Value of side x in equilateral triangle is 6units.
Define equilateral triangleAn equilateral triangle is a type of triangle in which all three sides are of equal length. Equilateral triangles are also equiangular, meaning all three angles are of equal measure and are each 60 degrees. Because all three sides and angles are equal, equilateral triangles are symmetric about their center point, and their three medians, altitudes, and angle bisectors are all the same line.
Area of equilateral triangle = √3/4×a²
Given side length=12
So, area of equilateral triangle =√3/4×12²=62.35383
We know that
Area of triangle= ½×base×height
Given
Base=12
let height of triangle be=y
Area=½×12×y
62.35383=½×12×y
y=10.39
Using pythagoras' theorem,
c²=a²+b²
122=x²+10.392
x=√144-107.95
x=6
Hence, value of side x in equilateral triangle is 6units.
To know more about bisectors, visit:
https://brainly.com/question/28663444
#SPJ1
Lucie a effectue le calcul : 235×27=6 345
Donner le résulta des produit suivants.
a.23.5 ×27 b.23.5×2.7 c.2.35×0.27
Step-by-step explanation:
a. 23.5 × 27 = 634.5
b. 23.5 × 2.7 = 63.45
c. 2.35 × 0.27 = 0.6345
What is the volume of the triangular prism 2 Cm 3 cm 5 cm
Answer:
10cm
Step-by-step explanation:
V = (1/3)Length x width x height
V = (1/3)(2)(3)(5)
V = 10
Find the equation in standard form for the circle whose diameter has an endpoint at (-3, -4) and the origin.
4 x 2 + 4 y 2 - 12 x + 16 y = 0
4 x 2 + 4 y 2 + 12 x - 16 y = 0
4 x 2 + 4 y 2 - 12 x - 16 y = 0
4 x 2 + 4 y 2 + 12 x + 16 y = 0
[tex]4 x 2 + 4 y 2 - 12 x + 16 y = 0[/tex]
question in picture thank you
The correct equation is: 5/6 - 1/6 = 4/6
What you mean by term Number line ?A number line is a visual representation of numbers, ordered from left to right, where each point on the line corresponds to a number. The number line can be used to represent a wide range of numbers, including integers, fractions, decimals, and even negative numbers.
On a basic number line, 0 is located in the center, with positive numbers to the right and negative numbers to the left. The numbers are usually evenly spaced, with tick marks or dots indicating each value. The distance between any two points on the number line represents the difference between the corresponding numbers.
According to question Option D is correct
This is because starting at 5/6 and ending at 1/6 involves moving in the negative direction on the number line. To find the distance between these two points, we need to subtract the smaller number (1/6) from the larger number (5/6).
So, 5/6 - 1/6 = 4/6, which simplifies to 2/3. This means that the distance between 5/6 and 1/6 on the number line is 2/3.
Learn more about decimals here
https://brainly.com/question/30958821
#SPJ1
I would really need help with this asap!! Thank you!!!
The value of the functions are;
1. (f+g(x)) = -x² -x + 1, (f-g(x)) = -5x²+ 5x - 7
2. (f+g(x)) = 6x² - 4x + 6, (f-g(x)) = 2x² - 6x + 10
3. (f+g(x)) = 3√m . √4, (f-g(x)) = √m· √4
4. (f+g(x)) = 7x² - 3x - 5, (f-g(x)) = x² + 3x + 5
How to determine the functionsIt is important to note that functions are described as an equation or expression showing the relationship between two variables.
From the information given, we have the functions
1.
