

Learn more about refractive index:https://brainly.com/question/23750645

#SPJ1

A missile weighing 400N on the earth surface is shot into the atmosphere to an altitude of 6.4 x 106 m. Taking the earth as a sphere of radius 6.4 x 10-6 m and assuming the inverse-square law of universal gravitation, what would be the weight of the missile at that altitude?​

Answers

Answer:

Explanation:

We can use the inverse-square law of universal gravitation to determine the weight of the missile at an altitude of 6.4 x 10^6 m. The law states that the force of gravity between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.

Let M be the mass of the Earth and m be the mass of the missile. At the Earth's surface, the weight of the missile is:

F1 = mg

where g is the acceleration due to gravity on the Earth's surface, which we assume to be 9.81 m/s^2.

At an altitude of 6.4 x 10^6 m, the distance between the center of the Earth and the missile is:

r = R + h

where R is the radius of the Earth (6.4 x 10^6 m) and h is the altitude of the missile (6.4 x 10^6 m).

The weight of the missile at this altitude can be calculated using the inverse-square law of universal gravitation:

F2 = G * M * m / r^2

where G is the gravitational constant (6.6743 x 10^-11 N * m^2 / kg^2).

Substituting the given values, we get:

F2 = (6.6743 x 10^-11 N * m^2 / kg^2) * (5.97 x 10^24 kg) * (400 N) / (6.4 x 10^6 m + 6.4 x 10^6 m)^2

F2 = 39.61 N

Therefore, the weight of the missile at an altitude of 6.4 x 10^6 m is approximately 39.61 N.



2. A point charge of +2 µC is located at the center of a spherical shell of radius 0.20 m that has a charge –2 µC uniformly distributed on its surface. Find the electric field
a) 0.1 m from the center.
b) 0.5 m from the center.

Answers

Answer:

Explanation:

Since the spherical shell has a net charge of -2 µC, it will create an electric field outside the shell. Within the shell, the electric field is zero due to symmetry.

a) To find the electric field 0.1 m from the center, we can use Gauss's law and consider a Gaussian surface in the shape of a sphere with a radius of 0.1 m centered at the center of the spherical shell. The electric field at a distance r from the center of the spherical shell is given by:

E = kq / r^2

where k is Coulomb's constant (9.0 x 10^9 N*m^2/C^2) and q is the charge enclosed by the Gaussian surface.

In this case, the charge enclosed by the Gaussian surface is the point charge of +2 µC at the center of the spherical shell. Therefore, we have:

E = kq / r^2 = (9.0 x 10^9 N*m^2/C^2) * (2 x 10^-6 C) / (0.1 m)^2 = 1.8 x 10^6 N/C

So the electric field 0.1 m from the center is 1.8 x 10^6 N/C.

b) To find the electric field 0.5 m from the center, we can again use Gauss's law and consider a Gaussian surface in the shape of a sphere with a radius of 0.5 m centered at the center of the spherical shell. The charge enclosed by this Gaussian surface is the sum of the point charge of +2 µC at the center and the charge of -2 µC on the spherical shell. Therefore, we have:

q_enclosed = q_center + q_shell = 2 x 10^-6 C - 2 x 10^-6 C = 0 C

Since there is no charge enclosed by the Gaussian surface, the electric field at a distance of 0.5 m from the center is zero.

So the electric field 0.5 m from the center is 0 N/C.

If the wind bounces backward from the sail, will the craft be set in motion?

Answers

If the wind bounces backward from the sail, the boat will not be set in motion as no forward force is generated. For the boat to move forward, the sail must be positioned to catch the wind and create lift in the desired direction.

If the wind bounces backward from the sail, the craft will not be set in motion. In order for a sailboat to move forward, the wind must push on the sail, creating a force that propels the boat forward through the water. When the wind hits the sail, it creates lift in a direction perpendicular to the sail's surface, which results in a forward force that propels the boat.

However, if the wind bounces backward from the sail, it does not create lift and therefore does not result in a forward force on the boat. Instead, the wind is redirected in a different direction, and the boat remains stationary. In order for the boat to move forward, the sail must be positioned to catch the wind and create lift in the desired direction, propelling the boat forward.

To know more about motion please refer: https://brainly.com/question/12640444

#SPJ1

A student uses 800 W microwave for three seconds how much energy does a student use

Answers

Answer:

The student use 2400 Joules

Explanation:

From the formula E = pt

p = 800W

t = 3 seconds

=> E = 800*3 = 2400J

Compare the empirical equation from y=9.8x to V= gT + V0 to determine g and V0

Answers

Answer:

Explanation:

The empirical equation y = 9.8x represents the relationship between the displacement y of an object and the time x it has been falling under the influence of gravity.

On the other hand, the equation V = gT + V0 represents the relationship between the velocity V of an object, the time T, the initial velocity V0, and the acceleration due to gravity g.

