pls help asap if you can!!!!!!!!!!!

Pls Help Asap If You Can!!!!!!!!!!!

Answers

Answer 1

Answer:

RS + ST = RT

9 + 2x - 6 = x + 7

2x - 3 = x + 7

x = 10


Related Questions



Solve each proportion.

3/4 = 5/x

Answers

The value of x in the proportion 3/4 = 5/x is 20/3.

To solve the proportion 3/4 = 5/x, we can use cross multiplication. Cross multiplying means multiplying the numerator of the first fraction with the denominator of the second fraction and vice versa.

In this case, we have (3 * x) = (4 * 5), which simplifies to 3x = 20. To isolate x, we divide both sides of the equation by 3, resulting in x = 20/3.

Therefore, the value of x in the given proportion is 20/3.

Learn more about Proportion

brainly.com/question/33460130

#SPJ11

Please Answer This!
I Swear I will Make BrainList to the person who answer this first

Answers

The area of the roads is 550 m² and the construction cost is Rs 57,750.

The area of a rectangle is given by:

A = length x breadth

Given that the width of the road is 5 m.

Area of the road along the length of the park:

A1 = 70 m x 5 m = 350 m²

Area of the road along the breadth of the park:

A2= 45 m x 5 m = 225 m²

Total Area = A1 + A2 = 575 m²

Now, since the area of the square at the center is counted twice, we shall deduct it from the total.

Area of the square = side² = 5² = 25 m²

Actual Area = 575 - 25 = 550 m²

The cost of constructing 1 m² of the road is Rs 105.

Hence, the cost of constructing a 550 m² road is:

= 550 x 105

= Rs 57,750

Hence, the area of the roads is 550 m² and the construction cost is Rs 57,750.

Read more about areas here:

https://brainly.com/question/13048427

Find a 2 x 2 matrix such that
[-5. [-5 and
0]. 4]
are eigenvectors of the matrix with eigenvalues 5 and -9, respectively.
[___ ___]

Answers

The given eigenvectors are [-5, 4] and [-5, 0] respectively. The given matrix is A.Now, let's substitute these values and follow the eigenvalue and eigenvector definition such thatAx = λx, where x is the eigenvector and λ is the corresponding eigenvalue.Using eigenvector [−5,4] (and eigenvalue 5), we haveA [-5 4]x [5 -5] [x1] = 5 [x1] [x2] [x2]

From which we can solve the following system of equations:5x1 - 5x2 = -5x1 + 4x2 = 0Hence, solving for x2 in terms of x1, x2 = x1(5/4). As eigenvectors can be scaled, let x1 = 4, which leads us to the eigenvector [4, 5] corresponding to eigenvalue 5.Similarly, using eigenvector [-5,0] (and eigenvalue -9), we haveA [-5 0]x [−9 -5] [x1] = −9 [x1] [x2] [x2]From which we can solve the following system of equations:−9x1 - 5x2 = -5x1 + 0x2 = 0Hence, solving for x2 in terms of x1, x2 = -(9/5)x1. As eigenvectors can be scaled, let x1 = 5, which leads us to the eigenvector [5, -9] corresponding to eigenvalue -9.We can confirm the above by multiplying the eigenvectors and eigenvalues together and checking if they are equal to A times the eigenvectors.We have[A][4] [5] [5] [-9] = [20] [25] [-45] [-45] [0] [0]. We need to find a 2x2 matrix that has the eigenvectors [-5, 4] and [-5, 0], with corresponding eigenvalues 5 and -9, respectively. In other words, we need to find a matrix A such that A[-5, 4] = 5[-5, 4] and A[-5, 0] = -9[-5, 0].Let's assume the matrix A has the form [a b; c d]. Multiplying A by the eigenvector [-5, 4], we get[-5a + 4c, -5b + 4d] = [5(-5), 5(4)] = [-25, 20].Solving the system of equations, we get a = -4 and c = -5/2. Multiplying A by the eigenvector [-5, 0], we get[-5a, -5b] = [-9(-5), 0] = [45, 0].Solving the system of equations, we get a = -9/5 and b = 0. Therefore, the matrix A is[A] = [-4, 0; -5/2, -9/5].

We can find a 2x2 matrix with eigenvectors [-5, 4] and [-5, 0], and eigenvalues 5 and -9, respectively, by solving the system of equations that results from the definition of eigenvectors and eigenvalues. The resulting matrix is A = [-4, 0; -5/2, -9/5].

To learn more about eigenvector definition visit:

brainly.com/question/31043286

#SPJ11

1. Transform the following f(x) using the Legendre's polynomial function (i). (ii). 4x32x² 3x + 8 x³ 2x²-x-3 -

Answers

The answer cannot be provided in one row as the specific transformation steps and calculations are not provided in the question.

Transform the given function f(x) using Legendre's polynomial function.

The given problem involves transforming the function f(x) using Legendre's polynomial function.

Legendre's polynomial function is a series of orthogonal polynomials used to approximate and transform functions.

In this case, the function f(x) is transformed using Legendre's polynomial function, which involves expressing f(x) as a linear combination of Legendre polynomials.

The specific steps and calculations required to perform this transformation are not provided, but the result of the transformation will be a new representation of the function f(x) in terms of Legendre polynomials.

Learn more about steps and calculations

brainly.com/question/29162034

#SPJ11

what is one half note multiplied by x one whole note minus two eighth notes?

Answers

One-half note multiplied by x one whole note minus two eighth notes will give

How to determine the amount

To determine what one-half note multiplied by x one whole note minus two eighth notes will give, the figures would be expressed first as follows:

One-half note = 2 quarter notes

One whole note = x(2 half notes) or four quarter notes

Two eight notes = 1 quarter notes

Now, we will sum up all of the quarter notes to have

2 + 4 + 1 = 7 quarter notes.

So the correct option is 7 quarter notes.

Learn more about multiplication here:

https://brainly.com/question/10873737

#SPJ1

2) Solve x" + 6x' + 5x = 0, x'(0) = 1,x(0) = 2 I

Answers

The solution to the given differential equation is x(t) = 2e^(-t) - e^(-5t).

We start by finding the characteristic equation associated with the given differential equation. The characteristic equation is obtained by replacing the derivatives with algebraic variables, resulting in the equation r^2 + 6r + 5 = 0.

Next, we solve the characteristic equation to find the roots. Factoring the quadratic equation, we have (r + 5)(r + 1) = 0. Therefore, the roots are r = -5 and r = -1.

Step 3: The general solution of the differential equation is given by x(t) = c1e^(-5t) + c2e^(-t), where c1 and c2 are constants. To find the particular solution that satisfies the initial conditions, we substitute the values of x(0) = 2 and x'(0) = 1 into the general solution.