f(x) = -3x² + 2x - 3
g(x) = 2x² - 3x + 4
To add the functions, we have;
(f+g(x)) = -3x² + 2x - 3 + 2x² - 3x + 4
collect the like terms and add
(f+g(x)) = -x² -x + 1
(f-g(x)) = -3x² + 2x - 3 - 2x² +3x - 4
collect the like terms and subtract
(f-g(x)) = -5x²+ 5x - 7
2. f(x) = 4x² - 5x + 8
g(x) = 2x² + x - 2
(f+g(x)) = 4x² - 5x + 8 + 2x² + x - 2
(f+g(x)) = 6x² - 4x + 6
(f-g(x)) =4x² - 5x + 8 - 2x² - x +2
subtract the values
(f-g(x)) = 2x² - 6x + 10
3. f(x) = 2√m
g(x) = 3√4m
(f+g(x)) = 2√m + √m. √4
(f+g(x)) = 3√m . √4
(f-g(x)) = 2√m -√m. √4
(f-g(x)) = √m· √4
4. f(x) = √16x^4
g(x) = 3x² - 3x - 5
(f+g(x)) = √16x^4 + 3x² - 3x - 5
find the square root
(f+g(x)) = 7x² - 3x - 5
(f-g(x)) =√16x^4 - 3x² + 3x +5
(f-g(x)) = x² + 3x + 5
Learn about functions at: https://brainly.com/question/2328150
#SPJ1
Suppose that diastolic blood pressure readings of adult males have a bell-shaped distribution with a mean of 80 mmHg and a standard deviation of 9 mmHg. Using the empirical rule, what percentage of adult males have diastolic blood pressure readings that are less than 62 mmHg? Please do not round your answer.
95% of adult males have diastolic blood pressure readings that are at least 62 mmHg
The empirical rule states that for a normal distribution, nearly all of the data will fall within three standard deviations of the mean. The empirical rule is further illustrated below
68% of data falls within the first standard deviation from the mean.
95% fall within two standard deviations.
99.7% fall within three standard deviations.
From the information given, the mean is 80 mmHg and the standard deviation is 9 mmHg.
95% fall within two standard deviations.
2*9=`18
80 - 18 = 62 mmHg
Therefore, 95% of adult males have diastolic blood pressure readings that are at least 62 mmHg.
learn more about empirical rule
https://brainly.com/question/30573266
#SPJ1
50 points, need help asap !!
Therefore, the length of the side x is approximately 10.76.
What is right angle triangle?A right-angled triangle, also known as a right triangle, is a type of triangle that has one of its angles measuring exactly 90 degrees. The other two angles in a right triangle are acute angles, which means they are less than 90 degrees. The side opposite to the right angle is called the hypotenuse, and it is the longest side of the triangle. The other two sides of the right triangle are called legs, and they are adjacent to the right angle. The Pythagorean theorem, which states that the sum of the squares of the lengths of the legs of a right triangle is equal to the square of the length of its hypotenuse, is a fundamental concept in the study of right triangles. Right triangles have many practical applications in geometry, trigonometry, and physics.
In a right triangle, the sum of the measures of the two acute angles is always 90 degrees. Therefore, the third angle in this triangle is:
90 - 34 = 56 degrees
Now, we can use the trigonometric ratios to find the length of the side x.
We know that the tangent of an angle is equal to the length of the opposite side divided by the length of the adjacent side. Therefore:
[tex]tan(34) = x/18[/tex]
To solve for x, we can multiply both sides by 18:
[tex]18 tan(34) = x[/tex]
Using a calculator, we can find that:
18 tan (34) ≈ 10.76.
To know more about right angle triangle visit:
https://brainly.com/question/3770177
#SPJ1
Pls help me I give points
Step-by-step explanation:
(f○g)(x) = f(g(x))
so, we use the expression of g(x) as the "x" in f(x).
(f○g)(x) = f(g(x)) = 3(x² + 3) - 1 = 3x² + 9 - 1 = 3x² + 8
so,
(f○g)(3) = 3×3² + 8 = 27 + 8 = 35
check :
g(3) = 3² + 3 = 9 + 3 = 12
f(g(3)) = f(12) = 3×12 - 1 = 36 - 1 = 35
correct.
5/8 of the students at Hawthorne are only Los Angeles Lakers fans. Of those who do not like the Lakers, 3/4 like only the Los Angeles Clippers. a. What fraction of the entire school does not like the Lakers? b. What fraction of the entire school likes the Clippers? c. What fraction of the entire school does not like the Clippers? d. What fraction of the entire school does not like either the Lakers or the Clippers?
Part A: Fraction of all students who does not like Lakers = 3/8.
Part B: Fraction of all student who likes the Clippers = 9/32
Part C: Fraction of all student who does not likes the Clippers = 23/32.
Part D: Fraction of all student who does not likes either the Clippers or Lakers : 35/32
Define about the fraction:The components of a whole or group of items are represented by fractions. A fraction consists of two components. The numerator is the figure at the top of the line. It details the number of equal portions that were taken from the total or collection.
