Properties of integrals Use only the fact that ∫04 3x(4−x)dx=32, and the definitions and properties of integrals, to evaluate the following integrals, if possible. a. ∫40 3x(4−x)dx b. ∫04 x(x−4)dx c. ∫40 6x(4−x)dx d. ∫08 3x(4−x)dx

Answers

Answer 1
Alright so as we know, integral from 4 to 0 of 3x(4-x) is 32.

Part A

All they did is reverse the intervals, and the property of integrals for that says to add a negative sign when reversing the interval. So the integral from 4 to 0 of 3x(4-x) is -32

Part B

When dealing with constants, like any number, or e or π, we can just multiply or divide the expression after the integral sign. Here they divided by 3 because 3x(4-x) / 3 = x(4-x). So the answer for B is 32/3

Part C

This is like a mix of part a and b. They reversed the interval and multiplied the expression by 2 because 3x(4-x) * 2 = 6x(4-x)
So we reverse the sign of 32, which makes it -32, then we multiply it by 2, making the answer-64

Part D

As for this I’m not sure how to find using the given number of the integral, sorry about that


Hope this helps
Answer 2

Using the given integral property and definitions, we evaluated the integrals to find: a) -32, b) -32/3, c) -192, d) -96.

a. We know that ∫0^4 3x(4−x)dx = 32. To find ∫4^0 3x(4−x)dx, we can use the property ∫b^a f(x)dx = -∫a^b f(x)dx.

So, ∫4^0 3x(4−x)dx = -∫0^4 3x(4−x)dx = -32.

b. To evaluate ∫0^4 x(x−4)dx, we can expand the expression inside the integral:

x(x - 4) = x^2 - 4x

Now we can integrate term by term:

∫0^4 x(x−4)dx = ∫0^4 (x^2 - 4x)dx = ∫0^4 x^2 dx - ∫0^4 4x dx

Integrating each term separately:

∫0^4 x^2 dx = [x^3/3] from 0 to 4 = (4^3/3) - (0^3/3) = 64/3

∫0^4 4x dx = 4 ∫0^4 x dx = 4[x^2/2] from 0 to 4 = 4(4^2/2) - 4(0^2/2) = 32

Therefore, ∫0^4 x(x−4)dx = 64/3 - 32 = 64/3 - 96/3 = -32/3.

c. Using the linearity property of integrals, we can split the integral:

∫0^4 6x(4−x)dx = 6 ∫0^4 x(4−x)dx - 6 ∫0^4 x^2 dx

From part (b), we know that ∫0^4 x(4−x)dx = -32/3.

From part (b), we also know that ∫0^4 x^2 dx = 64/3.

Plugging these values back into the expression:

∫0^4 6x(4−x)dx = 6(-32/3) - 6(64/3) = -64 - 128 = -192.

d. To evaluate ∫0^8 3x(4−x)dx, we can split the integral using the linearity property:

∫0^8 3x(4−x)dx = 3 ∫0^8 x(4−x)dx - 3 ∫0^8 x^2 dx

From part (b), we know that ∫0^8 x(4−x)dx = -32/3.

From part (b), we also know that ∫0^8 x^2 dx = 64/3.

Plugging these values back into the expression:

∫0^8 3x(4−x)dx = 3(-32/3) - 3(64/3) = -32 - 64 = -96.

To know more about integral,

https://brainly.com/question/32268983

#SPJ11


Related Questions

13. Evaluate and give a final mare answer (A) 2 (G WC tan

Answers

To evaluate the expression 2 * (tan(G) - tan(C)), we need the specific values for angles G and C. Without those values, we cannot provide a numerical answer.

The expression 2 * (tan(G) - tan(C)) involves the tangent function and requires specific values for angles G and C to calculate a numerical result.

The tangent function, denoted as tan(x), represents the ratio of the sine to the cosine of an angle. However, without knowing the specific values of G and C, we cannot determine the exact values of tan(G) and tan(C) or their difference.

To evaluate the expression, substitute the known values of G and C into the expression 2 * (tan(G) - tan(C)) and use a calculator to compute the result. The final answer will depend on the specific values of the angles G and C.

Learn more about tangent function here:

https://brainly.com/question/28994024

#SPJ11

A thermometer is taken from a room where the temperature is 20°C to the outdoors, where the temperature is -1°C. After one minute the thermometer reads 13°C. (a) What will the reading on the thermometer be after 2 more minutes? | (b) When will the thermometer read 0°C? minutes after it was taken to the outdoors.

Answers

After two more minutes, the reading on the thermometer will be approximately 6°C. It will take approximately 5 minutes for the thermometer to read 0°C after being taken outdoors.

(a) To determine the reading on the thermometer after two more minutes, we need to consider the rate at which the temperature changes. In the given scenario, the temperature decreased by 7°C in the first minute (from 20°C to 13°C). If we assume a linear rate of change, we can calculate that the temperature is decreasing at a rate of 7°C per minute.

Therefore, after two more minutes, the temperature will decrease by another 2 * 7°C, which equals 14°C. Since the initial reading after one minute was 13°C, subtracting 14°C from it gives us a reading of approximately 6°C after two more minutes.

(b) To determine when the thermometer will read 0°C, we can again consider the linear rate of change. In the first minute, the temperature decreased by 7°C. If we assume this rate of change continues, it will take approximately 7 more minutes for the temperature to decrease by another 7°C.

So, in total, it will take approximately 1 + 7 = 8 minutes for the temperature to drop from 20°C to 0°C after the thermometer is taken outdoors.

Learn more about reading on a thermometer:

https://brainly.com/question/28027822

#SPJ11

Find producer's surplus at the market equilibrium point if supply function is p=0.7x + 5 and the demand 78 function is p= 76 = Answer: Find consumer's surplus at the market equilibrium point given that the demand function is p= 1529 – 72x and the supply function is p= x + 8.

Answers

The producer's surplus at the market equilibrium point can be found by determining the area below the supply curve and above the equilibrium price.

How can we calculate the producer's surplus at the market equilibrium point using the supply and demand functions?

Producer's surplus is a measure of the benefit that producers receive when selling goods at a market equilibrium price. In this case, the equilibrium price can be found by setting the supply and demand functions equal to each other:

0.7x + 5 = 76

Solving this equation, we find x = 101.43. Substituting this value back into either the supply or demand function, we can calculate the equilibrium price, which turns out to be p = $71.00.

