At 9:00, gravity causes 9.81 N⋅m of torque and at 12:00, gravity causes zero torque.The hour hand of a large clock is a 1m long uniform rod with a mass of 2kg.
The edge of this hour hand is attached to the center of the clock. When the time of the clock is 9:00, the hand of the clock is vertical pointing down, and it makes an angle of 270° with respect to the horizontal. Gravity causes 9.81 newtons of force per kg, so the force on the rod is
F = mg
= 2 kg × 9.81 m/s2
= 19.62 N.
When the hand of the clock is at 9:00, the torque caused by gravity is 19.62 N × 0.5 m = 9.81 N⋅m. At 12:00, the hand of the clock is horizontal, pointing towards the right, and it makes an angle of 0° with respect to the horizontal. The force on the rod is still 19.62 N, but the torque caused by gravity is zero, because the force is acting perpendicular to the rod.Therefore, at 9:00, gravity causes 9.81 N⋅m of torque and at 12:00, gravity causes zero torque.
To know more about Torque visit-
brainly.com/question/31323759
#SPJ11
A 10-mH inductor is connected in series with a 10-ohm resistor, a switch and a 6-V battery. The switch is closed at t = 0. Find the instant at which the current in the inductor reaches 50 percent of its maximum value? Express your answer as a multiple of the time constant.
The current in the inductor reaches 50 percent of its maximum value at approximately 0.69 times the time constant (0.69τ).
In an RL circuit, the time constant (τ) is given by the formula:
τ = L / R
where L is the inductance (10 mH = 10 × 10⁻³ H) and R is the resistance (10 Ω).
To find the time at which the current reaches 50 percent of its maximum value, we need to calculate 0.69 times the time constant.
τ = L / R = (10 × 10⁻³ H) / 10 Ω = 10⁻³ s
0.69τ = 0.69 × 10⁻³ s ≈ 6.9 × 10⁻⁴ s
learn more about Current here:
https://brainly.com/question/14205301
#SPJ11
Given the vector A⃗ =4.00i^+7.00j^A→=4.00i^+7.00j^ , find the
magnitude of the vector.
Given the vector A⃗ = 4.00i^+7.00j^,
Find the magnitude of the vector.
The magnitude of a vector is defined as the square root of the sum of the squares of the components of the vector. Mathematically, it can be represented as:
|A⃗|=√(Ax²+Ay²+Az²)
Here, A_x, A_y, and A_z are the x, y, and z components of the vector A.
But, in this case, we have only two components i and j.
So, |A⃗|=√(4.00²+7.00²) = √(16+49)
= √65|A⃗| = √65.
Therefore, the magnitude of the vector is √65.
#SPJ11
Learn more about vector and magnitude https://brainly.com/question/3184914
Physical and thermodynamic Properties of water and water steam
``h-s`` Enthalphy – Entropy (Mollier) chart for water steam
please explain everything , i want to make a word file of this so make it long and meaningful
Water is a unique substance that exhibits fascinating physical and thermodynamic properties in its various states. The h-s (enthalpy-entropy) chart, also known as the Mollier chart, is a graphical representation that provides valuable information about these properties, specifically for water steam.
Explaining the main answer in more detail:
The h-s chart is a tool used in thermodynamics to analyze and understand the behavior of water steam. It plots the enthalpy (h) against the entropy (s) of the steam at different conditions, allowing engineers and scientists to easily determine various properties of water steam without the need for complex calculations. Enthalpy refers to the total energy content of a system, while entropy relates to the level of disorder or randomness within a system.
By examining the h-s chart, one can gain insights into key properties of water steam, such as temperature, pressure, specific volume, quality, and specific enthalpy. Each point on the chart represents a specific combination of these properties. For example, the vertical lines on the chart represent constant pressure lines, while the diagonal lines indicate constant temperature lines.
The h-s chart also provides information about phase changes and the behavior of water steam during such transitions. For instance, the saturated liquid and saturated vapor lines on the chart represent the boundaries between liquid and vapor phases, and the slope of these lines indicates the heat transfer during phase change.
Moreover, the h-s chart allows for the analysis of different thermodynamic processes, such as compression, expansion, and heat transfer. By following a specific path or curve on the chart, engineers can determine the changes in properties and quantify the energy transfers associated with these processes.
Learn more about:
The h-s chart is widely used in various fields, including engineering, power generation, and HVAC (heating, ventilation, and air conditioning) systems. It helps engineers design and optimize systems that involve water steam, such as power plants and steam turbines. Understanding the h-s chart enables efficient energy conversion, process control, and overall system performance.
#SPJ11
A boy and a girl pull and push a crate along an icy horizontal surface, moving it 15 m at a constant speed. The boy exerts 50 N of force at an angle of 520 above the horizontal, and the girl exerts a force of 50 N at an angle of 320 above the horizontal. Calculate the total work done by the boy and girl together. 1700J 1500J 1098J 1000J An archer is able to shoot an arrow with a mass of 0.050 kg at a speed of 120 km/h. If a baseball of mass 0.15 kg is given the same kinetic energy, determine its speed. 19m/s 26m/s 69m/s 48m/s
The total work done by the boy and girl together is approximately 1391.758 J
To calculate the total work done by the boy and girl together, we need to find the work done by each individual and then add them together.
Boy's work:
The force exerted by the boy is 50 N, and the displacement is 15 m. The angle between the force and displacement is 52° above the horizontal. The work done by the boy is given by:
Work_boy = Force_boy * displacement * cos(angle_boy)
Work_boy = 50 N * 15 m * cos(52°)
Girl's work:
The force exerted by the girl is also 50 N, and the displacement is 15 m. The angle between the force and displacement is 32° above the horizontal. The work done by the girl is given by:
Work_girl = Force_girl * displacement * cos(angle_girl)
Work_girl = 50 N * 15 m * cos(32°)
Total work done by the boy and girl together:
Total work = Work_boy + Work_girl
Now let's calculate the values:
Work_boy = 50 N * 15 m * cos(52°) ≈ 583.607 J
Work_girl = 50 N * 15 m * cos(32°) ≈ 808.151 J
Total work = 583.607 J + 808.151 J ≈ 1391.758 J
Therefore, the total work done by the boy and girl together is approximately 1391.758 J. None of the provided options match this value, so there may be an error in the calculations or options given.
To learn more about work done
https://brainly.com/question/25573309
#SPJ11
8. (-/1 Points) DETAILS SERPSE 10 16.3.OP.018.ML MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A steel wire of length 250 m and a copper wire of length 17.0 m, both with 1.00-mm diameters, are connected end to end and stretched to a tension of 140 N. During what time interval will a transverse wave travel the entire length of the two wires? (The density of steel and copper are 7000 and 120 kg/m, respectively) Need Help? Head Me Submit Answer
The time interval for a transverse wave to travel the entire length of the two wires can be found by calculating the wave speeds for both the steel wire and the copper wire.
Further determining the total time required for the wave to travel the combined length of the wires.
Given:
Length of steel wire (L_steel) = 250 m
Length of copper wire (L_copper) = 17.0 m
Diameter of wires (d) = 1.00 mm
Tension in the wires (T) = 140 N
Density of steel (ρ_steel) = 7000 kg/m³
Density of copper (ρ_copper) = 120 kg/m³
Calculate the cross-sectional area of the wires:
Cross-sectional area (A) = π * (d/2)²
Calculate the mass of each wire:
Mass of steel wire (m_steel) = ρ_steel * (L_steel * A)
Mass of copper wire (m_copper) = ρ_copper * (L_copper * A)
Calculate the wave speed for each wire:
Wave speed (v) = √(T / (m * A))
For the steel wire:
Wave speed for steel wire (v_steel) = √(T / (m_steel * A))
For the copper wire:
Wave speed for copper wire (v_copper) = √(T / (m_copper * A))
Calculate the total length of the combined wires:
Total length of the wires (L_total) = L_steel + L_copper
Calculate the time interval for the wave to travel the total length of the wires:
Time interval (t) = L_total / (v_steel + v_copper)
Substitute the given values into the above formulas and evaluate to find the time interval for the transverse wave to travel the entire length of the two wires.
