Use the IVT to show there is at least one real solution for the
equation 2sinx-1=cosx.

Answers

Answer 1

To show that there is at least one real solution for the equation 2sin(x) - 1 = cos(x), we can use the Intermediate Value Theorem (IVT).

Let's define a function f(x) = 2sin(x) - 1 - cos(x). We want to show that there exists a value c in the real numbers such that f(c) = 0.

First, we need to find two values a and b such that f(a) and f(b) have opposite signs. This will guarantee the existence of a root according to the IVT.

Let's evaluate f(x) at a = 0 and b = π/2:

f(0) = 2sin(0) - 1 - cos(0) = -1 - 1 = -2

f(π/2) = 2sin(π/2) - 1 - cos(π/2) = 2 - 1 = 1

Since f(0) = -2 < 0 and f(π/2) = 1 > 0, we have f(a) < 0 and f(b) > 0, respectively.

Now, since f(x) is continuous between a = 0 and b = π/2 (since sine and cosine are continuous functions), the IVT guarantees that there exists at least one value c in the interval (0, π/2) such that f(c) = 0.

Therefore, the equation 2sin(x) - 1 = cos(x) has at least one real solution in the interval (0, π/2).

Visit here to learn more about Intermediate Value Theorem (IVT):

brainly.com/question/31715741

#SPJ11


Related Questions

please show work and label
answer clear
Pr. #2) For what value(s) of a is < f(x) =)={ ***+16 , 12a + continuous at every a?

Answers

The value(s) of a that makes function  f(x) = { 3x+16, x<2 ; 12a, x>=2 } continuous at every point is a=11/6.

For a function to be continuous at every point, the left-hand limit and right-hand limit of the function must exist and be equal at every point.

In this case, we have:

f(x) = {

      3x+16, x<2

      12a, x>=2

     }

For x<2, the limit of f(x) as x approaches 2 from the left is:

lim (x→2-) f(x) = lim (x→2-) (3x+16)

                = 22

For x>=2, the limit of f(x) as x approaches 2 from the right is:

lim (x→2+) f(x) = lim (x→2+) (12a)

                = 12a

Therefore, in order for f(x) to be continuous at x=2, we must have:

22 = 12a

Solving for a, we get:

a = 11/6

Therefore, the value of a that makes f(x) = { 3x+16, x<2 ; 12a, x>=2 } continuous at every point is a=11/6.

To know more about function refer here:

https://brainly.com/question/5975436#

#SPJ11

4. Answer the following: a. A cylindrical tank with radius 10 cm is being filled with water at a rate of 3 cm³/min. How fast is the height of the water increasing? (Hint, for a cylinder V = πr²h) b

Answers

a. The height of the water in the cylindrical tank is increasing at a rate of 0.03 cm/min.

The rate at which the height of the water is increasing can be determined by differentiating the formula for the volume of a cylinder with respect to time. The volume of a cylinder is given by V = πr²h, where V represents the volume, r is the radius of the base, and h is the height of the cylinder. Differentiating this equation with respect to time gives us dV/dt = πr²(dh/dt), where dV/dt represents the rate of change of volume with respect to time, and dh/dt represents the rate at which the height is changing. We are given dV/dt = 3 cm³/min and r = 10 cm. Substituting these values into the equation, we can solve for dh/dt: 3 = π(10)²(dh/dt). Simplifying further, we get dh/dt = 3/(π(10)²) ≈ 0.03 cm/min. Therefore, the height of the water is increasing at a rate of 0.03 cm/min.

In summary, the height of the water in the cylindrical tank is increasing at a rate of 0.03 cm/min. This can be determined by differentiating the formula for the volume of a cylinder and substituting the given values. The rate at which the height is changing, dh/dt, can be calculated as 0.03 cm/min.

To learn more about cylindrical tank visit:

brainly.com/question/30395778

#SPJ11

Evaluate the integral. (Use C for the constant of integration.) x + 11 / x2 + 4x + 8 dx

Answers

The integral of (x + 11) / (x^2 + 4x + 8) dx can be evaluated using partial fraction decomposition. The answer is  ln(|x^2 + 4x + 8|) + 2arctan[(x + 2) / √6] + C.