To calculate the producer's surplus, we need to find the area below the supply curve and above the equilibrium price. The supply function given is p = 0.7x + 5. Integrating this function from 0 to 101.43 with respect to x, we get:

∫(0 to 101.43) (0.7x + 5) dx = [0.35x² + 5x] (0 to 101.43) = $5,650.07

Therefore, the producer's surplus at the market equilibrium point is $5,650.07.

Learn more about Producer's Surplus

brainly.com/question/31809503

#SPJ11

Evaluate the integral. (Use C for the constant of integration.) x + 11 / x2 + 4x + 8 dx

Answers

The integral of (x + 11) / (x^2 + 4x + 8) dx can be evaluated using partial fraction decomposition. The answer is  ln(|x^2 + 4x + 8|) + 2arctan[(x + 2) / √6] + C.

The integral of (x + 11) / (x^2 + 4x + 8) dx is equal to ln(|x^2 + 4x + 8|) + 2arctan[(x + 2) / √6] + C, where C is the constant of integration.

To explain the answer in more detail, we start by completing the square in the denominator. The quadratic expression x^2 + 4x + 8 can be rewritten as (x + 2)^2 + 4. We can then decompose the fraction using partial fractions. We express the given rational function as (A(x + 2) + B) / ((x + 2)^2 + 4), where A and B are constants to be determined.

By equating the numerators and simplifying, we find A = 1 and B = 10. Now we can rewrite the integral as the sum of two simpler integrals: ∫(1 / ((x + 2)^2 + 4)) dx + ∫(10 / ((x + 2)^2 + 4)) dx.

The first integral is a standard integral that gives us the arctan term: arctan((x + 2) / 2). The second integral requires a substitution, u = x + 2, which leads to ∫(10 / (u^2 + 4)) du = 10 * ∫(1 / (u^2 + 4)) du = 10 * (1 / 2) * arctan(u / 2).

Substituting back u = x + 2, we get 10 * (1 / 2) * arctan((x + 2) / 2) = 5arctan((x + 2) / 2). Combining the two integrals and adding the constant of integration, we obtain the final result: ln(|x^2 + 4x + 8|) + 2arctan[(x + 2) / √6] + C.

Learn more about partial fraction decomposition here:

https://brainly.com/question/30401234

#SPJ11

meredith is a general surgeon who performs surgeries such as appendectomies and laparoscopic cholecystectomies. the average number of sutures that meredith uses to close a patient is 37, and the standard deviation is 8. the distribution of number of sutures is right skewed. random samples of 32 are drawn from meredith's patient population, and the number of sutures used to close each patient is noted. use the central limit theorem to find the mean and standard error of the sampling distribution. select the statement that describes the shape of the sampling distribution. group of answer choices unknown the sampling distribution is normally distributed with a mean of 37 and standard deviation 1.41. the sampling distribution is right skewed with a mean of 37 and standard deviation 8. the sampling distribution is normally distributed with a mean of 37 and standard deviation 8. the sampling distribution is right skewed with a mean of 37 and standard deviation 1.41.

Answers

The statement that accurately describes the form of the sampling distribution is:The inspecting dissemination is regularly circulated with a mean of 37 and standard deviation 1.41.

According to the central limit theorem, regardless of how the population distribution is shaped, the sampling distribution of the sample mean will be approximately normally distributed for a sufficiently large sample size.

For this situation, irregular examples of 32 are drawn from Meredith's patient populace, which fulfills the state of a sufficiently huge example size. The central limit theorem can be used to determine the sampling distribution's mean and standard error.

In this instance, the population mean, which is 37, is equal to the mean of the sampling distribution.

The population standard deviation divided by the square root of the sample size is the sampling distribution's standard error. For this situation, the standard mistake is 8 partitioned by the square foundation of 32, which is around 1.41.

Therefore, the statement that accurately describes the form of the sampling distribution is:

The inspecting dissemination is regularly circulated with a mean of 37 and standard deviation 1.41.

To know more about central limit theorem refer to

https://brainly.com/question/898534

#SPJ11

Anyone know this question?

Answers

Regarding function g & f of (x), it is understood that we must see that we are given the value of (1) for the x-value.

Laying out the problem at hand, it is simply asking to find y if x is one.

By doing so, we can verify that the coordinates, if we follow the x-value, will bring us to the y-value of 3 (1,3), where the two arrows intersect.

Thus, the final answer of this problem will be three, as f and g of (x) relate to an identical point when x = 1.

Use the definition of Taylor series to find the first three nonzero terms of the Taylor series (centered at c) for the function f. f(x)=4tan(x), c=8π

Answers

[tex]f(x) = 4tan(8\pi) + 4sec^2(8\pi)(x - 8\pi) + 8sec^2(8\pi)tan(8\pi)(x - 8\pi)^2/2![/tex]

This expression represents the first three nonzero terms of the Taylor series expansion for f(x) = 4tan(x) centered at c = 8π.

What is the trigonometric ratio?

the trigonometric functions are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others.

To find the first three nonzero terms of the Taylor series for the function f(x) = 4tan(x) centered at c = 8π, we can use the definition of the Taylor series expansion.

The general formula for the Taylor series expansion of a function f(x) centered at c is:

[tex]f(x) = f(c) + f'(c)(x - c)/1! + f''(c)(x - c)^2/2! + f'''(c)(x - c)^3/3! + ...[/tex]

Let's begin by calculating the first three nonzero terms for the given function.

Step 1: Evaluate f(c):

f(8π) = 4tan(8π)

Step 2: Calculate f'(x):

f'(x) = d/dx(4tan(x))

= 4sec²(x)

Step 3: Evaluate f'(c):

f'(8π) = 4sec²(8π)

Step 4: Calculate f''(x):

f''(x) = d/dx(4sec²(x))

= 8sec²(x)tan(x)

Step 5: Evaluate f''(c):

f''(8π) = 8sec²(8π)tan(8π)

Step 6: Calculate f'''(x):

f'''(x) = d/dx(8sec²(x)tan(x))

= 8sec⁴(x) + 16sec²(x)tan²(x)

Step 7: Evaluate f'''(c):

f'''(8π) = 8sec⁴(8π) + 16sec²(8π)tan²(8π)

Now we can write the first three nonzero terms of the Taylor series expansion for f(x) centered at c = 8π:

f(x) ≈ f(8π) + f'(8π)(x - 8π)/1! + f''(8π)(x - 8π)²/2!

Simplifying further,

Hence, [tex]f(x) = 4tan(8\pi) + 4sec^2(8\pi)(x - 8\pi) + 8sec^2(8\pi)tan(8\pi)(x - 8\pi)^2/2![/tex]

This expression represents the first three nonzero terms of the Taylor series expansion for f(x) = 4tan(x) centered at c = 8π.