Given data:
Students who likes only Los Angeles Lakers = 5/8
Students who does not likes only Los Angeles Lakers: 1 - 5/8 = 3/8
From 3/8, only 3/4 like the Los Angeles Clippers.
= 3/8 * 3/4
= 9/32
Now,
Students who does not like the Los Angeles Clippers: 1 - 9/32 = 23/32.
Part A: Fraction of all students who does not like Lakers = 3/8
Part B: Fraction of all student who likes the Clippers = 9/32
Part C: Fraction of all student who does not likes the Clippers = 23/32.
Part D: Fraction of all student who does not likes either the Clippers or Lakers :
= 3/8 + 23/32
= 35/32
know more about the fraction
https://brainly.com/question/17220365
#SPJ1
A cash prize of $3800 is to be awarded at a fundraiser. If 1900 tickets are sold at $4 each, find the expected value. Round your answer to the nearest cent
The expected value is dollars.
Answer:
The total amount of money collected from selling tickets is: 1900 tickets × $4/ticket = $7,600 Since the cash prize is $3,800, the expected value can be calculated as follows: Expected value = (Probability of winning) × (Cash prize) + (Probability of losing) × (Cost of ticket) The probability of winning is 1 out of 1900 tickets sold, or 1/1900. The probability of losing is 1899/1900. So, the expected value is: (1/1900) × $3,800 + (1899/1900) × $4 = $1.999 Rounding to the nearest cent, the expected value is $2.00.
Number of rational zeros? g(x)=x^4-12x^3+2x-14
Answer:
1
Step-by-step explanation:
15. For the following testing problems, H_0: mu=10, H_a: mu not equal 10. n=25, sigma-3, sample mean xbar =11. The Z-value is: 3.41 1.67 0.105 1.15
H_0: mu=10, H_a: mu not equal 10. n=25, sigma-3, sample mean xbar =11. The Z-value is 1.67. Option B
How to calculate the Z-valueTo calculate the Z-value, we can use the formula:
Z = (xbar - mu) / (sigma / sqrt(n))
Where xbar is the sample mean, mu is the population mean, sigma is the population standard deviation, and n is the sample size.
Given:
H_0: mu = 10
H_a: mu ≠ 10
n = 25
sigma = 3
xbar = 11
We can plug in the values and get:
Z = (11 - 10) / (3 / sqrt(25))
Z = 5/3
Therefore, the Z-value is 1.67.
learn more about Z-value at https://brainly.com/question/25638875
#SPJ1
lolita started eating at 6:35 am and he finished at 7:03
Answer:
He took 28min eat.
Step-by-step explanation:
There are 10 red, 10 blue, 10 green, and 10 yellow marbles in bag. A student pulled a marble, recorded the color, and placed the marble back in the bag. The table below lists the frequency of each color pulled during the experiment after 40 trials.
Outcome Frequency
red 8
blue 12
green 9
yellow 11
Compare the theoretical probability and experimental probability of pulling a blue marble from the bag.
The theoretical probability, P(blue), is 25%, and the experimental probability is 30%.
The theoretical probability, P(blue), is 50%, and the experimental probability is 12%.
The theoretical probability, P(blue), is 50%, and the experimental probability is 30%.
The theoretical probability, P(blue), is 30%, and the experimental probability is 25%.
The correct answer is: The theoretical probability, P(blue), is 25%, and the experimental probability is 30%
What is theoretical probability?Theoretical probability is a concept in mathematics and statistics that refers to the likelihood or chance of an event occurring based on mathematical reasoning and analysis. Theoretical probability is calculated by dividing the number of favorable outcomes by the total number of possible outcomes in a given situation or experiment. It is based on the assumption that each outcome is equally likely to occur.
According to the given informationThe theoretical probability of pulling a blue marble from the bag is the number of blue marbles divided by the total number of marbles:
P(blue) = 10/40 = 1/4 = 25%
The experimental probability of pulling a blue marble from the bag is the number of times a blue marble was pulled divided by the total number of trials:
Experimental probability of pulling a blue marble = 12/40 = 3/10 = 30%
We can see that the experimental probability of pulling a blue marble is slightly higher than the theoretical probability, which is expected since this is based on a limited number of trials and chance variation can occur. However, as the number of trials increases, the experimental probability should converge to the theoretical probability.
The correct answer is: The theoretical probability, P(blue), is 25%, and the experimental probability is 30%.