The integral of (x + 11) / (x^2 + 4x + 8) dx is equal to ln(|x^2 + 4x + 8|) + 2arctan[(x + 2) / √6] + C, where C is the constant of integration.

To explain the answer in more detail, we start by completing the square in the denominator. The quadratic expression x^2 + 4x + 8 can be rewritten as (x + 2)^2 + 4. We can then decompose the fraction using partial fractions. We express the given rational function as (A(x + 2) + B) / ((x + 2)^2 + 4), where A and B are constants to be determined.

By equating the numerators and simplifying, we find A = 1 and B = 10. Now we can rewrite the integral as the sum of two simpler integrals: ∫(1 / ((x + 2)^2 + 4)) dx + ∫(10 / ((x + 2)^2 + 4)) dx.

The first integral is a standard integral that gives us the arctan term: arctan((x + 2) / 2). The second integral requires a substitution, u = x + 2, which leads to ∫(10 / (u^2 + 4)) du = 10 * ∫(1 / (u^2 + 4)) du = 10 * (1 / 2) * arctan(u / 2).

Substituting back u = x + 2, we get 10 * (1 / 2) * arctan((x + 2) / 2) = 5arctan((x + 2) / 2). Combining the two integrals and adding the constant of integration, we obtain the final result: ln(|x^2 + 4x + 8|) + 2arctan[(x + 2) / √6] + C.

Learn more about partial fraction decomposition here:

https://brainly.com/question/30401234

#SPJ11








2. Determine the convergence or divergence of the sequence {a}. If the sequence converges, find its limit. an = 1+(-1)" 3" A 33 +36

Answers

To determine the convergence or divergence of the sequence {a}, we need to analyze the behavior of the terms as n approaches infinity.

The given sequence is defined as an = 1 + (-1)^n * 3^(3n + 36).

Let's consider the terms of the sequence for different values of n:

For n = 1, a1 = 1 + (-1)^1 * 3^(3*1 + 36) = 1 - 3^39.

For n = 2, a2 = 1 + (-1)^2 * 3^(3*2 + 36) = 1 + 3^42.

It is clear that the terms of the sequence alternate between a value slightly less than 1 and a value significantly greater than 1. As n increases, the terms do not approach a specific value but oscillate between two distinct values. Therefore, the sequence {a} does not converge.

Since the sequence does not converge, we cannot find a specific limit for it.

Learn more about convergence or divergence here: brainly.com/question/31974020

#SPJ11

Find lower and upper bounds for the area between the x-axis and the graph of f(x) = √x + 3 over the interval [ - 2, 0] = by calculating right-endpoint and left-endpoint Riemann sums with 4 subinterv

Answers

The lower bound for the area between the x-axis and the graph of f(x) = [tex]\sqrt{x+3}[/tex] over the interval [-2, 0] is approximately 0.984 and the upper bound is approximately 2.608.

By dividing the interval [-2, 0] into 4 equal subintervals, with a width of 0.5 each, we can calculate the left-endpoint and right-endpoint Riemann sums to estimate the area.

For the left-endpoint Riemann sum, we evaluate the function [tex]\sqrt{x+3}[/tex] at the left endpoints of each subinterval and calculate the area of the corresponding rectangles. Summing up these areas yields the lower bound for the area.

For the right-endpoint Riemann sum, we evaluate the function [tex]\sqrt{x+3}[/tex] at the right endpoints of each subinterval and calculate the area of the corresponding rectangles. Summing up these areas provides the upper bound for the area.

By performing the calculations, the lower bound for the area is approximately 0.984 and the upper bound is approximately 2.608. These values give us a range within which the actual area between the x-axis and the curve lies.

Learn more about bound here:

https://brainly.com/question/2506656

#SPJ11

Anyone know this question?

Answers

Regarding function g & f of (x), it is understood that we must see that we are given the value of (1) for the x-value.

Laying out the problem at hand, it is simply asking to find y if x is one.

By doing so, we can verify that the coordinates, if we follow the x-value, will bring us to the y-value of 3 (1,3), where the two arrows intersect.

Thus, the final answer of this problem will be three, as f and g of (x) relate to an identical point when x = 1.