To learn more about the trigonometric ratio visit:

https://brainly.com/question/13729598

#SPJ4

(5 points) 7. Integrate G(x, y, z) = xyz over the cone F(r, 6) = (r cos 0, r sin 0,r), where 0

Answers

The triple integral becomes ∫∫∫ G(x, y, z) dV = ∫[0 to 2π] ∫[0 to 6] ∫[0 to r] (r cos θ)(r sin θ)(r) dz dr dθ with value 0

To integrate the function G(x, y, z) = xyz over the cone F(r, θ) = (r cos θ, r sin θ, r), where θ ranges from 0 to 2π and r ranges from 0 to 6, we need to set up the triple integral in cylindrical coordinates.

The limits of integration for θ are from 0 to 2π, as given.

For the limits of integration for r, we need to consider the shape of the cone. It starts from the origin (0, 0, 0) and extends up to a height of 6. At each value of θ, the radius r varies from 0 to the height at that θ. Since the height is given by r = 6, the limits of integration for r are from 0 to 6.

Therefore, the triple integral becomes:

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] ∫[0 to 6] ∫[0 to r] (r cos θ)(r sin θ)(r) dz dr dθ

Simplifying:

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] ∫[0 to 6] ∫[0 to r] r^3 cos θ sin θ dz dr dθ

Integrating with respect to z gives:

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] ∫[0 to 6] r^3 cos θ sin θ z |[0 to r] dr dθ

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] ∫[0 to 6] r^4 cos θ sin θ r dr dθ

Integrating with respect to r gives:

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] [1/5 r^5 cos θ sin θ] |[0 to 6] dθ

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] (1/5)(6^5) cos θ sin θ dθ

∫∫∫ G(x, y, z) dV = (1/5)(7776) ∫[0 to 2π] cos θ sin θ dθ

Using the double angle formula for sin 2θ, we have:

∫∫∫ G(x, y, z) dV = (1/5)(7776) ∫[0 to 2π] (1/2) sin 2θ dθ

∫∫∫ G(x, y, z) dV = (1/10)(7776) [-cos 2θ] |[0 to 2π]

∫∫∫ G(x, y, z) dV = (1/10)(7776) [-(cos 4π - cos 0)]

Since cos 4π = cos 0 = 1, we have:

∫∫∫ G(x, y, z) dV = (1/10)(7776) [-(1 - 1)]

∫∫∫ G(x, y, z) dV = 0

Therefore, the value of the integral ∫∫∫ G(x, y, z) dV over the given cone F(r, θ) = (r cos θ, r sin θ, r) is 0.

Learn more about integral at https://brainly.com/question/31329577

#SPJ11

Help me with this question!

Answers

Among the given functions three will form exponential graph and two will form linear curve.

1)

The temperature outside cools by 1.5° each hour.

Let the temperature be 50°.

Then it will depreciate in the manner,

50° , 48.5° , 47° , 45.5° , .......

Hence with the difference among them is constant it can be plotted in linear curve.

2)

The total rainfall increases by 0.15in each week.

So,

Let us assume Rainfall is 50in.

It will increase in the manner,

50 , 50.15. 50.30, ......

Hence with the difference among them is constant it can be plotted in linear curve.

3)

An investment loses 5% of its value each month.

Let us take the investment to be $100.

It will decrease in the manner,

$100 , $95, $90.25 , .....

Hence as the difference among them is not constant it can be plotted in exponential curve.

4)

The value of home appreciates 4% every year.

Let us take the value of home to be $100.

It will appreciate in the form,

$100 , $104 , $108.16, ......

Hence as the difference among them is not constant it can be plotted in exponential curve.

5)

The speed of bus as it stops along its route.

The speed of bus will not remain constant throughout the route and can be plotted in exponential curve.

Know more about Curve,

https://brainly.com/question/2890194

#SPJ1

Given forecast errors of 4, 8, and -3, what is the mean absolute deviation?
Select one:
a. 15
b. 5
c. None of the above
d. 3
e. 9

Answers

the mean absolute deviation (MAD) is 5.

To find the mean absolute deviation (MAD), we need to calculate the average of the absolute values of the forecast errors.

The given forecast errors are 4, 8, and -3.

Step 1: Calculate the absolute values of the forecast errors:

|4| = 4

|8| = 8

|-3| = 3

Step 2: Find the average of the absolute values:

(MAD) = (4 + 8 + 3) / 3 = 15 / 3 = 5.

The correct answer is:

b. 5.

what is deviation?

Deviation refers to the difference or divergence between a value and a reference point or expected value. It is a measure of how far individual data points vary from the average or central value.

In statistics, deviation is often used to quantify the dispersion or spread of a dataset. There are two commonly used measures of deviation: absolute deviation and squared deviation.

To know more about deviation visit:

brainly.com/question/31835352

#SPJ11







Illustration 20 : For what values of m, the equation 2x2 - 212m + 1)X + m(m + 1) = 0, me R has (Both roots smaller than 2 (W) Both roots greater than 2 (1) Both roots lie in the interval (2, 3) (iv) E

Answers

For the equation 2x^2 - 21m + x + m(m + 1) = 0, the value of m that satisfies the condition of both roots smaller than 2 is m < 4/21.

To determine the values of m for which the given quadratic equation has roots that satisfy certain conditions, we can analyze the discriminant of the equation. Specifically, we need to consider when the discriminant is positive for roots smaller than 2, negative for roots greater than 2, and when the quadratic equation is satisfied for roots lying in the interval (2, 3).

The given quadratic equation is 2x^2 - 21m + x + m(m + 1) = 0.

To find the discriminant, we use the formula Δ = b^2 - 4ac, where a = 2, b = -21m + 1, and c = m(m + 1).

Case (i): Both roots smaller than 2

For both roots to be smaller than 2, the discriminant Δ must be positive, and the equation b^2 - 4ac > 0 should hold. By substituting the values of a, b, and c into the discriminant formula and solving the inequality, we can determine the range of values for m that satisfies this condition.

Case (ii): Both roots greater than 2

For both roots to be greater than 2, the discriminant Δ must be negative, and the equation b^2 - 4ac < 0 should hold. By substituting the values of a, b, and c into the discriminant formula and solving the inequality, we can determine the range of values for m that satisfies this condition.

Case (iii): Both roots lie in the interval (2, 3)

For both roots to lie in the interval (2, 3), the quadratic equation should be satisfied for values of x in that interval. By analyzing the coefficient of x and using the properties of quadratic equations, we can determine the range of values for m that satisfies this condition.