To know more about theoretical probability visit:
brainly.com/question/31264350
#SPJ1
The Acme Company manufactures widgets. The distribution of widget weights is bell-shaped with a mean of 59 ounces and a standard deviation of 6 ounces. Using the Empirical Rule, answer the following questions. Suggestion: Sketch the distribution. a) 95% of the widget weights lie between and b) What percentage of the widget weights lie between 53 and 71 ounces? % c) What percentage of the widget weights lie above 41? %
The proportion of company breadth between the widget's weight of [tex]0.13[/tex]and its weight of [tex]71[/tex]ounce is [tex]81.53[/tex].
What does the term "company" mean?Meaning of the word "company" A company is a collective of individuals. The word "company" is frequent and has several distinct meanings, but they are all related to gatherings or interactions of people. The most frequent usage of the term "company" is to describe a firm.
a) Using the Empirical Rule, we know that for a bell-shaped distribution, approximately [tex]68[/tex]% of the data falls within one standard deviation of the mean, [tex]95[/tex]% falls within two standard deviations of the mean, and [tex]99.7[/tex]% falls within three standard deviations of the mean. Therefore, for this problem, we can say:
[tex]95[/tex]% of the widget weights lie between [tex](59-2(6)) = 47[/tex] and [tex](59+2(6)) = 71[/tex] ounces.
b) To find the percentage of widget weights that lie between 53 and 71 ounces, we need to find the z-scores for each value and use a standard normal distribution table to find the areas under the curve.
The z-score for [tex]53[/tex] ounces is: [tex](53-59)/6 = -1.00[/tex]
The z-score for [tex]71[/tex] ounces is: [tex](71-59)/6 = 2.00[/tex]
Using a standard normal distribution table, we can find the area to the left of each z-score:
The area to the left of [tex]z = -1.00[/tex] is 0.1587
The area to the left of [tex]z = 2.00[/tex] is 0.9772
To find the percentage of widget weights between [tex]53[/tex] and [tex]71[/tex] ounces, we can subtract the area to the left of [tex]z = -1.00[/tex] from the area to the left of [tex]z = 2.00[/tex] and multiply by [tex]100[/tex]:
Percentage [tex]= (0.9772 - 0.1587) * 100 = 81.85[/tex]%
Therefore, approximately [tex]81.85[/tex]% of the widget weights lie between 53 and [tex]71[/tex] ounces.
c) To find the percentage of widget weights that lie above [tex]41[/tex] ounces, we need to find the z-score for [tex]41[/tex] and use a standard normal distribution table to find the area to the right of the z-score.
The z-score for 41 ounces is: [tex](41-59)/6 = -3.00[/tex]
Using a standard normal distribution table, we can find the area to the right of [tex]z = -3.00[/tex]:
The area to the right of [tex]z = -3.00[/tex] is [tex]0.0013[/tex]
To find the percentage of widget weights above [tex]41[/tex]ounces, we can multiply the area to the right of [tex]z = -3.00[/tex] by [tex]100[/tex]:
Percentage [tex]= 0.0013 * 100 = 0.13[/tex]%
Therefore, approximately [tex]0.13[/tex] % of the widget weights lie above [tex]41[/tex]ounces.
To know more about company visit:
https://brainly.com/question/13057876
#SPJ1
Between the widget's weight of 0.13 and its weight in ounces, there is an 68 % company breadth.
What do you mean by the term percentage?Percentage is a way of expressing a quantity or value as a fraction of 100. It is denoted by the symbol %, which means "per cent" or "out of 100"
a) Using the Empirical Rule, we know that for a normal distribution, approximately 68% of the data falls within one standard deviation of the mean, approximately 95% of the data falls within two standard deviations of mean, and approximately 99.7% of the data falls within three standard deviations of mean.
Since the mean weight of the widgets is 59 ounces and the standard deviation is 6 ounces, we can use the Empirical Rule to determine that:
Approximately 68% of the widget weights lie between 53 and 65 ounces (one standard deviation below and above the mean).
Approximately 95% of widget weights lie between 47 and 71 ounces.
Approximately 99.7% of widget weights lie between 41 and 77 ounces.
b) To find the percentage of widget weights that lie between 53 and 71 ounces, we can use the Empirical Rule and subtract the percentage of widget weights that lie outside of this range from 100%.
we can estimate that approximately 68% of the widget weights lie between 53 and 71 ounces.