By plugging in t = 0, we get:

x(0) = c1e^(-5(0)) + c2e^(-0)

2 = c1 + c2

By differentiating the general solution and plugging in t = 0, we get:

x'(t) = -5c1e^(-5t) - c2e^(-t)

x'(0) = -5c1 - c2 = 1

Now, we have a system of equations:

2 = c1 + c2

-5c1 - c2 = 1

Solving this system of equations, we find c1 = -3/4 and c2 = 11/4.

Therefore, the particular solution to the given differential equation with the initial conditions x(0) = 2 and x'(0) = 1 is:

x(t) = (-3/4)e^(-5t) + (11/4)e^(-t)

Learn more about: differential equation

brainly.com/question/16663279

#SPJ11

In a video game, Shar has to build a pen shaped like a right triangle for her animals. If she needs 8 feet of fence for the shortest side and 10 feet of fence for the longest side, how many feet of fencing is needed for the entire animal pen?

Answers

To find out how much fencing Shar needs in total, you need to find the length of the remaining side of the triangle. You can use the Pythagorean Theorem, which states that in a right triangle, the square of the length of the hypotenuse (longest side) is equal to the sum of the squares of the other two sides.

Using this formula, you can solve for the length of the remaining side:

a² + b² = c²
8² + b² = 10²
64 + b² = 100
b² = 36
b = 6

So the length of the remaining side is 6 feet. To find the total amount of fencing needed, you just add up the lengths of all three sides:

8 + 6 + 10 = 24

So Shar needs 24 feet of fencing in total.

Problem 1 . Prove the following proposition. Proposition 1 Let I⊆R be an interval and f,g two real-valued functions defined on I. Assume that f and g are convex. Then: (a) The function f+g is convex. (b) If c≥0, then cf is convex. (c) If c≤0, then cf is concave.

Answers

It is shown that: (a) The function f+g is convex.

(b) If c ≥ 0, then cf is convex. (c) If c ≤ 0, then cf is concave. The proposition is proven.

How did we prove the proposition?

To prove the proposition, we'll need to show that each part (a), (b), and (c) holds true. Let's start with part (a).

(a) The function f+g is convex:

To prove that the sum of two convex functions is convex, we'll use the definition of convexity. Let's consider two points, x and y, in the interval I, and a scalar λ ∈ [0, 1]. We need to show that:

[tex](f+g)(λx + (1-λ)y) ≤ λ(f+g)(x) + (1-λ)(f+g)(y)[/tex]

Now, since f and g are both convex, we have:

[tex]f(λx + (1-λ)y) ≤ λf(x) + (1-λ)f(y) \: (1) \\

g(λx + (1-λ)y) ≤ λg(x) + (1-λ)g(y) \: (2)[/tex]

Adding equations (1) and (2), we get:

[tex]f(λx + (1-λ)y) + g(λx + (1-λ)y) ≤ λf(x) + (1-λ)f(y) + λg(x) + (1-λ)g(y) \\

(f+g)(λx + (1-λ)y) ≤ λ(f+g)(x) + (1-λ)(f+g)(y)[/tex]

This shows that

[tex](f+g)(λx + (1-λ)y) ≤ λ(f+g)(x) + (1-λ)(f+g)(y),[/tex]

which means that f+g is convex.

(b) If c ≥ 0, then cf is convex:

To prove this, let's consider a scalar λ ∈ [0, 1] and two points x, y ∈ I. We need to show that:

[tex](cf)(λx + (1-λ)y) ≤ λ(cf)(x) + (1-λ)(cf)(y)[/tex]

Since f is convex, we know that:

[tex]f(λx + (1-λ)y) ≤ λf(x) + (1-λ)f(y)[/tex]

Now, since c ≥ 0, multiplying both sides of the above inequality by c gives us:

[tex]cf(λx + (1-λ)y) ≤ c(λf(x) + (1-λ)f(y))

\\ (cf)(λx + (1-λ)y) ≤ λ(cf)(x) + (1-λ)(cf)(y)

[/tex]

This shows that cf is convex when c ≥ 0.

(c) If c ≤ 0, then cf is concave:

To prove this, we'll consider the negative of the function cf, which is (-cf). From part (b), we know that (-cf) is convex when c ≥ 0. However, if c ≤ 0, then (-c) ≥ 0, so (-cf) is convex. Since the negative of a convex function is concave, we conclude that cf is concave when c ≤ 0.

In summary, we have shown that:

(a) The function f+g is convex.

(b) If c ≥ 0, then cf is convex.

(c) If c ≤ 0, then cf is concave.

Therefore, the proposition is proven.

learn more about convex function: https://brainly.com/question/26093364

#SPJ4

a) This implies that (f + g)(λx + (1 - λ)y) ≤ λ(f(x) + g(x)) + (1 - λ)(f(y) + g(y)), which proves that f + g is convex, b) This implies that (cf)(λx + (1 - λ)y) ≤ λ(cf(x)) + (1 - λ)(cf(y)), proving that cf is conve, c) Therefore, Proposition 1 is proven, demonstrating that the function f + g is convex, cf is convex when c ≥ 0, and cf is concave when c ≤ 0.

To prove Proposition 1, we will demonstrate each part individually:

(a) To prove that the function f + g is convex, we need to show that for any x, y in the interval I and any λ ∈ [0, 1], the following inequality holds:

(f + g)(λx + (1 - λ)y) ≤ λ(f(x) + g(x)) + (1 - λ)(f(y) + g(y))

Since f and g are convex functions, we know that for any x, y in I and λ ∈ [0, 1], we have:

f(λx + (1 - λ)y) ≤ λf(x) + (1 - λ)f(y)

g(λx + (1 - λ)y) ≤ λg(x) + (1 - λ)g(y)

By adding these two inequalities together, we obtain:

f(λx + (1 - λ)y) + g(λx + (1 - λ)y) ≤ λf(x) + (1 - λ)f(y) + λg(x) + (1 - λ)g(y)

This implies that (f + g)(λx + (1 - λ)y) ≤ λ(f(x) + g(x)) + (1 - λ)(f(y) + g(y)), which proves that f + g is convex.

(b) To prove that cf is convex when c ≥ 0, we need to show that for any x, y in I and any λ ∈ [0, 1], the following inequality holds:

(cf)(λx + (1 - λ)y) ≤ λ(cf(x)) + (1 - λ)(cf(y))

Since f is a convex function, we have:

f(λx + (1 - λ)y) ≤ λf(x) + (1 - λ)f(y)

By multiplying both sides of this inequality by c (which is non-negative), we obtain:

cf(λx + (1 - λ)y) ≤ c(λf(x)) + c((1 - λ)f(y))

This implies that (cf)(λx + (1 - λ)y) ≤ λ(cf(x)) + (1 - λ)(cf(y)), proving that cf is convex when c ≥ 0.