By analyzing the discriminant and the properties of the quadratic equation, we can determine the values of m that satisfy each of the given conditions.

Learn more about quadratic equation here:

https://brainly.com/question/29269455

#SPJ11

8 Sº f(x)da - ' [ f(a)dx = ° f(a)dx si 3 a where a = and b =

Answers

The given equation represents the Fundamental Theorem of Calculus, which provides a fundamental connection between the definite integral and the antiderivative of a function.

The given expression represents the equation of the Fundamental Theorem of Calculus, stating that the definite integral of a function f(x) with respect to x over the interval [a, b] is equal to the antiderivative of f(x) evaluated at b minus the antiderivative of f(x) evaluated at a. This theorem allows us to calculate definite integrals by evaluating the antiderivative of the integrand function at the endpoints. The Fundamental Theorem of Calculus relates the definite integral of a function to its antiderivative. The equation can be written as:

∫[a, b] f(x) dx = F(b) - F(a)

where F(x) is the antiderivative (or indefinite integral) of f(x).

The left-hand side of the equation represents the definite integral of f(x) with respect to x over the interval [a, b]. It calculates the net area under the curve of the function f(x) between the x-values a and b. The right-hand side of the equation involves evaluating the antiderivative of f(x) at the endpoints b and a, respectively. This is done by finding the antiderivative of f(x) and plugging in the values b and a. Subtracting the value of F(a) from F(b) gives us the net change in the antiderivative over the interval [a, b]. The equation essentially states that the net change in the antiderivative of f(x) over the interval [a, b] is equal to the area under the curve of f(x) over that same interval.

Learn more about Fundamental Theorem of Calculus here:

https://brainly.com/question/30761130

#SPJ11

6. Given sin 8 = + with 0 € 191 find the values of the other 5 trigonometric functions.

Answers

Given sin θ = + with 0 ≤ θ ≤ π/2, we can find the values of the other five trigonometric functions. The values are as follows: cos θ = +, tan θ = +, sec θ = +, csc θ = +, and cot θ = +.

We are given that sin θ = + with 0 ≤ θ ≤ π/2. Since sin θ is positive in the first and second quadrants, we can determine the values of the other trigonometric functions as follows:

Cosine (cos θ): In the first quadrant, cosine is positive, so we have cos θ = +.

Tangent (tan θ): The tangent is the ratio of sine to cosine, so tan θ = sin θ / cos θ. Substituting the given values, we get tan θ = + / + = +.

Secant (sec θ): The secant is the reciprocal of the cosine, so sec θ = 1 / cos θ. Using the value of cos θ from above, we have sec θ = 1 / + = +.

Cosecant (csc θ): The cosecant is the reciprocal of the sine, so csc θ = 1 / sin θ. Substituting the given value, we get csc θ = 1 / + = +.

Cotangent (cot θ): The cotangent is the reciprocal of the tangent, so cot θ = 1 / tan θ. Using the value of tan θ from above, we have cot θ = 1 / + = +.

Therefore, the values of the other five trigonometric functions for the given condition are cos θ = +, tan θ = +, sec θ = +, csc θ = +, and cot θ = +.

Learn more about trigonometric here:

https://brainly.com/question/29156330

#SPJ11

x² + y²-15x+8y +50= 5x-6; area​

Answers

The area of the circle is approximately 188.5 square units

We are given that;

The equation x² + y²-15x+8y +50= 5x-6

Now,

To solve the equation X² + y²-15x+8y +50= 5x-6, we can use the following steps:

Rearrange the equation to get X² - 20x + y² + 8y + 56 = 0

Complete the squares for both x and y terms

X² - 20x + y² + 8y + 56 = (X - 10)² - 100 + (y + 4)² - 16 + 56

Simplify the equation

(X - 10)² + (y + 4)² = 60

Compare with the standard form of a circle equation

(X - h)² + (y - k)² = r²

Identify the center and radius of the circle

Center: (h, k) = (10, -4)

Radius: r = √60

The area of a circle is given by the formula A = πr²1, where r is the radius of the circle. Using this formula, we can find the area of the circle as follows:

A = πr²

A = π(√60)²

A = π(60)

A ≈ 188.5 square units

Therefore, by the equation the answer will be 188.5 square units.

To learn more about equations :

brainly.com/question/16763389

#SPJ1

Find lower and upper bounds for the area between the x-axis and the graph of f(x) = √x + 3 over the interval [ - 2, 0] = by calculating right-endpoint and left-endpoint Riemann sums with 4 subinterv

Answers

The lower bound for the area between the x-axis and the graph of f(x) = [tex]\sqrt{x+3}[/tex] over the interval [-2, 0] is approximately 0.984 and the upper bound is approximately 2.608.

By dividing the interval [-2, 0] into 4 equal subintervals, with a width of 0.5 each, we can calculate the left-endpoint and right-endpoint Riemann sums to estimate the area.

For the left-endpoint Riemann sum, we evaluate the function [tex]\sqrt{x+3}[/tex] at the left endpoints of each subinterval and calculate the area of the corresponding rectangles. Summing up these areas yields the lower bound for the area.

For the right-endpoint Riemann sum, we evaluate the function [tex]\sqrt{x+3}[/tex] at the right endpoints of each subinterval and calculate the area of the corresponding rectangles. Summing up these areas provides the upper bound for the area.

By performing the calculations, the lower bound for the area is approximately 0.984 and the upper bound is approximately 2.608. These values give us a range within which the actual area between the x-axis and the curve lies.

Learn more about bound here:

https://brainly.com/question/2506656

#SPJ11

Which statement is true

Answers

In the function, Three of the factors are (x + 1).

We have to given that,

The function for the graph is,

⇒ f (x) = x⁴ + x³ - 3x² - 5x - 2

Now, We can find the factor as,

⇒ f (x) = x⁴ + x³ - 3x² - 5x - 2

Plug x = - 1;

⇒ f (- 1) = (-1)⁴ + (-1)³ - 3(-1)² - 5(-1) - 2

⇒ f(- 1 ) = 1 - 1 - 3 + 5 - 2

⇒ f (- 1) = 0

Hence, One factor of function is,

⇒ x = - 1

⇒ ( x + 1)

(x + 1) ) x⁴ + x³ - 3x² - 5x - 2 ( x³ - 3x - 2

           x⁴ + x³

         -------------

                  - 3x² - 5x

                    - 3x² - 3x

                     ---------------

                             - 2x - 2

                              - 2x - 2

                             --------------

                                      0

Hence, We get;

x⁴ + x³ - 3x² - 5x - 2 = (x + 1) (x³ - 3x - 2)

                               = (x + 1) (x³ - 2x - x - 2)

                               = (x + 1) (x + 1) (x + 1) (x - 2)

Thus, Three of the factors are (x + 1).