Therefore, the percentage of widget weights that lie between 53 and 71 ounces is approximately 68%.
c) To find the percentage of widget weights that lie above 41 ounces, we can use the Empirical Rule and subtract the percentage of widget weights that lie within three standard deviations below the mean from 100%.
Therefore, the percentage of widget weights that lie above 41 ounces is approximately:
100% - 99.7% = 0.3%
So, approximately 0.3% of the widget weights lie above 41 ounces.
To know more about standard deviations visit:
https://brainly.com/question/14580345
#SPJ1
A line has a slope of 1 and passes through the point (
–
2,5). Write its equation in slope-intercept form.
Write your answer using integers, proper fractions, and improper fractions in simplest form.
Answer:
y = x + 7
Step-by-step explanation:
The equation of a line in slope-intercept form is y = mx + b, where m is the slope of the line and b is the y-intercept. We are given that the slope of the line is 1, so we can substitute m = 1 into the equation:
y = 1x + bWe also know that the line passes through the point (-2, 5), so we can substitute x = -2 and y = 5 into the equation and solve for b:
5 = 1(-2) + b5 = -2 + bb = 7Therefore, the equation of the line in slope-intercept form is:
y = x + 7
This is the final answer, written in slope-intercept form using integers.Answer:
The Equation of the Line is : y = x + 7
Step-by-step explanation:
Equation of the Line in Slope-Intercept Form is y = mx + b
where m is the Slope and b is the y-intercept
since the slope (m) = 1 , Substitute by m = 1 in the above equation
Then the Equation will be y = x + b
Since the line passes through point ( -2 , 5 ) , Then y = 5 when x = - 2
Substitute , Then 5 = -2 + b
Then b = 5 + 2 =7
So the Equation will be y = x + 7
Hope this is Helpful
which one of the equations below could be used as a line of best fit to approximate the data in the scatter plot?
There are many tools available to calculate the line of best fit, including Excel, R, and Python. These tools provide the best equation that approximates the data
To determine which equation could be used as a line of best fit to approximate the data in a scatter plot, we need to look for the equation that closely follows the general trend of the data. The line of best fit is the straight line that best represents the data on the graph.
One common method for finding the line of best fit is through linear regression analysis. This involves calculating the slope and intercept of the line that best fits the data. The equation for a line is y = mx + b, where m is the slope and b is the y-intercept.
In general, the equation that could be used as a line of best fit depends on the data on the scatter plot. However, we can determine the best equation by looking at the trend of the data. If the data shows a positive trend, we need to choose an equation with a positive slope. If the data shows a negative trend, we need to choose an equation with a negative slope.
To determine the equation of the line of best fit for a specific scatter plot, we need to use regression analysis. and allows us to make predictions based on the data.
To learn more about : Python
https://brainly.com/question/30196201
#SPJ11
Topic: Break even (1)
Crystal Clear is concerned about the recent rise in the price of aluminium - the metal from
which the business make the frames for its greenhouses. This price rise has meant that the
firm's variable costs have risen from £60 to £100 per small greenhouse. Fixed costs and the
selling price per unit however, have remained unchanged.
Q3
Activity: Calculate:
a) the percentage change in the firm's variable costs (give your answer to two decimal places)
b) the new number of Crystal Clear's smallest greenhouses that would need to be sold per
month for the business to break even
our workings:
Answer:
a) the percentage change in the firm's variable costs is 66.67%.
b) Crystal Clear would need to sell 200 of its smallest greenhouses per month to break even.
Step-by-step explanation:
a) The percentage change in variable costs can be calculated using the formula:
((New Value - Old Value) / Old Value) * 100%
Substituting the values, we get:
((£100 - £60) / £60) * 100% = 66.67%
Therefore, the percentage change in the firm's variable costs is 66.67%.
b) The break-even point is the point at which the total revenue equals total costs. The total cost is the sum of fixed costs and variable costs.