(c) To prove that cf is concave when c ≤ 0, we can use a similar approach as in part (b). By multiplying both sides of the inequality f(λx + (1 - λ)y) ≤ λf(x) + (1 - λ)f(y) by c (which is non-positive), we obtain the inequality (cf)(λx + (1 - λ)y) ≥ λ(cf(x)) + (1 - λ)(cf(y)), showing that cf is concave when c ≤ 0.

Therefore, Proposition 1 is proven, demonstrating that the function f + g is convex, cf is convex when c ≥ 0, and cf is concave when c ≤ 0.

Learn more about concave here:

https://brainly.com/question/27841226

#SPJ11

the graph of y=3x2 -3x -1 is shown

Answers

Answer:

Step-by-step explanation:

What's the problem/question?

The least number by which 3² x 7² x 5 should be multiplied to make the resulting product a perfect cube is ​

Answers

Answer: 525

Step-by-step explanation:

To determine the least number by which 3² x 7² x 5 should be multiplied to make the resulting product a perfect cube, we need to factorize the given expression and identify the missing factors.

3² x 7² x 5 can be written as (3 x 3) x (7 x 7) x 5 = 3² x 7² x 5

To make it a perfect cube, we need to identify the missing factors. In a perfect cube, each prime factor must have an exponent that is a multiple of 3.

Let's analyze the given expression:

Prime factor 3 appears with an exponent of 2, which is not a multiple of 3. So, we need to multiply it by 3 to make it a perfect cube.

Prime factor 7 appears with an exponent of 2, which is also not a multiple of 3. So, we need to multiply it by 7 to make it a perfect cube.

Prime factor 5 appears with an exponent of 1, which is not a multiple of 3. So, we need to multiply it by 5² to make it a perfect cube.

The least number by which 3² x 7² x 5 should be multiplied to make it a perfect cube is:

3 x 7 x 5² = 3 x 7 x 25 = 525.

Therefore, the expression 3² x 7² x 5 should be multiplied by 525 to make the resulting product a perfect cube.

Final answer:

To make the product 3² x 7² x 5 a perfect cube, we need to factorize it and check for any missing powers. The least number by which it should be multiplied is 21.

Explanation:

To make the product 3² x 7² x 5 a perfect cube, we need to find the least number that can be multiplied with it. In order to do this, we need to factorize the given expression and check for any missing powers.

Factoring 3² x 7² x 5, we have (3 x 3) x (7 x 7) x 5. Now, we check for any missing powers. We need one more factor of 3 and one more factor of 7 to make it a perfect cube.

So, the least number by which 3² x 7² x 5 should be multiplied to make the resulting product a perfect cube is 3 x 7 = 21.

Learn more about perfect cube here:

https://brainly.com/question/32533771

#SPJ2

matrix: Proof the following properties of the fundamental (1)-¹(t₁, to) = $(to,t₁);

Answers

The property (1)-¹(t₁, t₀) = $(t₀,t₁) holds true in matrix theory.

In matrix theory, the notation (1)-¹(t₁, t₀) represents the inverse of the matrix (1) with respect to the operation of matrix multiplication. The expression $(to,t₁) denotes the transpose of the matrix (to,t₁).

To understand the property, let's consider the matrix (1) as an identity matrix of appropriate dimension. The identity matrix is a square matrix with ones on the main diagonal and zeros elsewhere. When we take the inverse of the identity matrix, we obtain the same matrix. Therefore, (1)-¹(t₁, t₀) would be equal to (1)(t₁, t₀) = (t₁, t₀), which is the same as $(t₀,t₁).

This property can be understood intuitively by considering the effect of the inverse and transpose operations on the identity matrix. The inverse of the identity matrix simply results in the same matrix, and the transpose operation also leaves the identity matrix unchanged. Hence, the property (1)-¹(t₁, t₀) = $(t₀,t₁) holds true.

The property (1)-¹(t₁, t₀) = $(t₀,t₁) in matrix theory states that the inverse of the identity matrix, when transposed, is equal to the transpose of the identity matrix. This property can be derived by considering the behavior of the inverse and transpose operations on the identity matrix.

Learn more about matrix

brainly.com/question/29000721

#SPJ11

Finney Appliances past accounting data shows that their expenses average 8% of an iteris regular selling price. They want to make a 22% profit based on selling price. If Finney Appliances purchases a refngerator for $1,030, answer the following questions For full marks your answer(s) should be rounded to the nearest cent a) What is the reqular sellina pnice? b) What is the amount of

Answers

a) The regular selling price for the refrigerator is approximately $1,471.43.

b) The amount of profit based on the selling price is approximately $441.43.

a) To calculate the regular selling price, we need to consider the expenses and the desired profit.

Let's denote the regular selling price as "P."

Expenses average 8% of the regular selling price, which means expenses amount to 0.08P.

The desired profit based on selling price is 22% of the regular selling price, which means profit amounts to 0.22P.

The total cost of the refrigerator, including expenses and profit, is the purchase price plus expenses plus profit: $1,030 + 0.08P + 0.22P.

To find the regular selling price, we set the total cost equal to the regular selling price:

$1,030 + 0.08P + 0.22P = P.

Combining like terms, we have:

$1,030 + 0.30P = P.

0.30P - P = -$1,030.

-0.70P = -$1,030.

Dividing both sides by -0.70:

P = -$1,030 / -0.70.

P ≈ $1,471.43.

Therefore, the regular selling price is approximately $1,471.43.

b) To calculate the amount of profit, we can subtract the cost from the regular selling price:

Profit = Regular selling price - Cost.

Profit = $1,471.43 - $1,030.

Profit ≈ $441.43.

Therefore, the amount of profit is approximately $441.43.

Please note that the values are rounded to the nearest cent.

To know more about profit, refer to the link below:

https://brainly.com/question/32673662#

#SPJ11

4. Determine a scalar equation for the plane through the points M(1, 2, 3) and N(3,2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0. (Thinking - 2)

Answers

The normal vector of the desired plane is (6, 0, -12), and a scalar equation for the plane is 6x - 12z + k = 0, where k is a constant that can be determined by substituting the coordinates of one of the given points, such as M(1, 2, 3).

A scalar equation for the plane through points M(1, 2, 3) and N(3, 2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0 is:

3x + 2y + 6z + k = 0,

where k is a constant to be determined.

To find a plane perpendicular to the given plane, we can use the fact that the normal vector of the desired plane will be parallel to the normal vector of the given plane.

The given plane has a normal vector of (3, 2, 6) since its equation is 3x + 2y + 6z + 1 = 0.

To determine the normal vector of the desired plane, we can calculate the vector between the two given points: MN = N - M = (3 - 1, 2 - 2, -1 - 3) = (2, 0, -4).