Learn more about the function visit:

https://brainly.com/question/11624077

#SPJ1

Evaluate the geometric series or state that it diverges. Σ 5-3 j=1

Answers

Answer:

The absolute value of 5/3 is greater than 1, the geometric series Σ (5/3)^j diverges.

Step-by-step explanation:

To evaluate the geometric series Σ (5/3)^j from j = 1 to infinity, we need to determine whether it converges or diverges.

In a geometric series, each term is obtained by multiplying the previous term by a constant ratio. In this case, the common ratio is 5/3.

To check if the series converges, we need to ensure that the absolute value of the common ratio is less than 1. In other words, |5/3| < 1.

Since the absolute value of 5/3 is greater than 1, the geometric series Σ (5/3)^j diverges.

Learn more about geometric series:https://brainly.com/question/27027925

#SPJ11








2. Determine the convergence or divergence of the sequence {a}. If the sequence converges, find its limit. an = 1+(-1)" 3" A 33 +36

Answers

To determine the convergence or divergence of the sequence {a}, we need to analyze the behavior of the terms as n approaches infinity.

The given sequence is defined as an = 1 + (-1)^n * 3^(3n + 36).

Let's consider the terms of the sequence for different values of n:

For n = 1, a1 = 1 + (-1)^1 * 3^(3*1 + 36) = 1 - 3^39.

For n = 2, a2 = 1 + (-1)^2 * 3^(3*2 + 36) = 1 + 3^42.

It is clear that the terms of the sequence alternate between a value slightly less than 1 and a value significantly greater than 1. As n increases, the terms do not approach a specific value but oscillate between two distinct values. Therefore, the sequence {a} does not converge.

Since the sequence does not converge, we cannot find a specific limit for it.

Learn more about convergence or divergence here: brainly.com/question/31974020

#SPJ11

please show work and label
answer clear
Pr. #2) For what value(s) of a is < f(x) =)={ ***+16 , 12a + continuous at every a?

Answers

The value(s) of a that makes function  f(x) = { 3x+16, x<2 ; 12a, x>=2 } continuous at every point is a=11/6.

For a function to be continuous at every point, the left-hand limit and right-hand limit of the function must exist and be equal at every point.

In this case, we have:

f(x) = {

      3x+16, x<2

      12a, x>=2

     }

For x<2, the limit of f(x) as x approaches 2 from the left is:

lim (x→2-) f(x) = lim (x→2-) (3x+16)

                = 22

For x>=2, the limit of f(x) as x approaches 2 from the right is:

lim (x→2+) f(x) = lim (x→2+) (12a)

                = 12a

Therefore, in order for f(x) to be continuous at x=2, we must have:

22 = 12a

Solving for a, we get:

a = 11/6

Therefore, the value of a that makes f(x) = { 3x+16, x<2 ; 12a, x>=2 } continuous at every point is a=11/6.

To know more about function refer here:

https://brainly.com/question/5975436#

#SPJ11




10) y=eta, In x 10) dy A) dx + 3x2 ex® Inx *+ 3x3 ex3 In x et3 = B) dy + ) 하 eto = X dx X dy 3x3 ex} +1 C) = 4x2 dy D) dx = = et3 dx Х

Answers

The problem involves finding the

derivative

of the

function

y = η * ln(x^10) with respect to x.

To find the derivative, we can use the

chain rule

. Let's denote η as a constant. Applying the chain rule, the derivative of y with respect to x is given by dy/dx = η * (10/x) * (x^10)' = η * (10/x) * 10x^9 = 100ηx^8 / x = 100ηx^7.

A) dy/dx = (1/x + 3x^2e^x) * ln(x) + 3x^3e^xln(x) + 3x^3e^x

This is not the

correct

derivative for the given function y = η * ln(x^10).

B) dy/dx = (1 + e^x) * (η/x) * ln(x) + e^x/x

This is not the correct derivative for the given function y = η * ln(x^10).

C) dy/dx = 4x^2 * η

This is not the correct derivative for the given function y = η * ln(x^10).

D) dy/dx = 100ηx^7

This is the correct derivative for the given function y = η * ln(x^10). It follows the chain rule and

simplifies

to 100ηx^7.

Therefore, the correct option is D) dx = 100ηx^7, which represents the derivative of y = η * ln(x^10) with respect to x.

To learn more about  

chain rule

click here :

brainly.com/question/31585086

#SPJ11

In response to an attack of 10 missiles, 500 antiballistic missiles are launched. The missile targets of the antiballistic missiles are independent, and each antiballstic missile is equally likely to go towards any of the target missiles. If each antiballistic missile independently hits its target with probability .1, use the Poisson paradigm to approximate the probability that all missiles are hit.

Answers

Using the Poisson paradigm, the probability that all 10 missiles are hit is approximately 0.0000001016.

To inexact the likelihood that every one of the 10 rockets are hit, we can utilize the Poisson worldview. When events are rare and independent, the Poisson distribution is frequently used to model the number of events occurring in a fixed time or space.

We can think of each missile strike as an independent event in this scenario, with a 0.1 chance of succeeding (hitting the target). We should characterize X as the quantity of hits among the 10 rockets.

Since the likelihood of hitting a rocket is 0.1, the likelihood of not hitting a rocket is 0.9. Thusly, the likelihood of every one of the 10 rockets being hit can be determined as:

P(X = 10) = (0.1)10  0.00000001 This probability is extremely low, and directly calculating it may require a lot of computing power. However, the Poisson distribution enables us to approximate this probability in accordance with the Poisson paradigm.

The average number of events in a given interval in the Poisson distribution is  (lambda). For our situation, λ would be the normal number of hits among the 10 rockets.

The probability of having all ten missiles hit can be approximated using the Poisson distribution as follows: = (number of trials) * (probability of success) = 10 * 0.1 = 1.

P(X = 10) ≈ e^(-λ) * (λ^10) / 10!

where e is the numerical steady around equivalent to 2.71828 and 10! is the ten-factor factorial.

P(X = 10) ≈ e^(-1) * (1^10) / 10!

P(X = 10) = 0.367879 * 1 / (3628800) P(X = 10) = 0.0000001016 According to the Poisson model, the likelihood of hitting all ten missiles is about 0.0000001016.