Let's assume that the fixed costs for Crystal Clear are £10,000 per month. Then, the total cost can be calculated as:
Total Cost = Fixed Cost + (Variable Cost per unit * Number of units)
We can rearrange this formula to find the number of units:
Number of units = (Fixed Cost + Total Cost) / Variable Cost per unit
At the break-even point, the total revenue equals the total cost. Let's assume that the selling price per unit is £150. Then, the break-even point can be calculated as:
Total Revenue = Total Cost
Number of units * Selling Price per unit = Fixed Cost + (Variable Cost per unit * Number of units)
Number of units * £150 = £10,000 + (£100 * Number of units)
Number of units * (£150 - £100) = £10,000
Number of units = £10,000 / £50
Number of units = 200
Therefore, Crystal Clear would need to sell 200 of its smallest greenhouses per month to break even.
(p^2n^1/2)^0
√ p^5n^4 equivalent to p^18n^6 √p?
The two expressions are not equivalent.
To simplify the expression (p^2n^1/2)^0 √ p^5n^4, we first need to understand the properties of exponents and radicals.
Recall that any number raised to the power of zero is equal to 1, so (p^2n^1/2)^0 = 1.
Next, we can simplify the radical term by multiplying the exponents inside and outside the radical:
√ p^5n^4 =
(p^5n^4)^(1/2)
= p^(5/2)n^(4/2)
= p^(5/2)n^2
Combining this result with the previous step, we have:
(p^2n^1/2)^0 √ p^5n^4
= 1 * p^(5/2)n^2
= p^(5/2)n^2
This is not equivalent to p^18n^6 √p. In fact, p^(5/2)n^2 cannot be simplified any further without additional information about the expression. ,
To lern more about : expressions
https://brainly.com/question/1859113
#SPJ11
Find the length of line AB.
Answer:
21
Step-by-step explanation:
You want the length of segment AB, given similar triangles AEB and ADC with AE=14, ED=12, and BC=18.
Similar trianglesCorresponding sides (or segments) of similar triangles are proportional:
AB/AE = BC/ED
AB = AE·BC/ED = 14·18/12 = 14·3/2
AB = 21
5. Kelly's dad is working with her to create a
budget for her part-time job. He would like her
to follow the percentages below. Complete the
table to determine how much money Kelly will
be able to give, save, and spend if she makes
$800 per month.
Answer:
he get 100$ in day time u can understand
Answer:
You can save money by putting aside part of your income on a regular basis or by putting aside extra income, or by reducing your expenses.
Step-by-step explanation:
Kelly spending per month on different working fields are shown in attachment!
The dog shelter has Labradors, Terriers, and Golden Retrievers available for adoption. If P(Labrador) = 50%, interpret the likelihood of randomly selecting a Labrador from the shelter.
Likely
Unlikely
Equally likely and unlikely
This value is not possible to represent probability of a chance event.
Answer:
The answer is C unlikely and likely
Step-by-step explain
the is 50% chance of getting likely or unlikely
Answer:
Step-by-step explanation:
A 50% probabilty is interpreted as being equally ikely and unlikely.
Learning Task 3 : Solve the problem. Provide an illustration if necessary. ( 3 points each)
1.The length of o a rectangle is 12 cm and its width is 2 cm less than ¾ of its length. Find the
area of a rectangle .
2.A circular clock with a circumference of 88 cm, is mounted on the wall. How much area of
the wall did it occupy ( Use : π = 22/7 ).
3. The length of a rectangle is 52 cm and its perimeter is 200 cm . What is the area of the rectangle?
Step-by-step explanation:
1. 84 cm^2
2. 616 cm^2
3. 2496 cm^2
Given:
A triangle
l (length) = 12 cm
w (width) is 2 cm less than 3/4 of its length
Find: A (area) - ?
First, let's find the width of the rectangle according to the given information:
[tex]w = (\frac{3}{4} \times 12) - 2 = 9 - 2 = 7 \: cm[/tex]
Now, we can find the area:
[tex]a = w \times l[/tex]
.
2. Given:
A circular clock
C (circumference) = 88 cm
π = 22/7
Find: A (area) - ?
[tex]c = 2\pi \times r[/tex]
First, let's find the radius of the clock:
[tex]2 \times \frac{22}{7} \times r = 88[/tex]
[tex] \frac{44}{7} \times r = 88[/tex]
Multiply both sides of the equation by 7 to eliminate the fraction:
[tex]44r =616[/tex]
Divide both parts of the equation by 44 to make r the subject:
[tex]r = 14[/tex]
Now, we can find the area:
[tex]a = \pi {r}^{2} [/tex]
[tex]a = \frac{22}{7} \times {14}^{2} = 616 \: {cm}^{2} [/tex]
.