(5 points) 7. Integrate G(x, y, z) = xyz over the cone F(r, 6) = (r cos 0, r sin 0,r), where 0

Answers

The triple integral becomes ∫∫∫ G(x, y, z) dV = ∫[0 to 2π] ∫[0 to 6] ∫[0 to r] (r cos θ)(r sin θ)(r) dz dr dθ with value 0

To integrate the function G(x, y, z) = xyz over the cone F(r, θ) = (r cos θ, r sin θ, r), where θ ranges from 0 to 2π and r ranges from 0 to 6, we need to set up the triple integral in cylindrical coordinates.

The limits of integration for θ are from 0 to 2π, as given.

For the limits of integration for r, we need to consider the shape of the cone. It starts from the origin (0, 0, 0) and extends up to a height of 6. At each value of θ, the radius r varies from 0 to the height at that θ. Since the height is given by r = 6, the limits of integration for r are from 0 to 6.

Therefore, the triple integral becomes:

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] ∫[0 to 6] ∫[0 to r] (r cos θ)(r sin θ)(r) dz dr dθ

Simplifying:

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] ∫[0 to 6] ∫[0 to r] r^3 cos θ sin θ dz dr dθ

Integrating with respect to z gives:

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] ∫[0 to 6] r^3 cos θ sin θ z |[0 to r] dr dθ

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] ∫[0 to 6] r^4 cos θ sin θ r dr dθ

Integrating with respect to r gives:

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] [1/5 r^5 cos θ sin θ] |[0 to 6] dθ

∫∫∫ G(x, y, z) dV = ∫[0 to 2π] (1/5)(6^5) cos θ sin θ dθ

∫∫∫ G(x, y, z) dV = (1/5)(7776) ∫[0 to 2π] cos θ sin θ dθ

Using the double angle formula for sin 2θ, we have:

∫∫∫ G(x, y, z) dV = (1/5)(7776) ∫[0 to 2π] (1/2) sin 2θ dθ

∫∫∫ G(x, y, z) dV = (1/10)(7776) [-cos 2θ] |[0 to 2π]

∫∫∫ G(x, y, z) dV = (1/10)(7776) [-(cos 4π - cos 0)]

Since cos 4π = cos 0 = 1, we have:

∫∫∫ G(x, y, z) dV = (1/10)(7776) [-(1 - 1)]

∫∫∫ G(x, y, z) dV = 0

Therefore, the value of the integral ∫∫∫ G(x, y, z) dV over the given cone F(r, θ) = (r cos θ, r sin θ, r) is 0.

Learn more about integral at https://brainly.com/question/31329577

#SPJ11

Use the definition of Taylor series to find the first three nonzero terms of the Taylor series (centered at c) for the function f. f(x)=4tan(x), c=8π

Answers

[tex]f(x) = 4tan(8\pi) + 4sec^2(8\pi)(x - 8\pi) + 8sec^2(8\pi)tan(8\pi)(x - 8\pi)^2/2![/tex]

This expression represents the first three nonzero terms of the Taylor series expansion for f(x) = 4tan(x) centered at c = 8π.

What is the trigonometric ratio?

the trigonometric functions are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others.

To find the first three nonzero terms of the Taylor series for the function f(x) = 4tan(x) centered at c = 8π, we can use the definition of the Taylor series expansion.

The general formula for the Taylor series expansion of a function f(x) centered at c is:

[tex]f(x) = f(c) + f'(c)(x - c)/1! + f''(c)(x - c)^2/2! + f'''(c)(x - c)^3/3! + ...[/tex]

Let's begin by calculating the first three nonzero terms for the given function.

Step 1: Evaluate f(c):

f(8π) = 4tan(8π)

Step 2: Calculate f'(x):

f'(x) = d/dx(4tan(x))

= 4sec²(x)

Step 3: Evaluate f'(c):

f'(8π) = 4sec²(8π)

Step 4: Calculate f''(x):

f''(x) = d/dx(4sec²(x))

= 8sec²(x)tan(x)

Step 5: Evaluate f''(c):

f''(8π) = 8sec²(8π)tan(8π)

Step 6: Calculate f'''(x):

f'''(x) = d/dx(8sec²(x)tan(x))

= 8sec⁴(x) + 16sec²(x)tan²(x)

Step 7: Evaluate f'''(c):

f'''(8π) = 8sec⁴(8π) + 16sec²(8π)tan²(8π)

Now we can write the first three nonzero terms of the Taylor series expansion for f(x) centered at c = 8π:

f(x) ≈ f(8π) + f'(8π)(x - 8π)/1! + f''(8π)(x - 8π)²/2!