To know more about probability refer to

https://brainly.com/question/31828911

#SPJ11

Evaluate. Assume u > 0 when In u appears. Brd 10 dx .. = (Type an exact answer.) [x® ex® dx=0

Answers

The integral ∫[0 to 10] x² eˣ² dx has no exact solution.

The integral involves the function x² eˣ², which does not have an elementary antiderivative in terms of standard functions. Therefore, there is no exact solution for the integral.

In certain cases, integrals involving exponential functions and polynomial functions can be evaluated using numerical methods or approximation techniques. However, in this case, from the information provided the equation for the integral is obtained .

The value of integral is ∫[0 to 10] x² eˣ² dx .

To know more about integral click on below link:

https://brainly.com/question/31059545#

#SPJ11

Complete question:

Evaluate. Assume u > 0 when In u appears. Brd 10 dx .. = (Type an exact answer.) [x² ex² dx=0

Find the derivative of the function at Po in the direction of A. f(x,y) = - 4xy – 3y?, Po(-6,1), A = - 4i +j (DA)(-6,1) (Type an exact answer, using radicals as needed.)

Answers

the derivative of the function at point P₀ in the direction of vector A is 34/√(17).

To find the derivative of the function at point P₀ in the direction of vector A, we need to calculate the directional derivative.

The directional derivative of a function f(x, y) in the direction of a vector A = ⟨a, b⟩ is given by the dot product of the gradient of f with the normalized vector A.

Let's calculate the gradient of f(x, y):

∇f(x, y) = ⟨∂f/∂x, ∂f/∂y⟩

Given that f(x, y) = -4xy - 3y², we can find the partial derivatives:

∂f/∂x = -4y

∂f/∂y = -4x - 6y

Now, let's evaluate the gradient at point P₀(-6, 1):

∇f(-6, 1) = ⟨-4(1), -4(-6) - 6(1)⟩

= ⟨-4, 24 - 6⟩

= ⟨-4, 18⟩

Next, we need to normalize the vector A = ⟨-4, 1⟩ by dividing it by its magnitude:

|A| = √((-4)² + 1²) = √(16 + 1) = √(17)

Normalized vector A: Ā = A / |A| = ⟨-4/√(17), 1/√(17)⟩

Finally, we compute the directional derivative:

Directional derivative at P₀ in the direction of A = ∇f(-6, 1) · Ā

= ⟨-4, 18⟩ · ⟨-4/√(17), 1/√(17)⟩

= (-4)(-4/√(17)) + (18)(1/√(17))

= 16/√(17) + 18/√(17)

= (16 + 18)/√(17)

= 34/√(17)

Therefore, the derivative of the function at point P₀ in the direction of vector A is 34/√(17).

Learn more about Derivative here

https://brainly.com/question/31402962

#SPJ4

Given that lim (4x5)= 3, illustrate this definition by finding the largest values of & that correspond to & = 0.5, ε = 0.1, X→ 2 and & = 0.05. & = 0.5 8 ≤ ε = 0.1 8 ≤ ε = 8 ≤ 0.05

Answers

To illustrate the definition, we need to find the largest values of δ that correspond to specific values of ε.

If the limit of a function as x approaches a certain value is equal to a specific value, then for any positive ε (epsilon), there exists a positive δ (delta) such that if the distance between x and the given value is less than δ, the distance between the function value and the given limit is less than ε.

In this case, the given limit is lim (4x⁵) = 3.

By choosing specific values of ε and finding the corresponding values of δ, we can illustrate this definition.

For ε = 0.1, we want to find the largest δ such that if the distance between x and 2 is less than δ, the distance between (4x⁵) and 3 is less than 0.1.

For ε = 0.1, we have:

|4x⁵ - 3| < 0.1

Simplifying the inequality, we get:

-0.1 < 4x⁵ - 3 < 0.1

Now, we can solve for x:

-0.1 + 3 < 4x⁵ < 0.1 + 3

2.9 < 4x⁵ < 3.1

0.725 < x⁵ < 0.775

Taking the fifth root of the inequality, we have:

0.903 < x < 0.925

Therefore, for ε = 0.1, the largest δ that corresponds to this value is approximately 0.012.

We can follow a similar process for ε = 0.05 to find the largest δ that satisfies the condition. By substituting ε = 0.05 into the inequality, we can determine the range for x that satisfies the condition.

In this way, we can illustrate the definition of a limit by finding the largest values of δ that correspond to specific values of ε.

Learn more about inequality here:

https://brainly.com/question/20383699

#SPJ11

Solve the initial value problem for r as a vector function of t. dr 9 Differential Equation: - di =ž(t+1) (t+1)1/2j+7e -1j+ ittk 1 -k t+1 Initial condition: r(0) = ) r(t) = (i+j+ (Ok

Answers

The solution to the given initial value problem vector function is: r(t) = (t + 1)^(3/2)i + 7e^(-t)j + (1/2)t²k

To solve the initial value problem, we integrate the given differential equation and apply the initial condition.

Integrating the differential equation, we have:

∫-di = ∫(t+1)^(1/2)j + 7e^(-t)j + ∫t²k dt

Simplifying, we get:

-r = (2/3)(t+1)^(3/2)j - 7e^(-t)j + (1/3)t³k + C

where C is the constant of integration.

Applying the initial condition r(0) = (i+j+k), we substitute t = 0 into the solution and equate it to the initial condition:

-(i+j+k) = (2/3)(0+1)^(3/2)j - 7e⁰j + (1/3)(0)³k + C

Simplifying further, we find:

C = -(2/3)j - 7j

Therefore, the solution to the initial value problem is:

r(t) = (t + 1)^(3/2)i + 7e^(-t)j + (1/2)t²k - (2/3)j - 7j

Simplifying the expression, we get:

r(t) = (t + 1)^(3/2)i - (20/3)j + (1/2)t²k

To know more about vector, refer here:

https://brainly.com/question/30195292#

#SPJ11

Using the transformation T:(x, y) —> (x+2, y+1) Find the distance A’B’

Answers

The calculated value of the distance A’B’ is √10

How to find the distance A’B’

From the question, we have the following parameters that can be used in our computation:

The graph

Where, we have

A = (0, 0)

B = (1, 3)

The distance A’B’ can be calculated as

AB = √Difference in x² + Difference in y²

substitute the known values in the above equation, so, we have the following representation

AB = √(0 - 1)² + (0 - 3)²

Evaluate

AB = √10

Hence, the distance A’B’ is √10

Read more about distance at

https://brainly.com/question/28551043

#SPJ1

1. (5 points) Evaluate the limit, if it exists. limu+2 = 2. (5 points) Explain why the function f(x) { √√4u+1 3 U-2 x²-x¸ if x # 1 x²-1' 1, if x = 1 is discontinuous at a = 1.