To compare the two equations, we can equate the displacement y in the first equation with the expression for displacement in terms of velocity and time, which is y = (1/2)gt^2 + V0t, where t is the time.

Substituting this into the empirical equation, we get:

9.8x = (1/2)gt^2 + V0t

We can see that this equation has three variables: g, V0, and t. We can't determine all three variables from this equation alone.

However, if we know the time it takes for an object to fall a certain distance, we can use this equation to solve for g and V0. For example, if we know that an object falls 1 meter in 0.45 seconds, we can substitute x=1 and t=0.45 into the equation:

9.8(1) = (1/2)g(0.45)^2 + V0(0.45)

Simplifying this equation, we get:

g = 19.62 m/s^2

V0 = 0.45(9.8) = 4.41 m/s

So the acceleration due to gravity is 19.62 m/s^2 and the initial velocity is 4.41 m/s. Note that these values may not be exactly equal to the true values, as the empirical equation y=9.8x is only an approximation and there may be other factors affecting the motion of the object.

What is the conservation of energy examples?

Answers

The law of conservation of energy states that energy can neither be created nor destroyed, but it can be transformed from one form to another. Here are some examples of the conservation of energy:

A roller coaster moving up and down a track: As the roller coaster climbs up a hill, it gains potential energy. When it reaches the top and starts to descend, this potential energy is converted into kinetic energy. At the bottom of the hill, the kinetic energy is at its maximum and the potential energy is at its minimum.

A pendulum swinging back and forth: As a pendulum swings, it moves between two points of maximum potential energy, where it is momentarily at rest, and two points of maximum kinetic energy, where it is moving the fastest.

A light bulb converting electrical energy into light: When a light bulb is turned on, electrical energy is converted into light energy and heat energy. The total amount of energy is conserved, but some of it is lost as heat.

A car braking to a stop: When a car brakes, the kinetic energy of the moving car is converted into thermal energy due to friction between the brake pads and the wheels. The total amount of energy is conserved, but the kinetic energy is transformed into a less useful form.

A battery powering a device: When a battery is used to power a device, chemical energy is converted into electrical energy. The electrical energy is then used to perform work, such as lighting a bulb or spinning a motor.

These are just a few examples of the conservation of energy in action. In each case, energy is transformed from one form to another, but the total amount of energy remains constant.

What is the maximum allowable conductor temperature insulation rating of an NMWU conductor?
O a. 110°C
O b. 90°C
O c. 60°C
O d. 30°C

Answers

A. 90°C, NMWU (Nylon-coated Metal Clad) is a type of electrical wire commonly used in residential and commercial wiring applications.

What is Nylon-coated Metal Clad?

It is composed of a metal conductor, such as aluminum or copper, wrapped in a protective layer of nylon. The advantage of this type of wire is that it is easier to work with than other types of wire, is highly resistant to corrosion, and can withstand temperatures up to 90°C.

The insulation rating of a wire is a measure of its ability to withstand heat or cold without being damaged. This rating is determined by the maximum temperature that the insulation can withstand before it begins to degrade or break down. For NMWU wire, the maximum allowable conductor temperature insulation rating is 90°C. Other types of wire may have lower or higher ratings.

The insulation rating of the wire must be taken into account when selecting a wire for an application. If a wire is subjected to temperatures greater than its rated insulation temperature, the insulation can be damaged and the wire may become unsafe.

Therefore, it is important to ensure that the insulation rating of the wire is appropriate for the application. For NMWU wire, the maximum allowable conductor temperature insulation rating is 90°C, so it should only be used in applications.

Learn more about Nylon-coated Metal Clad here:

https://brainly.com/question/15184283

#SPJ1

Find the density of seawater at a depth where
I the pressure atm
at the
the
surface is 1050 kg/m³. Seawater has a bulk
modulus of 2.3 x 10° N/m². Bulk modulus is
defined to be
B =
Po AP
Ap

Answers

Answer:

To find the density of seawater at a certain depth, we need to use the following equation:

P = P0 + ρgh

where:

P0 = pressure at the surface (given as 1 atm = 101325 Pa)

ρ = density of seawater at the depth we're interested in

g = acceleration due to gravity (9.81 m/s^2)

h = depth below the surface

We also need to use the bulk modulus equation to find the change in pressure with depth:

B = (ρ/ρ0)(P-P0)/P

where:

ρ0 = density of seawater at the surface (given as 1050 kg/m^3)

P = pressure at the depth we're interested in

Combining these two equations, we get:

B = (ρ/ρ0)((P0 + ρgh) - P0)/P

B = ρgh/P

ρ = (BP)/(gh)

Substituting the given values, we get:

ρ = (2.3 x 10^9 N/m^2)(101325 Pa)/(9.81 m/s^2)(1050 kg/m^3)(1 atm)

ρ ≈ 1031.4 kg/m^3

Therefore, the density of seawater at a depth where the pressure is 1 atm and the density at the surface is 1050 kg/m^3 is approximately 1031.4 kg/m^3.