Now, we need to find a scalar multiple of (2, 0, -4) that is parallel to (3, 2, 6). By inspection, we can see that if we multiply (2, 0, -4) by 3, we get (6, 0, -12), which is parallel to (3, 2, 6).

to learn more about scalar equation click here:

brainly.com/question/33063973

#SPJ11

olve the given system of (D² + 4)x - tial equations by system 3y = 0 -2x + (D² + 3)y = 0 (x(t), y(t)) ») = ( nination. cost+c₂sint+c₂cos√√6t+csin√6t,c₁cost+ √6t-csin√6t X

Answers

The solution to the given system of differential equations is:

x(t) = c₁cos(2t) + c₂sin(2t)

y(t) = c₃cos(√3t) + c₄sin(√3t)

To solve the given system of differential equations:

(D² + 4)x - 3y = 0   ...(1)

-2x + (D² + 3)y = 0   ...(2)

Let's start by finding the characteristic equation for each equation:

For equation (1), the characteristic equation is:

r² + 4 = 0

Solving this quadratic equation, we find two complex conjugate roots:

r₁ = 2i

r₂ = -2i

Therefore, the homogeneous solution for equation (1) is:

x_h(t) = c₁cos(2t) + c₂sin(2t)

For equation (2), the characteristic equation is:

r² + 3 = 0

Solving this quadratic equation, we find two complex conjugate roots:

r₃ = √3i

r₄ = -√3i

Therefore, the homogeneous solution for equation (2) is:

y_h(t) = c₃cos(√3t) + c₄sin(√3t)

Now, we need to find a particular solution. Since the right-hand side of both equations is zero, we can choose a particular solution that is also zero:

x_p(t) = 0

y_p(t) = 0

The general solution for the system is then the sum of the homogeneous and particular solutions:

x(t) = x_h(t) + x_p(t) = c₁cos(2t) + c₂sin(2t)

y(t) = y_h(t) + y_p(t) = c₃cos(√3t) + c₄sin(√3t)

Therefore, the solution to the given system of differential equations is:

x(t) = c₁cos(2t) + c₂sin(2t)

y(t) = c₃cos(√3t) + c₄sin(√3t)

Please note that the constants c₁, c₂, c₃, and c₄ can be determined by the initial conditions or additional information provided.

Learn more about differential equations

https://brainly.com/question/32645495

#SPJ11

Elementary linear algebra (Linear Transformations) (Please explain in non-mathematical language as best you can)
Let R[x] be the set of all real polynomials in the variable x. As noted earlier, R[x] is a real vector space.
Let V be the subspace of all polynomials of degree no more than four. Also as noted earlier, differentiation defines a linear
transformation on R[x] , and so, by restriction, a linear transformation T : V →V . Find the 5 × 5 real matrix associated
with this linear transformation with respect to the basis 1,x,x2,x3,x4.

Answers

Linear transformations are operations that take in vectors and produce new vectors in a way that maintains certain properties. They are commonly used in linear algebra to study how vectors change or are mapped from one space to another.

Think of a linear transformation as a machine that takes in objects (vectors) and processes them according to certain rules. Just like a machine that transforms raw materials into finished products, a linear transformation transforms input vectors into output vectors.

These transformations preserve certain properties. For example, they preserve the concept of lines and planes. If a straight line is input into a linear transformation, the result will still be a straight line, although it may be in a different direction or position. Similarly, if a plane is input, the transformation will produce another plane.

Linear transformations can also scale or stretch vectors, rotate them, or reflect them across an axis. They can compress or expand space, but they cannot create new space or change its overall shape.

learn more about Linear transformations

https://brainly.com/question/13595405

#SPJ11

pls help if you can asap!!!!

Answers

Answer: A

Step-by-step explanation: I would say A because the angle is greater than 90 degrees

Answer:

We have supplementary angles.

76 + 3x + 2 = 180

3x + 78 = 180

3x = 102

x = 34

Write the equation of a function whose parent function, f(x) = x 5, is shifted 3 units to the right. g(x) = x 3 g(x) = x 8 g(x) = x − 8 g(x) = x 2

Answers

The equation of the function that results from shifting the parent function three units to the right is g(x) = x + 8.

To shift the parent function f(x) = x + 5 three units to the right, we need to subtract 3 from the input variable x. This will offset the graph horizontally to the right. Therefore, the equation of the shifted function, g(x), can be written as g(x) = (x - 3) + 5, which simplifies to g(x) = x + 8. The constant term in the equation represents the vertical shift. In this case, since the parent function has a constant term of 5, shifting it to the right does not affect the vertical position, resulting in g(x) = x + 8. This equation represents a function that is the same as the parent function f(x), but shifted three units to the right along the x-axis.

Learn more about function here :

brainly.com/question/30721594?

#SPJ11

The complete question is : Write the equation of a function whose parent function, f(x)=x+5, is shifted 3 units to the right. g(x)=x+3 g(x)=x+8 g(x)=x-8 g(x)=x-2

What is the polar equation of the given rectangular equation \( x^{2}=\sqrt{4} x y-y^{2} \) ? A. \( 2 \sin Q \cos Q=1 \) B. \( 2 \sin Q \cos Q=r \) C. \( r(\sin Q \cos Q)=4 \) D. \( 4(\sin Q \cos Q)=1

Answers

The polar equation of the given rectangular equation is 2 sin 2θ = 1.

The given rectangular equation is x² = √(4xy) - y². To find the polar equation, we can substitute the conversion rules:

x = r cos θ

y = r sin θ

Substituting these values into the given rectangular equation, we have:

r² cos² θ = √(4r² sin θ cos θ) - r² sin² θ

Simplifying further:

r² cos² θ + r² sin² θ = √(4r² sin θ cos θ

4r² sin θ cos θ = r² (cos² θ + sin² θ)

We can cancel out r² on both sides:

4 sin θ cos θ = 1

Multiplying both sides by 2, we get:

2(2 sin θ cos θ) = 1

Simplifying further:

2 sin 2θ = 1

The above rectangle equation's polar equation is 2 sin 2 = 1.

Learn more about polar equation

https://brainly.com/question/29083133

#SPJJ1

Natalie went to store A and bought 3 4/5 pounds of pistachios for $17. 75. Nicholas went to a store B and brought 4 7/10 pounds of pistachios for $ 19.50.

Answers

Natalie bought pistachios at a lower price per pound compared to Nicholas.

To compare the prices of pistachios at store A and store B, we need to calculate the price per pound for each store based on the given information.

Natalie's purchase at store A:

Weight of pistachios = 3 4/5 pounds

Cost of pistachios = $17.75

To calculate the price per pound at store A, we divide the total cost by the weight:

Price per pound at store A = $17.75 / (3 4/5) pounds.

To simplify the calculation, we can convert the mixed fraction 3 4/5 to an improper fraction:

3 4/5 = (3 [tex]\times[/tex] 5 + 4) / 5 = 19/5

Substituting the values, we have:

Price per pound at store A = $17.75 / (19/5) pounds

Price per pound at store A = $17.75 [tex]\times[/tex] (5/19) per pound

Price per pound at store A = $3.947 per pound (rounded to three decimal places).