Calculation Step by Step:
Calculate the cross-sectional area of the wires:
A = π * (0.001 m/2)² = 7.85398 × 10⁻⁷ m²
Calculate the mass of each wire:
m_steel = 7000 kg/m³ * (250 m * 7.85398 × 10⁻⁷ m²) = 0.13775 kg
m_copper = 120 kg/m³ * (17.0 m * 7.85398 × 10⁻⁷ m²) = 0.01594 kg
Calculate the wave speed for each wire:
v_steel = √(140 N / (0.13775 kg * 7.85398 × 10⁻⁷ m²)) = 1681.4 m/s
v_copper = √(140 N / (0.01594 kg * 7.85398 × 10⁻⁷ m²)) = 3661.4 m/s
Calculate the total length of the combined wires:
L_total = 250 m + 17.0 m = 267.0 m
Calculate the time interval for the wave to travel the total length of the wires:
t = 267.0 m / (1681.4 m/s + 3661.4 m/s) = 0.0451 s
The time interval for a transverse wave to travel the entire length of the two wires is approximately 0.0451 seconds.
To learn more about transverse wave click here.
brainly.com/question/29952597
#SPJ11
The crane shown in the figure is lifting a 363-kg crate upward with an acceleration of 3.03 m/s2. The cable from the crate passes over a solid cylindrical pulley at the top of the boom. The pulley has a mass of 155 kg. The cable is then wound onto a hollow cylindrical drum that is mounted on the deck of the crane. The mass of the drum is 187 kg, and its radius (the same as that of the pulley) is 0.693 m. The engine applies a counterclockwise torque to the drum in order to wind up the cable. What is the magnitude of this torque? Ignore the mass of the cable.
The magnitude of the torque applied by the engine to wind up the cable is 2587.61 Nm.
To calculate the magnitude of the torque applied by the engine to wind up the cable, we need to consider the rotational dynamics of the system.
The torque can be calculated using the formula:
Torque = Moment of inertia * Angular acceleration
First, let's calculate the moment of inertia of the drum. Since the drum is hollow, its moment of inertia can be expressed as the difference between the moment of inertia of the outer cylinder and the moment of inertia of the inner cylinder.
The moment of inertia of a solid cylinder is given by:
[tex]I_{solid}[/tex] = (1/2) * mass * [tex]\rm radius^2[/tex]
The moment of inertia of the hollow cylinder (the drum) is:
[tex]I_{drum} = I_{outer} - I_{inner}[/tex]
The moment of inertia of the pulley is:
[tex]I_{pulley} = (1/2) * mass_{pulley} * radius_{pulley^2}[/tex]
Now, we can calculate the moment of inertia of the drum:
[tex]I_{drum} = (1/2) * mass_{drum} * radius^2 - I_{pulley}[/tex]
Next, we calculate the torque:
Torque = [tex]I_{drum}[/tex] * Angular acceleration
Substituting the given values:
[tex]\rm Torque = (1/2) * 187 kg * (0.693 m)^2 - (1/2) * 155 kg * (0.693 m)^2 * 3.03 m/s^2[/tex]
Calculating this expression gives a magnitude of approximately 2587.61 Nm.
Therefore, the magnitude of the torque applied by the engine to wind up the cable is 2587.61 Nm.
Know more about torque:
https://brainly.com/question/28220969
#SPJ12
A 5 kg ball takes 6.44 seconds for one revolution around the circle. What's the magnitude of the angular velocity of this motion?
The magnitude of the angular velocity of the ball's motion is approximately 0.977 radians per second.
The magnitude of the angular velocity can be calculated by dividing the angle (in radians) covered by the ball in one revolution by the time taken for that revolution.
To calculate the magnitude of the angular velocity, we can use the formula:
Angular velocity (ω) = (θ) / (t)
Where
θ represents the angle covered by the ball in radianst is the time taken for one revolutionSince one revolution corresponds to a full circle, the angle covered by the ball is 2π radians.
Substituting the given values:
ω = (2π radians) / (6.44 seconds)
Evaluating this expression:
ω ≈ 0.977 radians per second
Therefore, the magnitude of the angular velocity of this motion is approximately 0.977 radians per second.
To learn more about angular velocity, Visit:
https://brainly.com/question/29342095
#SPJ11
A cosmic ray proton moving toward the Earth at 10. 00 × 107 m/s experiences a magnetic force of 2.10× 10−16 . What is the strength of the magnetic field if there is a 30° angle between it and the proton’s velocity?
The strength of the magnetic field is 0.7 μT.
Cosmic rays are high-energy particles that originate in space. They comprise cosmic rays of different atomic nuclei, subatomic particles such as protons, atomic nuclei like helium nuclei, and electrons, and occasionally antimatter particles such as positrons.
They also originate from galactic sources. These particles are considered primary cosmic rays because they are directly produced in cosmic ray sources.
Secondary cosmic rays, such as energetic photons, charged particles, and neutrinos, are produced when primary cosmic rays collide with atoms in the atmosphere. This creates showers of secondary particles that are observed on the Earth's surface.
Magnetic Force and Magnetic Field
A magnetic force (F) can be applied to a charged particle moving in a magnetic field (B) at a velocity v, as given by the formula:
F = qvB sin(θ)
Where F is the magnetic force, q is the charge of the particle, v is the velocity of the particle, B is the magnetic field, and θ is the angle between the magnetic field and the velocity of the particle.
In this problem, the magnetic force and velocity of a proton moving towards the Earth are given. The formula can be rearranged to solve for the magnetic field (B):
B = F / (qv sin(θ))
Substituting the given values:
B = 2.10 × 10^-16 N / ((1.6 × 10^-19 C)(10.00 × 10^7 m/s)sin(30°))
= 0.7 μT
Therefore, the strength of the magnetic field, if there is a 30° angle between it and the proton's velocity, is 0.7 μT.
To learn more about strength, refer below:
https://brainly.com/question/31719828
#SPJ11
A 20 kg-block is pulled along a rough, horizontal surface by a constant horizontal force F. The coefficient of kinetic friction between the block and the horizontal surface is 0.2. The block starts from rest and achieves a speed of 5 m/s after moving 12.5 m along the horizontal surface. Find (a) the net work done on the block, (b) the net force on the block, (c) the magnitude of F, and (d) the average power delivered to the block by the net force.
(a) The net work done on the block is 250 J.
(b) The net force on the block is 79.2 N.
(c) The magnitude of F is 79.2 N.
(d) The average power delivered to the block is 100 W.
To solve this problem, we can use the work-energy theorem and the equation for the frictional force.