3. Given:
A rectangle
l (length) = 52 cm
P = 200 cm
Find: A (area) - ?
First, let's find the width of the rectangle (the perimeter is equal to the sum of all side lengths):
P = 2l + 2w
2w = P - 2l
2w = 200 - 2 × 52
2w = 96 / : 2
w = 48 cm
Now, we can find the area:
A = w × l
A = 48 × 52 = 2496 cm^2
I need help on these anybody?
The labelled parts of the circle include:
Center - CRadius - C, EDiameter - B, EChord - E, DSecant - A, BTangent - A, ECentral Angle - ∠CDBInscribed Angle - ∠BEFMinor Arc - BDMajor Arc - BEDWhat is a secant and an inscribed angle of a circle?A secant of a circle is a line that intersects the circle in two distinct points. In other words, a secant is a line that cuts through a circle. The length of a secant segment between the two points of intersection with the circle is called the length of the secant.
An inscribed angle is the angle formed in the interior of a circle by the intersection of two chords on the circle.
Find out more on parts of a circle here: https://brainly.com/question/29788136
#SPJ1
Image transcribed:
CIRCLES ESCAPE Challenge
Directions A circle is given to the left. Parts of this circle are partially named below. Complete the names by dragging and placing the letters over the empty spaces. Though there could be more than one answer, each letter tile can only be used once
Center
Radius
Diameter
Chord
Secant
Tangent
Central Angle
Inscribed Angle
Minor Arc
Major Arc
I am lost this question. Please help!
Answer:
3p^3
pq
There is probably more
Step-by-step explanation:
Given ∆ABC below where AC = 26 and m∠C = 52°, determine the value of x.
Enter your answer as a decimal rounded to the nearest tenth (one decimal place)
x represents a length, we can discard the negative sοlutiοn and cοnclude that x ≈ 15.7.
What is triangle?A triangle is a three-sided pοlygοn with three angles. It is a fundamental geοmetric shape and is οften used in geοmetry and trigοnοmetry.
Using the Law οf Cοsines:
c² = a² + b² - 2ab cοs(C)
where c is the side οppοsite angle C, a and b are the οther twο sides, and C is the angle between sides a and b.
Substituting the knοwn values:
26² = x² + (x+7)² - 2x(x+7) cοs(52°)
Simplifying and sοlving fοr x:
676 = x² + x² + 14x + 49 - 2x² cοs(52°) - 14x cοs(52°)
676 = 2x² - 14x cοs(52°) + 49
2x² - 14x cοs(52°) - 627 = 0
Using the quadratic fοrmula:
[tex]x = [14 cos(52^\circ) \± \sqrt{((14 cos(52^\circ))}^2 - 4(2)(-627))] / (2(2))[/tex]
x ≈ 15.7 οr x ≈ -21.6
Since x represents a length, we can discard the negative sοlutiοn and cοnclude that x ≈ 15.7.
To learn more about triangle from the given link:
https://brainly.com/question/2773823
#SPJ1
Pls help me
If ABCD is a parallelogram, what is the length of BD?
The value of length BD in the given parallelogram is 10 units.
What is parallelogram?A quadrilateral having two sets of parallel sides is referred to as a parallelogram. In other words, opposing sides and angles are congruent and parallel. There are numerous crucial characteristics of parallelograms, including:
A parallelogram's opposing sides are congruent.
A parallelogram's opposing angles are congruent.
The parallelogram's subsequent angles are additional (add up to 180 degrees).
A parallelogram's diagonals cut each other in half (i.e. they intersect at their midpoints).
According to the properties of parallelogram the diagonals of a parallelogram bisect each other.
Thus, BE = ED
Given BE = 5
Thus, ED = 5.
Now, the value of BD = BE + ED = 5 + 5 = 10
Hence, the value of BD in the given parallelogram is 10 units.
Learn more about parallelogram here:
https://brainly.com/question/29147156
#SPJ1
Suppose the weights of sumo wrestlers are normally distributed with a mean of 330lbs and a standard deviation of 15lbs. An up and coming competitor wants to defeat wrestlers whose weights are in the top 10%. What is the minimum weight of the sumo wrestlers at the highest weight of the league? Round your answer to the nearest whole number, if necessary.
Answer: To find the weight of the sumo wrestlers at the highest 10%, we need to find the z-score that corresponds to the top 10% of the distribution.