Nicholas's purchase at store B:

Weight of pistachios = 4 7/10 pounds

Cost of pistachios = $19.50

To calculate the price per pound at store B, we divide the total cost by the weight:

Price per pound at store B = $19.50 / (4 7/10) pounds

Converting the mixed fraction 4 7/10 to an improper fraction:

4 7/10 = (4 [tex]\times[/tex] 10 + 7) / 10 = 47/10

Substituting the values, we have:

Price per pound at store B = $19.50 / (47/10) pounds

Price per pound at store B = $19.50 [tex]\times[/tex] (10/47) per pound

Price per pound at store B = $4.149 per pound (rounded to three decimal places).

Comparing the prices per pound, we find that the price per pound at store A ($3.947) is lower than the price per pound at store B ($4.149).

For similar question on lower price.

https://brainly.com/question/7303679  

#SPJ8



What is the sum of the solutions of |5 x-4|=x-8 ?

Answers

The sum of the solutions of the equation |5x - 4| = x - 8 is 1.

To find the sum of the solutions of the equation |5x - 4| = x - 8, we need to solve the equation and then sum the solutions.

Let's consider the two cases when the expression inside the absolute value is positive and negative.

Case 1: (5x - 4) is positive

In this case, the equation simplifies to:

5x - 4 = x - 8

Solving for x:

5x - x = -8 + 4

4x = -4

x = -4/4

x = -1

Case 2: (5x - 4) is negative

In this case, we change the sign of the expression inside the absolute value, and the equation becomes:

-(5x - 4) = x - 8

Simplifying and solving for x:

-5x + 4 = x - 8

-5x - x = -8 - 4

-6x = -12

x = -12 / -6

x = 2

So the two solutions are x = -1 and x = 2.

To find the sum of the solutions:

Sum = (-1) + 2

Sum = 1

Therefore, the sum of the solutions of the equation |5x - 4| = x - 8 is 1.

Learn more about linear equations from the given link!

https://brainly.com/question/28307569

#SPJ11

Help please!! On edmentum

Answers

both functions are linear and increasing

4. Express the following algebraic expression in the rectangular (Z = X +iY) form, 2 2 (x+iy 4)² – (x-x)², where x, X and y, Y are - x-iy r+iy/ real numbers.

Answers

To express the algebraic expression [tex]$(x + iy)^2 - (x - x)^2$[/tex] in the rectangular form [tex]$(Z = X + iY)$[/tex] where [tex]$x$[/tex], [tex]$X$[/tex],[tex]$y$[/tex], [tex]$Y$[/tex]are real numbers, we can expand and simplify the expression.

First, let's expand [tex]$(x + iy)^2$[/tex]:

[tex]\[(x + iy)^2 = (x + iy)(x + iy) = x(x) + x(iy) + ix(y) + iy(iy) = x^2 + 2ixy - y^2\][/tex]

Next, let's simplify [tex]$(x - x)^2$[/tex]:

[tex]\[(x - x)^2 = 0^2 = 0\][/tex]

Now, we can substitute these results back into the original expression:

[tex]\[2(x + iy)^2 - (x - x)^2 = 2(x^2 + 2ixy - y^2) - 0 = 2x^2 + 4ixy - 2y^2\][/tex]

Therefore, the algebraic expression [tex]$(x + iy)^2 - (x - x)^2$[/tex] can be expressed in the rectangular form as [tex]$2x^2 + 4ixy - 2y^2$[/tex].

In this form, [tex]$X = 2x^2$[/tex][tex]$Y = 4xy - 2y^2$[/tex], representing the real and imaginary parts respectively.

learn more about real and imaginary parts

https://brainly.com/question/13389642

#SPJ11



Assume a and b are positive integers. Determine whether each statement is true or false. If it is true, explain why. If it is false, give a counterexample.

(a !)^b=a^(b!)

Answers

The statement (a!)^b = a^(b!) is not true for all values of a and b, where they are positive integers. Hence, the given statement is false.

Given: a and b are positive integers.

To determine whether the given statement, (a!)^b = a^(b!) is true or false, we have to apply mathematical logic.  Let us test this statement for some random values of a and b.

Example 1: Let a = 2 and b = 3.

(a!)^b = (2!)^3 = 8^3 = 512

a^(b!) = 2^(3!) = 2^6 = 64

Here, (a!)^b ≠ a^(b!). So, the statement (a!)^b = a^(b!) is false.

Example 2: Let a = 3 and b = 2.

(a!)^b = (3!)^2 = 6^2 = 36

a^(b!) = 3^(2!) = 3^2 = 9

Here, (a!)^b ≠ a^(b!) So, the statement (a!)^b = a^(b!) is false.

Therefore, the statement (a!)^b = a^(b!) is not true for all values of a and b. Hence, the given statement is false.

To know more about positive integers, refer here:

https://brainly.com/question/18380011

#SPJ11

Question 15 (a) A curve has equation −2x 2
+xy− 4
1
​ y=3. [8] Find dx
dy
​ in terms of x and y. Show that the stationary values occur on the curve when y=4x and find the coordinates of these stationary values. (b) Use the Quotient Rule to differentiate lnx
c x
​ where c is a constant. [2] You do not need to simplify your answer. (c) The section of the curve y=e 2x
−e 3x
between x=0 and x=ln2 is [4] rotated about the x - axis through 360 ∘
. Find the volume formed. Give your answer in terms of π.

Answers

The (dy/dx)  in terms of x and y is (dy/dx)= (4/3y) / (2x - y) while the statutory values are 8 + 2√19) / 3, (32 + 8√19) / 3 and (8 - 2√19) / 3, (32 - 8√19) / 3

The solution to the equation using quotient rule is 1/x - 1/c

The volume formed is (4/3)πln2

How to use quotient rule

equation of the curve is given as

[tex]2x^2 + xy - 4y/3 = 1[/tex]

To find dx/dy, differentiate both sides with respect to y, treating x as a function of y:

-4x(dy/dx) + y + x(dy/dx) - 4/3(dy/dx) = 0

Simplifying and rearranging

(dy/dx) = (4/3y) / (2x - y)

To find the stationary values,

set dy/dx = 0:

4/3y = 0 or 2x - y = 0

The first equation gives y = 0, and it does not satisfy the equation of the curve.

The second equation gives y = 4x.