Answers

1). The limit lim(u→2) is √3/2.

2).The LHL, RHL, and the function value, we see that the LHL and RHL are not equal to the function value at a = 1. Therefore, the function is discontinuous at x = 1.

To evaluate the limit lim(u→2), we substitute u = 2 into the function expression:

lim(u→2) = √√(4u+1)/(3u-2)

Plugging in u = 2:

lim(u→2) = √√(4(2)+1)/(3(2)-2)

= √√(9)/(4)

= √3/2

Therefore, the limit lim(u→2) is √3/2.

The function f(x) is defined as follows:

f(x) = { √√(4x+1)/(3x-2) if x ≠ 1

{ 1 if x = 1

To determine if the function is discontinuous at a = 1, we need to check if the left-hand limit (LHL) and the right-hand limit (RHL) exist and are equal to the function value at a = 1.

(a) Left-hand limit (LHL):

lim(x→1-) √√(4x+1)/(3x-2)

To find the LHL, we approach 1 from values less than 1, so we can use x = 0.9 as an example:

lim(x→1-) √√(4(0.9)+1)/(3(0.9)-2)

= √√(4.6)/(0.7)

= √√6/0.7

(b) Right-hand limit (RHL):

lim(x→1+) √√(4x+1)/(3x-2)

To find the RHL, we approach 1 from values greater than 1, so we can use x = 1.1 as an example:

lim(x→1+) √√(4(1.1)+1)/(3(1.1)-2)

= √√(4.4)/(2.3)

= √√2/2.3

(c) Function value at a = 1:

f(1) = 1

Comparing the LHL, RHL, and the function value, we see that the LHL and RHL are not equal to the function value at a = 1. Therefore, the function is discontinuous at x = 1.

learn more about continuity here:
https://brainly.com/question/31523914

#SPJ11

Let I =[₁² f(x) dx where f(x) = 7x + 2 = 7x + 2. Use Simpson's rule with four strips to estimate I, given x 1.25 1.50 1.75 2.00 1.00 f(x) 6.0000 7.4713 8.9645 10.4751 12.0000 h (Simpson's rule: S₁ = (30 + Yn + 4(y₁ + Y3 +95 +...) + 2(y2 + y4 +36 + ·· ·)).)

Answers

The value of I using Simpson's rule with four strips is  I = 116.3525

1. Calculate the extremities, f(x1) = 6.0 and f(xn) = 12.0.

2. Calculate the width of each interval h = (2.0-1.25)/4 = 0.1875.

3. Calculate the values of f(x) at the points which lie in between the extremities:

f(x2) = 7.4713,

f(x3) = 8.9645,

f(x4) = 10.4751.

4. Calculate the Simpson's Rule formula

S₁ = 30 + 12 + 4(6 + 8.9645 + 10.4751) + 2(7.4713 + 10.4751)

S₁ = 30 + 12 + 342.937 + 249.946

S₁ = 624.88

5. Calculate the integral

I = 624.88 * 0.1875 = 116.3525

To know more about Simpson's Rule refer here:

https://brainly.com/question/32151972#

#SPJ11

4. Answer the following: a. A cylindrical tank with radius 10 cm is being filled with water at a rate of 3 cm³/min. How fast is the height of the water increasing? (Hint, for a cylinder V = πr²h) b

Answers

a. The height of the water in the cylindrical tank is increasing at a rate of 0.03 cm/min.

The rate at which the height of the water is increasing can be determined by differentiating the formula for the volume of a cylinder with respect to time. The volume of a cylinder is given by V = πr²h, where V represents the volume, r is the radius of the base, and h is the height of the cylinder. Differentiating this equation with respect to time gives us dV/dt = πr²(dh/dt), where dV/dt represents the rate of change of volume with respect to time, and dh/dt represents the rate at which the height is changing. We are given dV/dt = 3 cm³/min and r = 10 cm. Substituting these values into the equation, we can solve for dh/dt: 3 = π(10)²(dh/dt). Simplifying further, we get dh/dt = 3/(π(10)²) ≈ 0.03 cm/min. Therefore, the height of the water is increasing at a rate of 0.03 cm/min.

In summary, the height of the water in the cylindrical tank is increasing at a rate of 0.03 cm/min. This can be determined by differentiating the formula for the volume of a cylinder and substituting the given values. The rate at which the height is changing, dh/dt, can be calculated as 0.03 cm/min.

To learn more about cylindrical tank visit:

brainly.com/question/30395778

#SPJ11

Show that the vectors a = (3,-2, 1), b = (1, -3, 5), c = (2, 1,-4) form a right- angled triangle

Answers

To show that the vectors a = (3, -2, 1), b = (1, -3, 5), and c = (2, 1, -4) form a right-angled triangle, we need to verify if the dot product of any two vectors is equal to zero.

If the dot product is zero, it indicates that the vectors are perpendicular to each other, and hence they form a right-angled triangle.

First, let's calculate the dot products between pairs of vectors:

a · b = (3)(1) + (-2)(-3) + (1)(5) = 3 + 6 + 5 = 14

b · c = (1)(2) + (-3)(1) + (5)(-4) = 2 - 3 - 20 = -21

c · a = (2)(3) + (1)(-2) + (-4)(1) = 6 - 2 - 4 = 0

From the dot products, we observe that a · b ≠ 0 and b · c ≠ 0. However, c · a = 0, indicating that vector c is perpendicular to vector a. Therefore, the vectors a, b, and c form a right-angled triangle, with c being the hypotenuse.

In summary, we can determine if three vectors form a right-angled triangle by calculating the dot product between pairs of vectors. If any dot product is zero, it indicates that the vectors are perpendicular to each other and form a right-angled triangle. In this case, the dot product of vectors a and c is zero, confirming that the vectors a, b, and c form a right-angled triangle.