(a) The net work done on the block is equal to its change in kinetic energy. Since the block starts from rest and achieves a speed of 5 m/s, the change in kinetic energy is given by:
ΔKE = (1/2)mv² - (1/2)m(0)²
= (1/2)mv²
The net work done is equal to the change in kinetic energy:
Net work = ΔKE = (1/2)mv²
Substituting the given values, we have:
Net work = (1/2)(20 kg)(5 m/s)² = 250 J
(b) The net force on the block is equal to the applied force F minus the frictional force. The frictional force can be calculated using the equation:
Frictional force = coefficient of friction * normal force
The normal force is equal to the weight of the block, which is given by:
Normal force = mass * gravitational acceleration
Normal force = (20 kg)(9.8 m/s²) = 196 N
The frictional force is then:
Frictional force = (0.2)(196 N) = 39.2 N
The net force on the block is:
Net force = F - Frictional force
(c) To find the magnitude of F, we can rearrange the equation for net force:
F = Net force + Frictional force
= m * acceleration + Frictional force
The acceleration can be calculated using the equation:
Acceleration = change in velocity / time
The change in velocity is:
Change in velocity = final velocity - initial velocity
= 5 m/s - 0 m/s
= 5 m/s
The time taken to achieve this velocity is given as moving 12.5 m along the horizontal surface. The formula for calculating time is:
Time = distance / velocity
Time = 12.5 m / 5 m/s = 2.5 s
The acceleration is then:
Acceleration = (5 m/s) / (2.5 s) = 2 m/s²
Substituting the values, we have:
F = (20 kg)(2 m/s²) + 39.2 N
= 40 N + 39.2 N
= 79.2 N
(d) The average power delivered to the block by the net force can be calculated using the equation:
Average power = work / time
The work done on the block is the net work calculated in part (a), which is 250 J. The time taken is 2.5 s. Substituting these values, we have:
Average power = 250 J / 2.5 s
= 100 W
Therefore, the answers are:
(a) The net work done on the block is 250 J.
(b) The net force on the block is 79.2 N.
(c) The magnitude of F is 79.2 N.
(d) The average power delivered to the block by the net force is 100 W.
Learn more about frictional force from the given link:
https://brainly.com/question/30280206
#SPJ11
A loop with radius r = 20cm is initially oriented perpendicular
to 1.2T magnetic field. If the loop is rotated 90o in 0.2s. Find
the induced voltage in the loop.
The induced voltage is 3.77V.
Here are the given:
Radius of the loop: r = 20cm = 0.2m
Initial magnetic field: B_i = 1.2T
Angular displacement: 90°
Time taken: t = 0.2s
To find the induced voltage, we can use the following formula:
V_ind = -N * (dPhi/dt)
where:
V_ind is the induced voltage
N is the number of turns (1 in this case)
dPhi/dt is the rate of change of the magnetic flux
The rate of change of the magnetic flux can be calculated using the following formula:
dPhi/dt = B_i * A * sin(theta)
where:
B_i is the initial magnetic field
A is the area of the loop
theta is the angle between the magnetic field and the normal to the loop
The area of the loop can be calculated using the following formula:
A = pi * r^2
Plugging in the known values, we get:
V_ind = -N * (dPhi/dt) = -1 * (B_i * A * sin(theta) / t) = -1 * (1.2T * pi * (0.2m)^2 * sin(90°) / 0.2s) = 3.77V
Therefore, the induced voltage is 3.77V.
Learn more about voltage with the given link,
https://brainly.com/question/1176850
#SPJ11
A block of mass 5 kg is sitting on a frictionless surface. The block initially has a velocity of 3 m/s. A force of 9 N is applied for 2 s.
What is the Initial momentum of the block?
kg m/s
Tries 0/2 What is the Initial Kinetic Energy of the block?
J
Tries 0/2 What is the change in momentum of the block?
Kg m/s
Tries 0/2 What is the final momentum of the block?
kg m/s
Tries 0/2 What is the final velocity of the block?
m/s
Tries 0/2 What is the final Kinetic Energy of the block?
J
The main answer will provide a concise summary of the calculations and results for each question.
The initial momentum of the block is 15 kg m/s.The initial kinetic energy of the block is 22.5 J.The change in momentum of the block is 18 kg m/s.What is the initial momentum of the block?The initial momentum of an object is given by the formula P = mv, where P represents momentum, m is the mass, and v is the velocity. In this case, the mass of the block is 5 kg, and the initial velocity is 3 m/s.
Plugging these values into the formula, the initial momentum is calculated as 5 kg * 3 m/s = 15 kg m/s.
The initial kinetic energy of an object is given by the formula KE = (1/2)mv^2, where KE represents kinetic energy, m is the mass, and v is the velocity. Using the given values of mass (5 kg) and velocity (3 m/s), the initial kinetic energy is calculated as (1/2) * 5 kg * (3 m/s)^2 = 22.5 J.
The change in momentum of an object is equal to the force applied multiplied by the time interval during which the force acts, according to the equation ΔP = Ft. In this case, a force of 9 N is applied for 2 seconds. The change in momentum is calculated as 9 N * 2 s = 18 kg m/s.
Learn more about initial momentum
brainly.com/question/12450698
#SPJ11
At the LHC, we could obtain √s = 13TeV by colliding -head on- 2 protons : (a) What is the energy of a single proton beam ? (b) If we need to achieve the same √s but for fixed target experiment,
The energy of a single proton beam. E= 1.5033 × 10^-10 J. The energy of each incoming proton beam in a fixed-target experiment to achieve the same √s as in LHC is 12.062 GeV.
(a) The Large Hadron Collider (LHC) is a particle accelerator located in Geneva, Switzerland. At the LHC, two proton beams have collided to achieve a collision energy of √s = 13TeV. To determine the energy of a single proton beam and the energy required for a fixed-target experiment, we can use the following equations: $E = √{p^2c^2 + m^2c^4} where E is the energy, p is the momentum, c is the speed of light, and m is the rest mass of the particle.
To find the energy of a single proton beam, we need to know the momentum of a single proton. We can assume that each proton beam has the same momentum since they are identical. The momentum of a single proton can be found using the equation p = mv, where m is the mass of the proton and v is its velocity. The velocity of a proton beam is close to the speed of light, so we can assume that its kinetic energy is much greater than its rest energy. Therefore, we can use the equation E = pc to find the energy of a single proton beam. The momentum of a proton can be found using the formula p = mv, where m is the mass of a proton and v is its velocity. The velocity of a proton beam is close to the speed of light, so we can assume that its kinetic energy is much greater than its rest energy. Therefore, we can use the equation E = pc to find the energy of a single proton beam. E = pc = (1.6726 × 10^-27 kg)(2.998 × 10^8 m/s) = 1.5033 × 10^-10 J
(b) To achieve the same √s but for a fixed-target experiment, we need to calculate the energy required for the incoming proton beam. In a fixed-target experiment, the energy of the incoming proton beam is equal to the center-of-mass energy of the colliding particles. Thus, we can use the same equation to find the energy of a single proton beam, then multiply by two since there are two incoming protons in the collision. E = 2√(s/2)^2 - (mpc^2)^2 = 2√(13TeV/2)^2 - (0.938GeV)^2c^2 = 6.5TeV × 2 - 0.938GeV = 12.062GeV
Therefore, the energy of each incoming proton beam in a fixed-target experiment to achieve the same √s as in LHC is 12.062 GeV.
Learn more about Large Hadron Collider: https://brainly.com/question/32478261
#SPJ11
Find the mass for each weight. 5. Fw=17.0 N 6. Fw=21.0lb 7. FW=12,000 N (8) Fw=25,000 N 9. Fw=6.7×1012 N 10. Fw=5.5×106lb 11. Find the weight of an 1150-kg automobile. 12. Find the weight of an 81.5-slug automobile. 13. Find the mass of a 2750−1 b automobile. 14. What is the mass of a 20,000−N truck? 15. What is the mass of a 7500−N trailer? (16) Find the mass of an 11,500-N automobile. 17. Find the weight of a 1350-kg automobile (a) on the earth and (b) on the moon. 18. Maria weighs 115lb on the earth. What are her (a) mass and (b) weight on the
The questions revolve around finding the mass and weight of various objects, including automobiles, trucks, trailers, and a person named Maria.
To find the mass for a weight of 17.0 N, we divide the weight by the acceleration due to gravity. Let's assume the acceleration due to gravity is approximately 9.8 m/s². Therefore, the mass would be 17.0 N / 9.8 m/s² = 1.73 kg.