Substituting y = 4x into the equation of the curve, we get:

[tex]-2x^2 + 4x^2 - 4(4x)/3 = 1[/tex]

Simplifying,

[tex]2x^2 - (16/3)x - 1 = 0[/tex]

Using the quadratic formula

x = (8 ± 2√19) / 3

Substituting these values of x into y = 4x,

coordinates of the stationary points is given as

(8 + 2√19) / 3, (32 + 8√19) / 3 and (8 - 2√19) / 3, (32 - 8√19) / 3

ln(x/c) = ln x - ln c

Differentiating both sides with respect to x, we get:

[tex]1/(x/c) * (c/x^2) = 1/x[/tex]

Simplifying, we get:

d/dx (ln(x/c)) = 1/x - 1/c

Using the quotient rule, we get:

[tex]d/dx (ln(x/c)) = (c/x) * d/dx (ln x) - (x/c^2) * d/dx (ln c) \\ = (c/x) * (1/x) - (x/c^2) * 0 \\ = 1/x - 1/c[/tex]

Therefore, the solution to the equation using quotient rule is 1/x - 1/c

Learn more on quotient rule on https://brainly.com/question/29232553

#SPJ4

a) Once we have x, we can substitute it back into y = 4x to find the corresponding y-values, b) To differentiate ln(x/c) using the Quotient Rule, we have: d/dx[ln(x/c)] = (c/x)(1/x) = c/(x^2), c) V = ∫[0,ln(2)] π(e^(2x) - e^(3x))^2 dx

(a) To find dx/dy, we differentiate the equation −2x^2 + xy − (4/1)y = 3 with respect to y using implicit differentiation. Treating x as a function of y, we get:

-4x(dx/dy) + x(dy/dy) + y - 4(dy/dy) = 0

Simplifying, we have:

x(dy/dy) - 4(dx/dy) + y - 4(dy/dy) = 4x - y

Rearranging terms, we find:

(dy/dy - 4)(x - 4) = 4x - y

Therefore, dx/dy = (4x - y)/(4 - y)

To find the stationary values, we set dy/dx = 0, which gives us:

(4x - y)/(4 - y) = 0

This equation holds true when the numerator, 4x - y, is equal to zero. Substituting y = 4x into the equation, we get:

4x - 4x = 0

Hence, the stationary values occur on the curve when y = 4x.

To find the coordinates of these stationary values, we substitute y = 4x into the curve equation:

-2x^2 + x(4x) - (4/1)(4x) = 3

Simplifying, we get:

2x^2 - 16x + 3 = 0

Solving this quadratic equation gives us the values of x. Once we have x, we can substitute it back into y = 4x to find the corresponding y-values.

(b) To differentiate ln(x/c) using the Quotient Rule, we have:

d/dx[ln(x/c)] = (c/x)(1/x) = c/(x^2)

(c) The curve y = e^(2x) - e^(3x) rotated about the x-axis through 360 degrees forms a solid of revolution. To find its volume, we use the formula for the volume of a solid of revolution:

V = ∫[a,b] πy^2 dx

In this case, a = 0 and b = ln(2) are the limits of integration. Substituting the curve equation into the formula, we have:

V = ∫[0,ln(2)] π(e^(2x) - e^(3x))^2 dx

Evaluating this integral will give us the volume in terms of π.

Learn more about Quotient Rule here:

https://brainly.com/question/30278964

#SPJ11

Un, Un+1 € Rª be a collection of vectors such that if i ‡ j 9 Question 5. (a) Let 7₁, V₂ Vj = 0. Show that at least one of the vectors is 0. (b) Let 7₁, , Un E Rn be a collection of non-zero vectors such that if i ‡ j v₁ · Vj = 0. Let W₁, W₂ € Rn be such that for i = 1, ..., n, V¡ · W₁ = V₁ · W₂. Show that w₁ = W₂.

Answers

(a) If v₁, v₂, ..., vn are vectors in Rⁿ and vᵢ · vⱼ = 0 for all i ≠ j, then at least one of the vectors is the zero vector.

(b) If v₁, v₂, ..., vn are nonzero vectors in Rⁿ such that vᵢ · vⱼ = 0 for all i ≠ j, and W₁, W₂ are vectors in Rⁿ such that vᵢ · W₁ = vᵢ · W₂ for all i = 1, ..., n, then W₁ = W₂.

(a) Let's prove that if v₁, v₂, ..., vn are nonzero vectors in Rⁿ such that vᵢ · vⱼ = 0 for all i ≠ j, then at least one of the vectors is the zero vector.

Assume that all vectors v₁, v₂, ..., vn are nonzero. Since the dot product of two vectors is zero if and only if the vectors are orthogonal, this means that all pairs of vectors vᵢ and vⱼ are orthogonal to each other.

Consider the orthogonal complement of each vector vᵢ. The orthogonal complement of a nonzero vector is a subspace orthogonal to that vector. Since all vectors vᵢ are nonzero and pairwise orthogonal, the orthogonal complements of each vector are distinct subspaces.

Now, let's consider the intersection of all these orthogonal complements. Since the orthogonal complements are distinct, their intersection must be the zero vector (the only vector that is orthogonal to all subspaces).

However, if all vectors v₁, v₂, ..., vn were nonzero, their orthogonal complements would not intersect at the zero vector. This leads to a contradiction.

Therefore, at least one of the vectors v₁, v₂, ..., vn must be the zero vector.

(b) Now, let's prove that if v₁, v₂, ..., vn are nonzero vectors in Rⁿ such that vᵢ · vⱼ = 0 for all i ≠ j, and W₁, W₂ are vectors in Rⁿ such that vᵢ · W₁ = vᵢ · W₂ for all i = 1, ..., n, then W₁ = W₂.

Let's assume that W₁ ≠ W₂ and aim to derive a contradiction.

Since W₁ ≠ W₂, their difference vector, let's call it D = W₁ - W₂, is nonzero.

Now, consider the dot product of D with each vector vᵢ:

D · vᵢ = (W₁ - W₂) · vᵢ

       = W₁ · vᵢ - W₂ · vᵢ

       = vᵢ · W₁ - vᵢ · W₂   (by commutativity of dot product)

       = 0   (given condition)

This implies that the dot product of D with every vector vᵢ is zero. However, since D is nonzero and vᵢ are nonzero, this contradicts the given condition that vᵢ · vⱼ = 0 for all i ≠ j.

Hence, our assumption that W₁ ≠ W₂ must be false, and we conclude that W₁ = W₂.

Therefore, if v₁, v₂, ..., vn are nonzero vectors in Rⁿ such that vᵢ · vⱼ = 0 for all i ≠ j, and W₁, W₂ are vectors in Rⁿ such that vᵢ · W₁ = vᵢ · W₂ for all i = 1, ..., n, then W₁ = W₂.

Learn more about zero vector

https://brainly.com/question/32604726

#SPJ11

Define two functions f,g:R→R as follows. f(x)=3x+1 g(x)=x^2 Please write BOTH f∘g∘f^−1(x) and g∘f^−1∘f(x).

Answers

Given the functions f(x) = 3x + 1 and g(x) = x^2, we are asked to find the compositions f∘g∘f^−1(x) and g∘f^−1∘f(x). Therefore the correct answer is f∘g∘f^−1(x) = (x - 1)^2 / 9 g∘f^−1∘f(x) = x.