Using a standard normal table or a calculator, we can find that the z-score that corresponds to the top 10% is approximately 1.28.
Next, we can use the formula for a z-score to find the weight that corresponds to this z-score:
z = (x - mu) / sigma
where z is the z-score, x is the weight we want to find, mu is the mean weight, and sigma is the standard deviation.
Substituting in the values we know, we get:
1.28 = (x - 330) / 15
Solving for x, we get:
x = 1.28(15) + 330 = 349.2
Rounding to the nearest whole number, the minimum weight of the sumo wrestlers at the highest weight of the league is 349 lbs.
Step-by-step explanation:
7. Manoj and his younger sister Sandhya had their birthday yesterday i.e. Saturday, 15 th February, 2003. They were both born on Saturday. The sum of their ages is 23. Find their dates of birth.
Answer:
to find the date of birth from the age, you need to subtract the number of years and days from the current date. In this case, the current date is 15 February 2003. The sum of their ages is 23, which means that Manoj and Sandhya have a difference of 23 years between their dates of birth. Since they were both born on Saturday, their dates of birth must be on the same day of the month. Therefore, we can assume that Manoj was born on 15 February 1980 and Sandhya was born on 15 February 2003. This is one possible solution, but there may be other solutions depending on the leap years and calendar changes.
Answer:
The dates of birth of Manoj and Sandhya are February 15th, 1981 and February 15th, 1979 respectively.
Step-by-step explanation:
Let's use a system of equations to solve the problem.
Let M be Manoj's age and S be Sandhya's age. We know that their ages sum up to 23, so:
M + S = 23
We also know that they were both born on a Saturday, which means their birthdays fall on the same day of the week. In 2003, February 15th was a Saturday, so we can assume that they were born on February 15th in different years. Let's represent the year of Manoj's birth as M_year and the year of Sandhya's birth as S_year.
Since they were both born on a Saturday, we know that the year of Manoj's birth plus his age (M_year + M) must have the same remainder when divided by 7 as the year of Sandhya's birth plus her age (S_year + S). In other words:
(M_year + M) mod 7 = (S_year + S) mod 7
We can simplify this equation by subtracting M from both sides and then substituting 23 - S for M:
(M_year + (23 - S)) mod 7 = (S_year + S) mod 7
Now we have two equations with two unknowns. We can solve for M_year and S_year by guessing values for S and then checking if there are integers M and S_year that satisfy both equations. We know that M and S must be positive integers and that their sum is 23. Here are a few guesses:
If S = 1, then M = 22 and the equation becomes:
(M_year + 22) mod 7 = (S_year + 1) mod 7
This simplifies to:
M_year mod 7 = (S_year + 6) mod 7
There are no integers M_year and S_year that satisfy this equation, since the two sides always have different remainders when divided by 7.
If S = 2, then M = 21 and the equation becomes:
(M_year + 21) mod 7 = (S_year + 2) mod 7
This simplifies to:
M_year mod 7 = (S_year + 5) mod 7
The only pair of integers that satisfies this equation is M_year = 2 and S_year = 4.
Therefore, Manoj was born on February 15th, 1981 and Sandhya was born on February 15th, 1979.
So the dates of birth of Manoj and Sandhya are February 15th, 1981 and February 15th, 1979 respectively.
A 25% orange juice drink is mixed with a 100% orange juice drink. The function f(x) = (4)(1.0)+z(0.25)
models the
4+z
concentration of orange juice in the drink after a gallons of the 25% drink are added to 4 gallons of pure juice.
What will be the concentration of orange juice in the drink if 2 gallons of 25% drink are added? Give the answer as a percent
but do not include the percent sign (%).
To solve the problem, we need to use the given function f(x) = 4 + z(0.25) where x is the amount of 25% orange juice drink added and z is the amount of 100% orange juice drink added.
We know that initially 4 gallons of pure juice are present. So, the total amount of juice in the mixture is 4 + x gallons.
When we add 2 gallons of 25% orange juice drink, x = 2 and z = 0. So, using the function f(x), we get:
f(2) = 4 + z(0.25)
= 4 + 0(0.25)
= 4
Therefore, the concentration of orange juice in the drink after adding 2 gallons of 25% orange juice drink is 4%, expressed as a percent but without the percent sign.
Answer: 4