To find the mass for a weight of 21.0 lb, we need to convert the weight to Newtons. Since 1 lb is equal to 4.448 N, the weight in Newtons would be 21.0 lb * 4.448 N/lb = 93.168 N. Now, we divide this weight by the acceleration due to gravity to obtain the mass: 93.168 N / 9.8 m/s^2 = 9.50 kg.
For a weight of 12,000 N, we divide it by the acceleration due to gravity: 12,000 N / 9.8 m/s² = 1,224.49 kg.
Similarly, for a weight of 25,000 N, the mass would be 25,000 N / 9.8 m/s² = 2,551.02 kg.
To find the mass for a weight of 6.7×10¹² N, we divide the weight by the acceleration due to gravity: 6.7×10^12 N / 9.8 m/s^2 = 6.84×10¹¹ kg.
For a weight of 5.5×10^6 lb, we convert it to Newtons: 5.5×10^6 lb * 4.448 N/lb = 2.44×10^7 N. Dividing this weight by the acceleration due to gravity, we get the mass: 2.44×10^7 N / 9.8 m/s^2 = 2.49×10^6 kg.
To find the weight of an 1150-kg automobile, we multiply the mass by the acceleration due to gravity. Assuming the acceleration due to gravity is 9.8 m/s^2, the weight would be 1150 kg * 9.8 m/s^2 = 11,270 N.
For an 81.5-slug automobile, we multiply the mass by the acceleration due to gravity. Since 1 slug is equal to 14.59 kg, the mass in kg would be 81.5 slug * 14.59 kg/slug = 1189.135 kg. Therefore, the weight would be 1189.135 kg * 9.8 m/s^2 = 11,652.15 N.
To find the mass of a 2750-lb automobile, we divide the weight by the acceleration due to gravity: 2750 lb * 4.448 N/lb / 9.8 m/s^2 = 1,239.29 kg.
For a 20,000-N truck, the mass is 20,000 N / 9.8 m/s^2 = 2,040.82 kg.
Similarly, for a 7500-N trailer, the mass is 7500 N / 9.8 m/s^2 = 765.31 kg.
Dividing the weight of an 11,500-N automobile by the acceleration due to gravity, we find the mass: 11,500 N / 9.8 m/s² = 1173.47 kg.
To find the weight of a 1350-kg automobile on Earth, we multiply the mass by the acceleration due to gravity: 1350 kg * 9.8 m/s^2 = 13,230 N. On the Moon, where the acceleration due to gravity is approximately 1/6th of that on Earth, the weight would be 1350 kg * (9.8 m/s² / 6) = 2,205 N.
Finally, to determine Maria's mass and weight, who weighs 115 lb on Earth, we convert her weight to Newtons: 115 lb * 4.448 N/lb = 511.12 N. Dividing this weight by the acceleration due to gravity, we find the mass: 511.12 N / 9.8 m/s² = 52.13 kg. Therefore, her mass is 52.13 kg and her weight remains 511.12 N.
To learn more about mass -
brainly.com/question/30129827
#SPJ11
Light with a wavelength of 655 nm (6.55 x 107 m) is incident upon a double slit with a
separation of 0.9 mm (9 x 10+ m). A screen is location 2.5 m from the double slit. (a) At what distance from the center of the screen will the first bright fringe beyond the center
fringe appear?
Given:
Wavelength of light = 655 nm
Separation between double slits = 0.9 mm = 9 x 10^-4 m
Distance of screen from double slits = 2.5 m
Find the distance from the center of the screen to the first bright fringe beyond the center fringe.
The distance between the central maximum and the next bright spot is given by:tanθ = y / L Where, y is the distance of the bright fringe from the central maximum, L is the distance from the double slits to the screen and θ is the angle between the central maximum and the bright fringe.
The bright fringes occur when the path difference between the two waves is equal to λ, 2λ, 3λ, ....nλ.The path difference between the two waves of the double-slit experiment is given by
d = Dsinθ Where D is the distance between the two slits, d is the path difference between the two waves and θ is the angle between the path difference and the line perpendicular to the double slit.
Using the relation between path difference and angle
θ = λ/d = λ/(Dsinθ)y = Ltanθ = L(λ/d) = Lλ/Dsinθ
Substituting the given values, we get:
y = 2.5 x 655 x 10^-9 / (9 x 10^-4) = 0.018 m = 1.8 cm.
Therefore, the first bright fringe beyond the center fringe will appear at a distance of 1.8 cm from the center of the screen.
#SPJ11
Learn more about distance and Wavelength https://brainly.com/question/25847009
You brake when driving too fast, so your car starts skidding. Y Part A Select the forces that act on the car. Check all that apply. □ A. Thrust, B. Kinetic friction force, C. Weight, D/ Normal for
When driving too fast, your car begins to skid when you apply the brakes. Kinetic friction and weight forces are the forces that act on the car when driving and braking. Thrust and normal force are not involved in the skidding of the car.
A skid occurs when the tire of a vehicle loses grip on the surface on which it is driving. As a result, the tire slides across the surface instead of turning, and the vehicle loses control. This is a difficult situation for drivers to control because the tire loses its ability to grip the road.
When a vehicle is driven too quickly, its momentum can cause it to skid. When the brakes are applied too abruptly or too hard, this can also cause the car to skid. When the driver has to make a sudden turn or maneuver, the car can also skid.
When driving too fast, your car begins to skid when you apply the brakes. Kinetic friction and weight forces are the forces that act on the car when driving and braking.
Thrust and normal force are not involved in the skidding of the car.Friction force is a force that resists motion when two surfaces come into contact.
In this instance, the force of kinetic friction acts against the forward momentum of the car. The force of gravity pulls the vehicle's weight towards the ground, providing additional traction, or resistance to skidding.
Learn more about Kinetic friction at: https://brainly.com/question/14111192
#SPJ11
:
(IN] w) p 20 19 18 17 16 15 14 13 12 11 10 3 -1 -2 0 1 1 2 3 4 AK The motion of a student in the hall 5 6 1. Describe the motion 2. Find the displacement in the north direction 3. Find the displacement in the south direction 4. Find the time it travelled north 7 t(s) 8 5. Find the time it travelled south 6. Find the total displacement 7. Find the total distance travelled 8. Find the total average velocity 9. Find the total average speed 10. At what instant did the object travelled the fastest? Explain. 11. At what time did the object travelled the slowest? Explain. 9 10 11 12 13
1. The motion of a student in the hall can be represented as follows: The student initially moves towards the north direction and reaches a maximum displacement of 5m. The student then turns back and moves towards the south direction and attains a maximum displacement of -2m.
The student then moves towards the north direction and attains a final displacement of 4m before coming to a stop.2. The displacement in the north direction can be calculated as follows:
Displacement = final position - initial position= 4 - 0 = 4mTherefore, the displacement in the north direction is 4m.
3. The displacement in the south direction can be calculated as follows: Displacement = final position - initial position= -2 - 5 = -7mTherefore, the displacement in the south direction is -7m.
4. The time it travelled north can be calculated as follows:
Time taken = final time - initial time= 8 - 0 = 8sTherefore, the time it travelled north is 8s.5.
To know more about maximum visit:
https://brainly.com/question/30693656
#SPJ11
(3) Write the expression for y as a function of x and t in Si units for a sinusoidal wave traveling along a rope in the negative x direction with the following characteristics: A = 3.75 cm, 1 - 90.0 cm, f = 5.00 Hz, and yo, t) = 0 at t = 0. (Use the following as necessary: x and t.) v - 0.0875 sin (6.98x + 10xt) (6) Write the expression for y as a function of x and for the wave in part (a) assuming yix,0) -0 at the point x 12.5 cm (Use the following us necessary: x and ) y - 0.0875 sin (6.98x + 10x7 - 87.25) X
The expression for the wave function when y(x=12.5 cm, t) = 0;
y(x,t) = 3.75 sin (6.98x - 31.4t + π)
(a)The general expression for a sinusoidal wave is represented as;
y(x,t) = A sin (kx - ωt + φ),
where;
A is the amplitude;
k is the wave number (k = 2π/λ);
λ is the wavelength;
ω is the angular frequency (ω = 2πf);
f is the frequency;φ is the phase constant;
andx and t are the position and time variables, respectively.Now, given;
A = 3.75 cm (Amplitude)
f = 5.00 Hz (Frequency)y(0,t) = 0 when t = 0.;
So, using the above formula and the given values, we get;
y(x,t) = 3.75 sin (6.98x - 31.4t)----(1)
This is the required expression for the wave function in Si unit, travelling along the negative direction of x-axis.