To find f∘g∘f^−1(x), we will follow these steps:


1. Find f^−1(x): To find the inverse function f^−1(x), we need to solve the equation f(x) = y for x.
  y = 3x + 1
  x = (y - 1) / 3

  So, the inverse function of f(x) is f^−1(x) = (x - 1) / 3.

2. Now, substitute f^−1(x) into g(x) to get g∘f^−1(x):
  g∘f^−1(x) = g(f^−1(x))

  g(f^−1(x)) = g((x - 1) / 3)

  Substituting g(x) = x^2, we get g((x - 1) / 3) = ((x - 1) / 3)^2

  Simplifying, we have ((x - 1) / 3)^2 = (x - 1)^2 / 9

  Therefore, f∘g∘f^−1(x) = (x - 1)^2 / 9.

Next, let's find g∘f^−1∘f(x):

1. Find f(x): f(x) = 3x + 1.

2. Find f^−1(x): We have already found f^−1(x) in the previous step as (x - 1) / 3.

3. Now, substitute f(x) into f^−1(x) to get f^−1∘f(x):
  f^−1∘f(x) = f^−1(f(x))

  f^−1(f(x)) = f^−1(3x + 1)

  Substituting f^−1(x) = (x - 1) / 3, we get f^−1(3x + 1) = (3x + 1 - 1) / 3 = x.

  Therefore, g∘f^−1∘f(x) = x.

To know more about "Inverse Function":

https://brainly.com/question/11735394

#SPJ11



For each equation, find all the roots.

3 x⁴ - 11 x³+15 x²-9 x+2=0

Answers

The roots of the equation 3x⁴ - 11x³ + 15x² - 9x + 2 = 0 can be found using numerical methods or software that can solve polynomial equations.

To find all the roots of the equation 3x⁴ - 11x³ + 15x² - 9x + 2 = 0, we can use various methods such as factoring, synthetic division, or numerical methods.

In this case, numerical like the Newton-Raphson method is used to approximate the roots. Using the Newton-Raphson method, we can iteratively find better approximations for the roots. Let's start with an initial guess for a root and perform the iterations until we find the desired level of precision.

Let's say x₁ = 1.

Perform iterations using the following formula until the desired precision is reached:

x₂ = x₁ - (f(x₁) / f'(x₁))

Where:

f(x) represents the function value at x, which is the polynomial equation.

f'(x) represents the derivative of the function.

Repeat the iterations until the desired level of precision is achieved.

Let's proceed with the iterations:

Iteration 1:

x₂ = x₁ - (f(x₁) / f'(x₁))

Substituting x₁ = 1 into the equation:

f(x₁) = 3(1)⁴ - 11(1)³ + 15(1)² - 9(1) + 2

= 3 - 11 + 15 - 9 + 2

= 0

To find f'(x₁), we differentiate the equation with respect to x:

f'(x) = 12x³ - 33x² + 30x - 9

Substituting x₁ = 1 into f'(x):

f'(x₁) = 12(1)³ - 33(1)² + 30(1) - 9

= 12 - 33 + 30 - 9

= 0

Since f'(x₁) = 0, we cannot proceed with the Newton-Raphson method using x₁ = 1 as the initial guess.

We need to choose a different initial guess and repeat the iterations until we find a root. By analyzing the graph of the equation or using other numerical methods, we can find that there are two real roots and two complex roots for this equation.

Learn more about Newton-Raphson method from the given link!

https://brainly.com/question/30648237

#SPJ11

Problem 1: Solve the following assignment problem shown in Table using Hungarian method. The matrix entries are processing time of each man in hours.
I II III IV V
1 20 15 18 20 25
2 18 20 12 14 15
3 21 23 25 27 25
4 17 18 21 23 20
5 18 18 16 19 20

Answers

The optimal assignment using the Hungarian method results in a total processing time of 0 hours

the assignment problem using the Hungarian method, we need to follow these steps:

Step 1: Create the cost matrix

Construct a matrix from the given processing time values, where each entry represents the cost of assigning a man to a task. In this case, the matrix would look as follows:

1 | 20 15 18 20 25

2 | 18 20 12 14 15

3 | 21 23 25 27 25

4 | 17 18 21 23 20

5 | 18 18 16 19 20

Step 2: Subtract row minima

Subtract the smallest value in each row from every entry in that row:

1 | 5 0 3 5 10

2 | 3 5 0 2 3

3 | -2 0 2 4 2

4 | -1 0 3 5 2

5 | -2 0 -2 1 2

Step 3: Subtract column minima

Similarly, subtract the smallest value in each column from every entry in that column:

1 | 7 0 3 5 9

2 | 5 7 0 2 2

3 | -1 0 2 4 0

4 | 0 0 3 5 0

5 | -1 0 -2 1 0

Step 4: Assign initial zeros

Assign zeros to the entries in the matrix that do not share rows or columns with any other zeros, aiming to minimize the number of assignments. If there are still unassigned zeros, proceed to the next step.

1 | 7 0 3 5 9

2 | 5 7 0 2 2

3 | -1 0 2 4 0

4 | 0 0 3 5 0

5 | -1 0 -2 1 0

Step 5: Find minimum cover

Cover all the rows and columns that contain the assigned zeros. If the number of covered zeros is equal to the number of rows or columns, an optimal assignment is found. Otherwise, proceed to the next step.

In this case, we can cover all the rows and columns with the assigned zeros, so we have an optimal assignment.

The optimal assignment is as follows:

Man 1 assigned to Task II

Man 2 assigned to Task III

Man 3 assigned to Task V

Man 4 assigned to Task I

Man 5 assigned to Task IV

The minimum total processing time for this assignment is 0 + 0 + 0 + 0 + 0 = 0 hours.

Learn more about: Hungarian method

https://brainly.com/question/32955590

#SPJ11

A regular pentagon and a regular hexagon are both inscribed in the circle below. Which shape has a bigger area? Explain your reasoning.

Answers

Answer:

Hexagon

Step-by-step explanation:

Since the hexagon has more sides it should cover more space

A new project will have an intial cost of $14,000. Cash flows from the project are expected to be $6,000, $6,000, and $10,000 over the next 3 years, respectively. Assuming a discount rate of 18%, what is the project's discounted payback period?
2.59
2.87
2.76
2.98
03.03

Answers

The project's discounted payback period is approximately 4.5 years.

The discounted payback period is a measure of the time it takes for a company to recover its initial investment in a new project, considering the time value of money.