Which correctly describes a different evolutionary stage of a star like the sun

A) it’s forms from a cold, dusty molecular cloud

B) During a yellow giant stage, it burns carbon in its core and helium in the shell surrounding the core.

C) After leaving the main sequence, its core is stable due to electron degeneracy

D) It becomes a white dwarf after exploding as a supernova

E)During a red giant stage, its core contracts and cools

Answers

The statement that correctly defines an evolutionary stage of a star like the sun is that after leaving the main sequence, its core is stable due to electron degeneracy. That is option C.

What are the stage of life cycle of a star?

The stages of the life cycle of a star include the following:

Giant Gas CloudProtostarT-Tauri PhaseMain SequenceRed GiantThe Fusion of Heavier ElementsSupernovae and Planetary Nebulae

The evolutionary stage is also called the main sequence stage of the life cycle of the star.

In this stage, the core temperature reaches the point for the fusion to occur whereby the protons of hydrogen are converted into atoms of helium. This leads to the stability of the core of the newly formed start due to electron degeneracy.

Learn more about star formation here:

https://brainly.com/question/29976256

#SPJ1

Other Questions
what are the trials of Newton's first law of motion? Please help!! you want to buy a house that costs $205,000. you will make a down payment equal to 15 percent of the price of the house and finance the remainder with a loan that has an apr of 5.17 percent compounded monthly. if the loan is for 25 years, what are your monthly mortgage payments? 19% of 43Help please!!! from conception to approximately 2 weeks after conception, a developing human is called a(n) in hemoglobin mckees rocks, point mutation occurs at the codon for tyrosine (uau) to stop codon uaa. what kind of point mutation is this? A fizzy drink comes in a rigid can (its volume remains constant). If the can is left in a hot car, what will happen to the pressure of the gas inside the can as the temperature increases? Explain what is happening to the gas particles. Which gas law does this follow?its for chemistry class not for math In this problem we will compare two different monatomic ideal gases, which we will call gas A and gas B. Throughout thisproblem, the mass of a gas A atom is twice the mass of a gas B atom.a) Suppose gas A and gas B have the same temperature. What is the ratio of the rms speed of a gas A atom over the rms speed ofa gas B atom?b) Instead, if the rms speed of a gas A atom is the same as the rms speed of a gas B atom, what is the ratio of their temperatures?c) Now suppose again that gas A and gas B start with the same initial temperature, and suppose the gases are in (separate)containers with the same fixed volume. The same amount of heat flows into each gas. The temperature of gas A doubles, but thetemperature of gas B triples. What is the ratio of the heat capacity of gas A over the heat capacity of gas B? What is the ratio ofthe final pressure of gas A over the final pressure of gas B? under the uniform securities act Every investment advisory contract must be in writing and it must include which of the following provisions?A statement that assignment of the contract is prohibitedA statement that defines the length of time for which the services are contractedA statement that limits the investment adviser's liability to $500,000 per clientA statement that fully explains the percentage of the capital gains that will be shared with the adviser how might a wildfire influence mass movement? view available hint(s)for part a how might a wildfire influence mass movement? by drying out (removing the water) from the regolith on a slope, wildfires decrease the likelihood of a mass-movement event. the ash from the wildfires lands on the slope, adding enough mass to instigate mass movement. a wildfire can dry out the regolith on a slope, making it less cohesive and more likely to travel downward. because plants on a slope bind the regolith with their roots and shield the soil surface from raindrops, a wildfire that destroys these plants would render the soil looser and more susceptible to the erosional force of rain. wildfires burn only at the bottom of a slope, which oversteepens the slope and induces mass movement. What is the value of x given the following image? additionally, for the sram 3-port ale1 configuration, is it possible to have external, physical access to any address lines above a15? why or why not? the common denominator of north american religions is that they all have the same creation narratives about how human beings were created. question 32 options: true false why did the plains indians sign the treaty of fort laramie, which ceded some of their land to allow the passage of wagon trains? light having a wavelength in vacuum of 600 nm enters a liquid of refractive index 2.0. in this liquid, what is the wavelength of the light? The thyroid gland has primary responsibility for the fight or flight stress response.true or False it is the end of the school year at fitler academy and carlos just received the perfect attendance award. this reward for following the rules is an example of a: what type of congressional committee is permanent and has responsibility for a particular area of public policy? help me plsssss it is due tomorrow! how does fiduciary credit inflation become a reality, and what impact does it have on the amount of money in circulation? where should the biological test pack be placed on the steam sterilization cart for the first run of the day?