(b)From part (a), the required expression for the wave function is;
y(x,t) = 3.75 sin (6.98x - 31.4t) ----- (1)
Let the wave function be 0 when x = 12.5 cm.
Hence, substituting the values in equation (1), we have;
0 = 3.75 sin (6.98 × 12.5 - 31.4t);
⇒ sin (87.25 - 6.98x) = 0;
So, the above equation has solutions at any value of x that satisfies;
87.25 - 6.98x = nπ
where n is any integer. The smallest value of x that satisfies this equation occurs when n = 0;x = 12.5 cm
Therefore, the expression for the wave function when y(x=12.5 cm, t) = 0;y(x,t) = 3.75 sin (6.98x - 31.4t + π)----- (2)
This is the required expression for the wave function in Si unit, when y(x=12.5 cm, t) = 0, travelling along the negative direction of x-axis.
To know more about wave function visit:
https://brainly.com/question/32239960
#SPJ11
Determine the total impedance, phase angle, and rms current in an
LRC circuit
Determine the total impedance, phase angle, and rms current in an LRC circuit connected to a 10.0 kHz, 880 V (rms) source if L = 21.8 mH, R = 7.50 kn, and C= 6350 pF. NII Z 跖 | ΑΣΦ Submit Request
The total impedance (Z) is approximately 7.52 × [tex]10^3[/tex] Ω, the phase angle (θ) is approximately 0.179 radians, and the rms current (I) is approximately 0.117 A.
To determine the total impedance (Z), phase angle (θ), and rms current in an LRC circuit, we can use the following formulas:
1. Total Impedance (Z):
Z = √([tex]R^2 + (Xl - Xc)^2[/tex])
Where:
- R is the resistance in the circuit.
- Xl is the reactance of the inductor.
- Xc is the reactance of the capacitor.
2. Reactance of the Inductor (Xl):
Xl = 2πfL
Where:
- f is the frequency of the source.
- L is the inductance in the circuit.
3. Reactance of the Capacitor (Xc):
Xc = 1 / (2πfC)
Where:
- C is the capacitance in the circuit.
4. Phase Angle (θ):
θ = arctan((Xl - Xc) / R)
5. RMS Current (I):
I = V / Z
Where:
- V is the voltage of the source.
Given:
- Frequency (f) = 10.0 kHz
= 10,000 Hz
- Voltage (V) = 880 V (rms)
- Inductance (L) = 21.8 mH
= 21.8 × [tex]10^{-3}[/tex] H
- Resistance (R) = 7.50 kΩ
= 7.50 × [tex]10^3[/tex] Ω
- Capacitance (C) = 6350 pF
= 6350 ×[tex]10^{-12}[/tex] F
Now, let's substitute these values into the formulas:
1. Calculate Xl:
Xl = 2πfL = 2π × 10,000 × 21.8 × [tex]10^{-3}[/tex]≈ 1371.97 Ω
2. Calculate Xc:
Xc = 1 / (2πfC) = 1 / (2π × 10,000 × 6350 ×[tex]10^{-12}[/tex]) ≈ 250.33 Ω
3. Calculate Z:
Z = √([tex]R^2 + (Xl - Xc)^2[/tex])
= √(([tex]7.50 * 10^3)^2 + (1371.97 - 250.33)^2[/tex])
≈ 7.52 × [tex]10^3[/tex] Ω
4. Calculate θ:
θ = arctan((Xl - Xc) / R) = arctan((1371.97 - 250.33) / 7.50 × [tex]10^3[/tex])
≈ 0.179 radians
5. Calculate I:
I = V / Z = 880 / (7.52 × [tex]10^3[/tex]) ≈ 0.117 A (rms)
Therefore, in the LRC circuit connected to the 10.0 kHz, 880 V (rms) source, the total impedance (Z) is approximately 7.52 × [tex]10^3[/tex] Ω, the phase angle (θ) is approximately 0.179 radians, and the rms current (I) is approximately 0.117 A.
Learn more about LRC circuit, here:
https://brainly.com/question/17656439
#SPJ4
Energy needed in bringing three point charges (+2.0 Coulombs each) from infinity to the corners of an equilateral triangle of side 9.0 m is______
Energy needed to bring the three point charges from infinity to the corners of the equilateral triangle is 4.0 x 10^9 joules.
To calculate the energy needed to bring three point charges from infinity to the corners of an equilateral triangle, we can use the formula for the potential energy of point charges:
U = k * (q1 * q2) / r
Where U is the potential energy, k is the Coulomb's constant (approximately 9 x 10^9 N m^2/C^2), q1 and q2 are the charges, and r is the separation distance between the charges.
In this case, we have three charges of +2.0 Coulombs each, and they are placed at the corners of an equilateral triangle with a side length of 9.0 m.
The potential energy is the sum of the energies between each pair of charges. Since the charges are the same, the potential energy between each pair is positive.
Calculating the potential energy between each pair of charges:
U1 = k * (2.0 C * 2.0 C) / 9.0 m
U2 = k * (2.0 C * 2.0 C) / 9.0 m
U3 = k * (2.0 C * 2.0 C) / 9.0 m
The total potential energy is the sum of these individual energies:
U_total = U1 + U2 + U3
Substituting the values and performing the calculations, we get:
U_total = (9 x 10^9 N m^2/C^2) * (4.0 C^2) / 9.0 m
Simplifying the expression:
U_total = 4.0 x 10^9 N m
Therefore, the energy needed to bring the three point charges from infinity to the corners of the equilateral triangle is 4.0 x 10^9 joules.
Learn more about potential energy:
https://brainly.com/question/21175118
#SPJ11
A research Van de Graaff generator has a 3.70 m diameter metal sphere with a charge of 1.09 mC on it.
(a) What is the electric potential on the surface of the sphere?
V
(b) At what distance from its center is the potential 3.00 MV?
m
(c) An oxygen atom with three missing electrons is released near the surface of the Van de Graaff
The electric potential on the surface of the sphere is [tex]\( 5.34 \times 10^6 \)[/tex] V. at a distance of 3.22 m from the center of the sphere, the potential is 3.00 MV. the kinetic energy of the oxygen atom at the distance determined in part (b) is approximately [tex]\(1.06 \times 10^{-7}\) eV or \(1.69 \times 10^{-17}\) MeV[/tex].
(a) To find the electric potential on the surface of the sphere, we can use the equation for the electric potential of a uniformly charged sphere:
[tex]\[ V = \frac{KQ}{R} \][/tex]
where:
- [tex]\( V \)[/tex] is the electric potential,
- [tex]\( K \)[/tex] is the electrostatic constant [tex](\( K = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \))[/tex],
- [tex]\( Q \)[/tex] is the charge on the sphere,
- [tex]\( R \)[/tex] is the radius of the sphere.
Given that the diameter of the sphere is 3.70 m, the radius [tex]\( R \)[/tex] can be calculated as half of the diameter:
[tex]\[ R = \frac{3.70 \, \text{m}}{2} \\\\= 1.85 \, \text{m} \][/tex]
Substituting the values into the equation:
[tex]\[ V = \frac{(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2) \times (1.09 \times 10^{-3} \, \text{C})}{1.85 \, \text{m}} \][/tex]
Calculating the value:
[tex]\[ V = 5.34 \times 10^6 \, \text{V} \][/tex]
Therefore, the electric potential on the surface of the sphere is [tex]\( 5.34 \times 10^6 \)[/tex] V.