To learn more about triangle click here:

brainly.com/question/2773823

#SPJ11

Other Questions
a boat, costing $110,000 and uninsured, was wrecked the very first day it was used. this boat can either be disposed for $13,000 cash and be replaced with a similar boat costing $113,000, or rebuilt for $98,000 and be brand new as far as operating characteristics and looks are concerned. a relevant cost analysis of the decision to replace the boat shows:A. A $21,000 cost advantage associated with the decision to fix the old boat.B. A cost equivalence between the two decision options.C. An $11,000 net advantage associated with the decision to fix the old boat.D. A $1,000 cost advantage associated with the decision to fix the old boat Choose the triple integral that evaluates the volume of the solid that lies inside the sphere x + y2 + z = 1 and outside the cone z = 7x?+y? Select one: OA . SAS Spin()dpddo S" 1" [ p*sin()dpdde 5*1" ["psin(a)pdedo Sport OC 0 OD OE None of the choices which information indicates the nurse has a corret understanding of the pathophysiologic processes important in cell injury An intrusive rock forms whena.rocks are weatheredb.magma cools undergroundc.magma erupts and cools on the surfaced.sediments are lithified For a chemical reaction to be spontaneous only at high temperatures, which of the following conditions must be met?A. S > 0, H > 0B. S < 0, H > 0C. S < 0, H < 0D. S > 0, H < 0E. G > 0 what are the three pressures driving sustainable mis infrastructures Find || V || . v= -91 -2+ 6k IV- (Simplify your answer. Type an exact value, using fractions and radicals as needed.) Find | V || v=3i - 7j + 3k IV-(Type an exact answer, using radicals as needed.) one strength of cognitive behavioral therapy group counseling is that Why is biodiversity necessary for the sustainability of an ecosystem? Use what you have learned about ecosystem services to help explain. Calculate the derivative of the following function. 6 y= (x - 9x+2) + 2 X dy = dx 50 Points! Multiple choice geometry question. Photo attached. Thank you! Energy that comes from the sunsolar energyis clean. It does not cause pollution the way energy from fossil fuels (like gas and oil) does. However, solar energy must be collected before it can be used. The instruments used to collect solar energy are quite costly.This paragraph states that solar energy ________.A) causes a lot of pollutionB) is expensive to collectC) is one kind of fossil fuelD) is a cheap way to get energy . Suppose a particle moves back and forth along a straight line with velocity v(t) , measured in feet per second, and acceleration aft) 120 a. What is the meaning of La muce? v(t) dt? 120 b. What is the meaning of (Odt? 60 120 c. What is the meaning of a(t) dt ? 60 in the lean perspective on inventory, which of the following statements is often true when a process is running smoothly? group of answer choices it is likely that there is too much inventory in the system. it is likely that there is too little inventory in the system. it is likely that workers are overutilized. it is likely that workers are underutilized. Which of the following information is needed to prepare a flexible budget?(a) Actual units sold(b) Actual variable cost(c) Actual selling price per unit(d) Actual fixed cost. suppose 82% of all students at a large university own a computer. if 6 students are selected independently of each other, what is the probability that exactly 4 of them owns a computer? QUESTION 241 POINT Suppose that the piecewise function f is defined by f(x)= 3x +4. -2x + 5x-2, x>1 Determine which of the following statements are true. Select the correct answer below. Of(x) is Suggestions for making self-monitoring effective include:All of the options are correct.Self-monitor only two aspects of the target behaviorSometimes provide supplementary cues or prompts as crutchesSelf-monitor the most salient dimension of the behaviorSelf-monitor early and often Please help. It's incomplete, I've spent a long while trying to locate what I'm missing and need new eyes to check - attached.After the success of the companys first two months, Santana Rey continues to operate Business Solutions. The November 30, 2021, unadjusted trial balance of Business Solutions (reflecting its transactions for October and November of 2021) follows.Number Account Title Debit Credit101 Cash $ 38,264 106 Accounts receivable 12,618 126 Computer supplies 2,545 128 Prepaid insurance 2,220 131 Prepaid rent 3,300 163 Office equipment 8,000 164 Accumulated depreciationOffice equipment $ 0167 Computer equipment 20,000 168 Accumulated depreciationComputer equipment 0201 Accounts payable 0210 Wages payable 0236 Unearned computer services revenue 0307 Common stock 73,000318 Retained earnings 0319 Dividends 5,600 403 Computer services revenue 25,659612 Depreciation expenseOffice equipment 0 613 Depreciation expenseComputer equipment 0 623 Wages expense 2,625 637 Insurance expense 0 640 Rent expense 0 652 Computer supplies expense 0 655 Advertising expense 1,728 676 Mileage expense 704 677 Miscellaneous expenses 250 684 Repairs expenseComputer 805 901 Income summary 0 Totals $ 98,659 $ 98,659Business Solutions had the following transactions and events in December 2021.December 2 Paid $1,025 cash to Hillside Mall for Business Solutions's share of mall advertising costs.December 3 Paid $500 cash for minor repairs to the companys computer.December 4 Received $3,950 cash from Alexs Engineering Company for the receivable from November.December 10 Paid cash to Lyn Addie for six days of work at the rate of $125 per day.December 14 Notified by Alexs Engineering Company that Business Solutions's bid of $7,000 on a proposed project has been accepted. Alexs paid a $1,500 cash advance to Business Solutions.December 15 Purchased $1,100 of computer supplies on credit from Harris Office Products.December 16 Sent a reminder to Gomez Company to pay the fee for services recorded on November 8.December 20 Completed a project for Liu Corporation and received $5,625 cash.December 22-26 Took the week off for the holidays.December 28 Received $3,000 cash from Gomez Company on its receivable.December 29 Reimbursed S. Rey for business automobile mileage (600 miles at $0.32 per mile).December 31 Paid $1,500 cash for dividends.The following additional facts are collected for use in making adjusting entries prior to preparing financial statements for the companys first three months.The December 31 inventory count of computer supplies shows $580 still available.Three months have expired since the 12-month insurance premium was paid in advance.As of December 31, Lyn Addie has not been paid for four days of work at $125 per day.The computer system, acquired on October 1, is expected to have a four-year life with no salvage value.The office equipment, acquired on October 1, is expected to have a five-year life with no salvage value.Three of the four months' prepaid rent have expired.Required:1. Prepare journal entries to record each of the December transactions. Post those entries to the accounts in the ledger.2-a. Prepare adjusting entries to reflect a through f.2-b. Post the journal entries to record each of the December transactions, adjusting entries to the accounts in the ledger.3. Prepare an adjusted trial balance as of December 31, 2021.4. Prepare an income statement for the three months ended December 31, 2021.5. Prepare a statement of retained earnings for the three months ended December 31, 2021.6. Prepare a classified balance sheet as of December 31, 2021.7. Record the necessary closing entries as of December 31, 2021.8. Prepare a post-closing trial balance as of December 31, 2021. Warm winds which may occur as air crosses mountain ranges,descending on the lee side are called:a) Zonda in the Andesb) Foehn in the Alpsc) Chinook in the Rocky Mountainsd) All of the above Steam Workshop Downloader