The formula for the discounted payback period is as follows:

Discounted Payback Period = (A + B) / C

Where:

A is the last period with a negative cumulative cash flow

B is the absolute value of the cumulative discounted cash flow at the end of period A

C is the discounted cash flow in the period after A

The formula for discounted cash flow (DCF) is as follows:

DCF = FV / (1 + r)^n

Where:

FV is the future value of the investment

n is the number of years

r is the discount rate

Initial cost of the project, P = $14,000

Cash flow for Year 1, CF1 = $6,000

Cash flow for Year 2, CF2 = $6,000

Cash flow for Year 3, CF3 = $10,000

Discount rate, r = 18%

Discount factor for Year 1, DF1 = 1 / (1 + r)^1 = 0.8475

Discount factor for Year 2, DF2 = 1 / (1 + r)^2 = 0.7185

Discount factor for Year 3, DF3 = 1 / (1 + r)^3 = 0.6096

Discounted cash flow for Year 1, DCF1 = CF1 x DF1 = $6,000 x 0.8475 = $5,085

Discounted cash flow for Year 2, DCF2 = CF2 x DF2 = $6,000 x 0.7185 = $4,311

Discounted cash flow for Year 3, DCF3 = CF3 x DF3 = $10,000 x 0.6096 = $6,096

Cumulative discounted cash flow at the end of Year 3, CF3 = $5,085 + $4,311 + $6,096 = $15,492

Since the cumulative discounted cash flow at the end of Year 3 is positive, we need to find the discounted payback period between Year 2 and Year 3.

DCFA = -$9,396 (CF1 + CF2)

DF3 = 0.6096

DCF3 = CF3 x DF3 = $6,096 x 0.6096 = $3,713

Payback Period = A + B/C = 2 + $9,396 / $3,713 = 4.53 years ≈ 4.5 years

Therefore, The discounted payback period for the project is roughly 4.5 years.

Learn more about Cash flows

https://brainly.com/question/27994727

#SPJ11

Other Questions
The Gender Inequality Index (GII) is used to compare gender inequality across countries and uses data on women's educational attainment, labor force participation, and representation in parliamentary bodies, among other metrics. Which of the following countries do you think ranks first (LOWEST in gender inequality) on the GII?a. Norwayb. Turkeyc. Canadad. United States(Q002) Estimate the percentage of seats in parliament (in this case, the House of Representatives and the Senate) held by women in the United States.a. Less than 10%b. Between 10% 20%c. Between 20% 30%d. More than 30% time dose of daunorubicin for a patient receiving concurrent chest irradiation is: A. 450 mg/m2. B. 400 mg/m2. C. 550 mg/m2 D. 500 mg/m2 In your own words, define emotion coaching. Give a short, realistic example of what empathizing and validating might sound like (write a script of what a child might be feeling and what the parent might say). Make sure you are sharing the exact words a child would say and the exact words a parent would say. Calculate the de broglie wavelength of a neutron moving at 1.00 of the speed of light. Identify the assumptions that Russell is making in his argumentfor sexual ethics? How would you educate a client (at risk of developing highcholesterol) about "good" and "bad" cholesterol? Which lifestylechanges could reduce the person's risk of high cholesterol in thefuture? Discuss the importance of socio-political factors in the understanding of the development of our personalities taking into account that we may. not be able to separate our identities from our personalities. Reflect on how race is a part of your identity, taking Fanon's theory into account complete the sentences Some of the founders met in annapolis, maryland, in 1786. what was their goal at this meeting? TRUE OR FALSE13. Birthday parties, weddings, graduations, or religious rites of passage are all considered informal learning sources. 14. Core values are hard to change through advertising and marketing. 15. Immediate response of our sensory receptors is called motivation of sensation. 1 Define a function from f: ZxZxZ Z. Make sure you define your function as precisely as possible. It must be 'well-defined'. a. For your function in 1, find ((-1,2,5)) and ((0,1,8)) . b Prove or disprove: Your function is 1-1. f(A) = { 1 if 2 A{ 0 if 2 # Awhere A p(R) a) Prove or disprove: b) Prove or disprove: uFor next week:Goal: Design a mentorship programCreate a presentation in PowerPoint. The presentation will need to be 10-15 minutes longIn your groups, you must create a fictitious mentorship program. You and your team are the Human Resource department at your company and the CEO has asked you to develop a mentoring programThe program should be designed to reflect the steps in this presentation = 25C og [Cu2+] = [CuO22] = 110-4(7) 2CuO22-(aq) + 6H+(aq) + 2e Cu2O(s) + 3H2O()Detmine the constant a of the reaction equation (7)!(8) V=apH+b with this following formulaThe correct answer is -0.18 but i cant seem to fgure out how to calculate it? Summary of parachute by lady bell Give your answer to at least 2 decimal places.) 7.90 Mev (b) Calculate B/A for X Mev Is the difference in /ween Wand o significant? One is stable and common, and the other is unstable and rare. Assume the difference to be significant if the percent difference between the two values is greater than Question 14 ptsLaura has $10 million in invested capital, $4 million in EBIT, and is in the 50% federal- plus-state tax bracket. Laura has a 30% debt-to-capital ratio and pays 10% on its debt.What is the ROE for Laura?O 19.65%12.14%26.43%Question 24 ptsKSS has $1000 par value bonds with a 9% coupon rate and coupons paid semi-annually. that mature in 25 years. The bonds are selling for $1,050. KSS has an average tax rate of 30%. KSS is in the 40% marginal tax bracket. What is the after-tax cost of debt?2.80%3.95%5.11%Question 34 ptsKSS common stock has a beta of 1.2. The market long term expected return is 12% and the risk-free rate is 2%. What is the cost of retained earnings?O 14.0%O 16.6%O 22.0% Explain how an appreciation of the US$ can be expected to impact economic growth, interest rates and the stock market in the US. The following data was extracted from the records of DT Ltd on 28 February 2021, the end of their financial year:R Share capital (900 000 shares at R2 par value) 1 800 000 Retained income 160 000 Non-Current Assets 1 750 000 Inventories 220 000Receivables 600 000Cash/Bank 300 000Payables 730 000Loans at 15% p.a. 180 000 Net profit after tax 765 000Market price of share 270c Dividends per share 65c Required:1.1. Calculate and comment on each of the following ratios:1.1.1. Current ratio (last year 2.33 : 1) (4)1.1.2. Acid test ratio (last year 1.58 : 1) (4)1.2. Calculate the Price Earnings (PE) ratio and explain what a low PE ratio could mean. (4)1.3. Calculate the earnings per share. Will shareholders be happy with this? Why? (4)1.4. Calculate the market to book ratio and explain the significance of this ratio. (4)1.5. Calculate and comment on the debt equity ratio. (3)1.6. Calculate the retained for the year' What properties do compounds with covalent bonds have? High melting point Solid only at room temperature Solid, liquid, or gas at room temperature Low electrical conductivity High electrical conductivity Low melting point CHAPTER 5: Communication has been transformedfrom one-on-one conversations to one-to-many transmissions thanksto the influence ofSocial media platforms. Business letters. Telep