(b) To find the distance from the center of the sphere at which the potential is 3.00 MV, we can use the equation for electric potential:
[tex]\[ V = \frac{KQ}{r} \][/tex]
Rearranging the equation to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{KQ}{V} \][/tex]
Substituting the given values:
[tex]\[ r = \frac{(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2) \times (1.09 \times 10^{-3} \, \text{C})}{3.00 \times 10^6 \, \text{V}} \][/tex]
Calculating the value:
[tex]\[ r = 3.22 \, \text{m} \][/tex]
Therefore, at a distance of 3.22 m from the center of the sphere, the potential is 3.00 MV.
(c) To find the kinetic energy of the oxygen atom at the distance determined in part (b), we need to use the principle of conservation of energy. The initial electric potential energy is converted into kinetic energy as the oxygen atom moves away from the charged sphere.
The initial electric potential energy is given by:
[tex]\[ U_i = \frac{KQq}{r} \][/tex]
where:
- [tex]\( U_i \)[/tex] is the initial electric potential energy,
- [tex]\( K \)[/tex] is the electrostatic constant [tex](\( K = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \))[/tex],
- [tex]\( Q \)[/tex] is the charge on the sphere,
- [tex]\( q \)[/tex] is the charge of the oxygen atom,
- [tex]\( r \)[/tex] is the initial distance from the center of the sphere.
The final kinetic energy is given by:
[tex]\[ K_f = \frac{1}{2}mv^2 \][/tex]
where:
- [tex]\( K_f \)[/tex] is the final kinetic energy,
- [tex]\( m \)[/tex] is
the mass of the oxygen atom,
- [tex]\( v \)[/tex] is the final velocity of the oxygen atom.
According to the conservation of energy, we can equate the initial electric potential energy to the final kinetic energy:
[tex]\[ U_i = K_f \][/tex]
Substituting the values:
[tex]\[ \frac{KQq}{r} = \frac{1}{2}mv^2 \][/tex]
We can rearrange the equation to solve for [tex]\( v \)[/tex]:
[tex]\[ v = \sqrt{\frac{2KQq}{mr}} \][/tex]
Substituting the given values:
[tex]\[ v = \sqrt{\frac{2 \times (8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2) \times (1.09 \times 10^{-3} \, \text{C}) \times (3 \times 10^{-26} \, \text{kg})}{(3.22 \, \text{m})}} \][/tex]
Calculating the value:
[tex]\[ v = 6.84 \times 10^6 \, \text{m/s} \][/tex]
To convert the kinetic energy to MeV (mega-electron volts), we need to use the equation:
[tex]\[ K = \frac{1}{2}mv^2 \][/tex]
Converting the mass of the oxygen atom to electron volts (eV):
[tex]\[ m = (3 \times 10^{-26} \, \text{kg}) \times (1 \, \text{kg}^{-1}) \times (1.6 \times 10^{-19} \, \text{C/eV}) \\\\= 4.8 \times 10^{-26} \, \text{eV} \][/tex]
Substituting the values into the equation:
[tex]\[ K = \frac{1}{2} \times (4.8 \times 10^{-26} \, \text{eV}) \times (6.84 \times 10^6 \, \text{m/s})^2 \][/tex]
Calculating the value:
[tex]\[ K = 1.06 \times 10^{-7} \, \text{eV} \][/tex]
Therefore, the kinetic energy of the oxygen atom at the distance determined in part (b) is approximately [tex]\(1.06 \times 10^{-7}\) eV or \(1.69 \times 10^{-17}\) MeV[/tex].
Know more about kinetic energy:
https://brainly.com/question/999862
#SPJ4
The charge of the released oxygen atom is +4.8 × 10⁻¹⁹ C.
a) The electric potential on the surface of the sphere
The electric potential on the surface of the sphere is given by,V=kQ/r, radius r of the sphere = 1.85 m
Charge on the sphere, Q=1.09 mC = 1.09 × 10⁻³ C, Charge of electron, e = 1.6 × 10⁻¹⁹ C
Vacuum permittivity, k= 8.85 × 10⁻¹² C²N⁻¹m⁻²
Substituting the values in the formula, V=(kQ)/rV = 6.6 × 10⁹ V/m = 6.6 × 10⁶ V
(b) Distance from the center where the potential is 3.00 MV
The electric potential at distance r from the center of the sphere is given by,V=kQ/r
Since V = 3.00 MV= 3.0 × 10⁶ V Charge on the sphere, Q= 1.09 × 10⁻³ C = 1.09 mC
Distance from the center of the sphere = rWe know that V=kQ/r3.0 × 10⁶ = (8.85 × 10⁻¹² × 1.09 × 10⁻³)/rSolving for r, we get the distance from the center of the sphere, r= 2.92 m
(c) Charge of the released oxygen atom, The released oxygen atom has 3 missing electrons, which means it has a charge of +3e.Charge of electron, e= 1.6 × 10⁻¹⁹ C
Charge of an oxygen atom with 3 missing electrons = 3 × (1.6 × 10⁻¹⁹)
Charge of an oxygen atom with 3 missing electrons = 4.8 × 10⁻¹⁹ C.
Learn more about oxygen atom
https://brainly.com/question/12442489
#SPJ11
The average surface temperature of a planet is 292 K. Part A What is the frequency of the most intense radiation emitted by the planet into outer space?
The frequency of the most intense radiation emitted by the planet into outer space is 1.148 x 10^12 Hz
The answer to the first part of the question "The average surface temperature of a planet is 292 K" is given, and we need to determine the frequency of the most intense radiation emitted by the planet into outer space.
Frequency can be calculated using Wien's displacement law.
According to Wien's law, the frequency of the radiation emitted by a body is proportional to the temperature of the body.
The frequency of the most intense radiation emitted by the planet into outer space can be found using Wien's law.
The formula for Wien's law is:
λ_maxT = 2.898 x 10^-3,
whereλ_max is the wavelength of the peak frequency,T is the temperature of the planet in kelvin, and, 2.898 x 10^-3 is a constant.
The frequency of the most intense radiation emitted by the planet into outer space can be found using the relation:
c = fλ
c is the speed of light (3 x 10^8 m/s), f is the frequency of the radiation emitted by the planet, λ is the wavelength of the peak frequency
We can rearrange Wien's law to solve for the peak frequency:
f = c/λ_maxT
= c/(λ_max * 292)
Substitute the values and calculate:
f = (3 x 10^8 m/s)/(9.93 x 10^-7 m * 292)
= 1.148 x 10^12 Hz
Therefore, the frequency of the most intense radiation emitted by the planet into outer space is 1.148 x 10^12 Hz.
Let us know more about average surface temperature : https://brainly.com/question/29288703.
#SPJ11
The following point charges are placed on the x axis: 2uC at x = 20cm; -3uC at x =30cm; -4 uC at x = 40 cm. Find
a) the total electric field at x=0
b) the total potential at x=0
c) if another 2uC charge is placed at x=0, find the net force on it
a) The electric field at x = 0 is given by the sum of the electric fields due to all the charges at x = 0.
The electric field due to each charge at x = 0 can be calculated as follows:
Electric field, E = Kq/r²
Here, K = Coulomb's constant = 9 × 10^9 Nm²/C², q = charge on the point charge in Coulombs,
r = distance between the point charge and the point where the electric field is to be calculated.
Distance between the first point charge (2 μC) and x = 0 = 20 cm = 0.2 m.
The electric field due to the first point charge at x = 0 is
E_1 = Kq1/r1²
= (9 × 10^9)(2 × 10^-6)/0.2²N/C
= 90 N/C
Distance between the second point charge (-3 μC) and x = 0 = 30 cm = 0.3 m.
The electric field due to the second point charge at x = 0 is
E_2 = Kq_2/r_2²
= (9 × 10^9)(-3 × 10^-6)/0.3²N/C
= -90 N/C
Distance between the third point charge (-4 μC) and x = 0 = 40 cm = 0.4 m.
The electric field due to the third point charge at x = 0 is
E_3 = Kq_3/r_3²
= (9 × 10^9)(-4 × 10^-6)/0.4²N/C
= -90 N/C.
The total electric field at x = 0 is the sum of E_1, E_2, and E_3.
E = E_1 + E_2 + E_3 = 90 - 90 - 90 = -90 N/C
Putting a negative sign indicates that the direction of the electric field is opposite to the direction of the x-axis.
Hence, the direction of the electric field at x = 0 is opposite to the direction of the x-axis.
b) Potential at a point due to a point charge q at a distance r from the point is given by:V = Kq/r.
Therefore, potential at x = 0 due to each point charge can be calculated as follows:
Potential due to the first point charge at x = 0 is
V_1 = Kq_1/r_1 = (9 × 10^9)(2 × 10^-6)/0.2 J
V_1 = 90 V
Potential due to a second point charge at x = 0 is
V_2 = Kq_2/r_2 = (9 × 10^9)(-3 × 10^-6)/0.3 J
V_2 = -90 V
Potential due to a third point charge at x = 0 is
V_3 = Kq_3/r_3
= (9 × 10^9)(-4 × 10^-6)/0.4 J
V_3 = -90 V
The total potential at x = 0 is the sum of V_1, V_2, and V_3.
V = V_1 + V_2 + V_3 = 90 - 90 - 90 = -90 V
Putting a negative sign indicates that the potential is negative.
Hence, the total potential at x = 0 is -90 V.
c) When a 2 μC charge is placed at x = 0, the net force on it is given by the equation:F = qE
Where,F = force in Newtons, q = charge in Coulombs, E = electric field in N/C
From part (a), the electric field at x = 0 is -90 N/C.
Therefore, the net force on a 2 μC charge at x = 0 isF = qE = (2 × 10^-6)(-90) = -0.18 N
This means that the force is directed in the opposite direction to the direction of the electric field at x = 0.
#SPJ11
Learn more about electric field and net force https://brainly.com/question/19878202
Given an object distance of 12 cm and a lens with focal length
of magnitude 4 cm, what is the image distance for a concave lens?
Give your answers in cm.
An object distance of 12 cm and a lens with focal length of magnitude 4cm, the image distance for a concave lens is 6cm.
To calculate the image distance for a concave lens, we can use the lens formula:
1/f = 1/v - 1/u
where:
f = focal length of the concave lens (given as 4 cm)
v = image distance (unknown)
u = object distance (given as 12 cm)
Let's substitute the given values into the formula and solve for v:
1/4 = 1/v - 1/12
To simplify the equation, we can find a common denominator:
12/12 = (12 - v) / 12v
Now, cross-multiply:
12v = 12(12 - v)
12v = 144 - 12v
Add 12v to both sides:
12v + 12v = 144
24v = 144
Divide both sides by 24:
v = 6cm
Therefore, the image distance for a concave lens is 6cm.
To learn more about concave lens visit: https://brainly.com/question/2289939
#SPJ11
A 55-cm side length square coil has 100 turns. An initial uniform magnetic field of strength 13 mT is applied perpendicularly to the plane of the coil. Calculate the magnetic flux through the coil. If the field increases in strength from the initial value to 19 mT in 0.35 s, what average emf is induced in the coil?
The magnetic flux through the coil is 3.9325 *[tex]10^-3[/tex] Weber. he average emf induced in the coil is approximately 5.1857 Volts.
The average emf induced in the coil is approximately 5.1857 Volts. To calculate the magnetic flux through the coil, we can use the formula:
Φ = B * A
where Φ is the magnetic flux, B is the magnetic field strength, and A is the area of the coil.
Given:
Side length of the square coil (l) = 55 cm = 0.55 m
Number of turns in the coil (N) = 100
Initial magnetic field strength (B_initial) = 13 mT = 13 * 10^-3 T
Calculating the magnetic flux:
The area of a square coil is given by A = [tex]l^2.[/tex]
A = (0.55 [tex]m)^2[/tex] = 0.3025 [tex]m^2[/tex]
Now, we can calculate the magnetic flux Φ:
Φ = B_initial * A
= (13 * 10^-3 T) * (0.3025 [tex]m^2[/tex])
= 3.9325 *[tex]10^-3[/tex] Wb
Therefore, the magnetic flux through the coil is 3.9325 *[tex]10^-3[/tex] Weber.
Calculating the average emf induced in the coil:
To calculate the average emf induced in the coil, we can use Faraday's law of electromagnetic induction: emf_average = ΔΦ / Δt
where ΔΦ is the change in magnetic flux and Δt is the change in time.
Given:
Final magnetic field strength (B_final) = 19 mT = 19 * 10^-3 T
Change in time (Δt) = 0.35 s
To calculate ΔΦ, we need to find the final magnetic flux Φ_final:
Φ_final = B_final * A
= (19 * 10^-3 T) * (0.3025 m^2)
= 5.7475 * 10^-3 Wb
Now we can calculate the change in magnetic flux ΔΦ:
ΔΦ = Φ_final - Φ_initial
= 5.7475 * 10^-3 Wb - 3.9325 * [tex]10^-3[/tex] Wb
= 1.815 * 10^-3 Wb
Finally, we can calculate the average emf induced in the coil:
emf_average = ΔΦ / Δt
= (1.815 * [tex]10^-3[/tex] Wb) / (0.35 s)
= 5.1857 V
Therefore, the average emf induced in the coil is approximately 5.1857 Volts.
Learn more about magnetic flux here: brainly.com/question/1596988
#SPJ11
(a) An opaque cylindrical tank with an open top has a diameter of 2.90 m and is completely filled with water. When the afternoon sun reaches an angle of 30.5° above the horizon, sunlight ceases to illuminate any part of the bottom of the tank. How deep is the tank (in m)? m (b) What If? On winter solstice in Miami, the sun reaches a maximum altitude of 40.8° above the horizon. What would the depth of the tank have to be in m) for the sun not to illuminate the bottom of the tank on that day? m Need Help? Read it Master it
a) The depth of the tank is approximately 1.683 meters. b) On the winter solstice in Miami, the depth of the tank would need to be approximately 2.589 meters for the sun not to illuminate the bottom of the tank .
(a) In the given scenario, when the sunlight ceases to illuminate any part of the bottom of the tank, then it can be solved by following method,
The height of the tank is ='h', and the angle between the ground and the sunlight is = θ (30.5°). The radius of the tank is = 'r'.
Since the sunlight ceases to illuminate the bottom of the tank, the height 'h' will be equal to the radius 'r' of the tank. Therefore, the value of 'h should be found out.
The tangent of an angle is equal to the ratio of the opposite side to the adjacent side. In this case, the tangent of angle θ is equal to h/r:
tan(θ) = h/r
Substituting the given values: tan(30.5°) = h/2.9
To find 'h', one can rearrange the equation:
h = tan(30.5°) × 2.9
Calculating the value of 'h':
h ≈ 2.9 × tan(30.5°) ≈ 1.683 m
So, the depth of the tank is approximately 1.683 meters.
b) the sun reaches a maximum altitude of 40.8° above the horizon,
The angle θ is now 40.8°, and one need to find the depth 'h' required for the sun not to illuminate the bottom of the tank.
Using the same trigonometric relationship,
tan(θ) = h/r
Substituting the given values: tan(40.8°) = h/2.9
To find 'h', rearrange the equation:
h = tan(40.8°) ×2.9
Calculating the value of 'h':
h ≈ 2.9 × tan(40.8°) ≈ 2.589 m
Therefore, on the winter solstice in Miami, the depth of the tank would need to be approximately 2.589 meters for the sun not to illuminate the bottom of the tank.
Learn more about the tanget function to calculate height, angle here.
https://brainly.com/question/32229054
#SPJ4
3. Three polarizing plates whose planes are parallel are centered on a common axis. The directions of the transmission axes relative to the common vertical direction, as shown below. A linearly polarized beam of light with plane of polarization parallel to the vertical reference direction is incident from the left onto the first disk with intensity Ii =10.0 units (arbitrary). If when θ1=20.0∘,θ2=40.0∘, and θ3=60.0∘, then show that the transmitted intensity is about 6.89 units.
The transmitted intensity through the three polarizing plates is approximately 1.296 units.
To determine the transmitted intensity through the three polarizing plates, considering Malus's Law,
I = Ii × cos²(θ)
Where:
I: transmitted intensity
Ii: incident intensity
θ: angle between the transmission axis of the polarizer and the plane of polarization of the incident light.
Given,
Ii = 10.0 units
θ1 = 20.0°
θ2 = 40.0°
θ3 = 60.0°
Calculate the transmitted intensity through each plate:
I₁ = 10.0 × cos²(20.0°)
I₁ ≈ 10.0 × (0.9397)²
I₁ ≈ 8.821 units
I₂ = 8.821 ×cos²(40.0°)
I₂ ≈ 8.821 ×(0.7660)²
I₂ ≈ 5.184 units
I₃ = 5.184 × cos²(60.0°)
I₃ ≈ 5.184 × (0.5000)²
I₃ ≈ 1.296 units
Therefore, the transmitted intensity is 1.296 units.
To know more about Malus's Law, click here:
https://brainly.com/question/15554133
#SPJ4
A diffraction grating has 2100 lines per centimeter. At what angle will the first-order maximum be for 560-nm-wavelength green light?
The first-order maximum for 560-nm-wavelength green light will occur at an angle of approximately 15.05 degrees.
The angle at which the first-order maximum occurs for green light with a wavelength of 560 nm and a diffraction grating with 2100 lines per centimeter can be calculated using the formula for diffraction. The first-order maximum is given by the equation sin(θ) = λ / (d * m), where θ is the angle, λ is the wavelength, d is the grating spacing, and m is the order of the maximum.
We can use the formula sin(θ) = λ / (d * m), where θ is the angle, λ is the wavelength, d is the grating spacing, and m is the order of the maximum. In this case, we have a diffraction grating with 2100 lines per centimeter, which means that the grating spacing is given by d = 1 / (2100 lines/cm) = 0.000476 cm. The wavelength of green light is 560 nm, or 0.00056 cm.
Plugging these values into the formula and setting m = 1 for the first-order maximum, we can solve for θ: sin(θ) = 0.00056 cm / (0.000476 cm * 1). Taking the inverse sine of both sides, we find that θ ≈ 15.05 degrees. Therefore, the first-order maximum for 560-nm-wavelength green light will occur at an angle of approximately 15.05 degrees.
Learn more about diffraction click here:
brainly.com/question/12290582
#SPJ11
A rugby player passes the ball 8.00 m across the field, where it is caught at the same height as it left his hand. (a) At what angle was the ball thrown if its initial speed was 13.5 m/s, assuming that the smaller of the two possible angles was used? ° (b) What other angle gives the same range? ° (c) How long did this pass take? s
The angle at which the ball was thrown, the other angle that gives the same range, and the time taken for the pass, we consider the given information.
The initial speed of the ball, the distance it travels, and the fact that it is caught at the same height help us calculate these values using kinematic equations and trigonometry.
(a) The angle at which the ball was thrown, we can use the range formula for projectile motion. The range (R) is given as 8.00m, and the initial speed (v) is 13.5m/s. By rearranging the formula R = (v^2 * sin(2θ)) / g, where θ is the angle of projection and g is the acceleration due to gravity, we can solve for θ. Taking the smaller angle, we can calculate its value in degrees.
(b) The other angle that gives the same range, we use the fact that the range is the same for complementary angles. Since the smaller angle was used initially, the other angle would be 90 degrees minus the smaller angle.
(c) The time taken for the pass can be calculated using the horizontal distance and the initial speed of the ball. Since the ball was caught at the same height as it left the player's hand, we can ignore the vertical motion. The time (t) can be found using the formula t = d / v, where d is the horizontal distance and v is the initial speed.
By applying these calculations and equations, we can determine the angle at which the ball was thrown, the other angle that gives the same range, and the time taken for the pass.
To learn more about angle.
Click here:brainly.com/question/30952453
#SPJ11
Say we are at rest in a submarine in the ocean and a torpedo is
moving 40 m/s towards us and emitting a 50 Hz sound. Assuming a
perfect sonar reception system, what would the received frequency
in Hz
The received frequency would be approximately 55.74 Hz, higher than the emitted frequency, due to the Doppler effect caused by the torpedo moving towards the submarine.
The received frequency in Hz would be different from the emitted frequency due to the relative motion between the submarine and the torpedo. This effect is known as the Doppler effect.
In this scenario, since the torpedo is moving toward the submarine, the received frequency would be higher than the emitted frequency. The formula for calculating the Doppler effect in sound waves is given by:
Received frequency = Emitted frequency × (v + vr) / (v + vs)
Where:
"Emitted frequency" is the frequency emitted by the torpedo (50 Hz in this case).
"v" is the speed of sound in the medium (approximately 343 m/s in seawater).
"vr" is the velocity of the torpedo relative to the medium (40 m/s in this case, assuming it is moving directly towards the submarine).
"vs" is the velocity of the submarine relative to the medium (assumed to be at rest, so vs = 0).
Plugging in the values:
Received frequency = 50 Hz × (343 m/s + 40 m/s) / (343 m/s + 0 m/s)
Received frequency ≈ 55.74 Hz
Therefore, the received frequency in Hz would be approximately 55.74 Hz.
To learn more about frequency
https://brainly.com/question/254161
#SPJ11
A uniform 6m long and 600N beam rests on two supports. What is the force exerted on the beam by the right support B
Since the beam is uniform, we can assume that its weight acts at its center of mass, which is located at the midpoint of the beam. Therefore, the weight of the beam exerts a downward force of:
F = mg = (600 N)(9.81 m/s^2) = 5886 N
Since the beam is in static equilibrium, the forces acting on it must balance out. Let's first consider the horizontal forces. Since there are no external horizontal forces acting on the beam, the horizontal component of the force exerted by each support must be equal and opposite.
Let F_B be the force exerted by the right support B. Then, the force exerted by the left support A is also F_B, but in the opposite direction. Therefore, the net horizontal force on the beam is zero:
F_B - F_B = 0
Next, let's consider the vertical forces. The upward force exerted by each support must balance out the weight of the beam. Let N_A be the upward force exerted by the left support A and N_B be the upward force exerted by the right support B. Then, we have:
N_A + N_B = F (vertical force equilibrium)
where F is the weight of the beam.
Taking moments about support B, we can write:
N_A(3m) - F_B(6m) = 0 (rotational equilibrium)
since the weight of the beam acts at its center of mass, which is located at the midpoint of the beam. Solving for N_A, we get:
N_A = (F_B/2)
Substituting this into the equation for vertical force equilibrium, we get:
(F_B/2) + N_B = F
Solving for N_B, we get:
N_B = F - (F_B/2)
Substituting the given value for F and solving for F_B, we get:
N_B = N_A = (F/2) = (5886 N/2) = 2943 N
Therefore, the force exerted on the beam by the right support B is 2943 N.
Read more about Force:
brainly.com/question/18158308
#SPJ11