Simplifying further,

Hence, [tex]f(x) = 4tan(8\pi) + 4sec^2(8\pi)(x - 8\pi) + 8sec^2(8\pi)tan(8\pi)(x - 8\pi)^2/2![/tex]

This expression represents the first three nonzero terms of the Taylor series expansion for f(x) = 4tan(x) centered at c = 8π.

To learn more about the trigonometric ratio visit:

https://brainly.com/question/13729598

#SPJ4

8 Sº f(x)da - ' [ f(a)dx = ° f(a)dx si 3 a where a = and b =

Answers

The given equation represents the Fundamental Theorem of Calculus, which provides a fundamental connection between the definite integral and the antiderivative of a function.

The given expression represents the equation of the Fundamental Theorem of Calculus, stating that the definite integral of a function f(x) with respect to x over the interval [a, b] is equal to the antiderivative of f(x) evaluated at b minus the antiderivative of f(x) evaluated at a. This theorem allows us to calculate definite integrals by evaluating the antiderivative of the integrand function at the endpoints. The Fundamental Theorem of Calculus relates the definite integral of a function to its antiderivative. The equation can be written as:

∫[a, b] f(x) dx = F(b) - F(a)

where F(x) is the antiderivative (or indefinite integral) of f(x).

The left-hand side of the equation represents the definite integral of f(x) with respect to x over the interval [a, b]. It calculates the net area under the curve of the function f(x) between the x-values a and b. The right-hand side of the equation involves evaluating the antiderivative of f(x) at the endpoints b and a, respectively. This is done by finding the antiderivative of f(x) and plugging in the values b and a. Subtracting the value of F(a) from F(b) gives us the net change in the antiderivative over the interval [a, b]. The equation essentially states that the net change in the antiderivative of f(x) over the interval [a, b] is equal to the area under the curve of f(x) over that same interval.

Learn more about Fundamental Theorem of Calculus here:

https://brainly.com/question/30761130

#SPJ11

A bouncy ball is dropped such that the height of its first bounce is 4.5 feet and each
successive bounce is 73% of the previous bounce's height. What would be the height
of the 10th bounce of the ball? Round to the nearest tenth (if necessary).

Answers

Answer:The height of the 10th bounce of the ball would be approximately 0.5 feet.

Step-by-step explanation:

13. Evaluate and give a final mare answer (A) 2 (G WC tan

Answers

To evaluate the expression 2 * (tan(G) - tan(C)), we need the specific values for angles G and C. Without those values, we cannot provide a numerical answer.

The expression 2 * (tan(G) - tan(C)) involves the tangent function and requires specific values for angles G and C to calculate a numerical result.

The tangent function, denoted as tan(x), represents the ratio of the sine to the cosine of an angle. However, without knowing the specific values of G and C, we cannot determine the exact values of tan(G) and tan(C) or their difference.

To evaluate the expression, substitute the known values of G and C into the expression 2 * (tan(G) - tan(C)) and use a calculator to compute the result. The final answer will depend on the specific values of the angles G and C.

Learn more about tangent function here:

https://brainly.com/question/28994024

#SPJ11

this month, the number of visitors to the local art museum was 3000. the museum curator estimates that over the next 6 months, the number of visitors to the museum will increase 4% per month. which function models the number of visitors to the museum t months from now?

Answers

The number of visitors to the local art museum is expected to increase by 4% per month over the next 6 months. A function that models the number of visitors to the museum "t" months from now can be represented by the equation: N(t) = 3000 * [tex](1 + 0.04)^t.[/tex]

To model the number of visitors to the museum "t" months from now, we need to account for the 4% increase in visitors each month. We start with the initial number of visitors, which is given as 3000.

To calculate the number of visitors after 1 month, we multiply the initial number of visitors (3000) by (1 + 0.04), which represents a 4% increase. This gives us 3000 * (1 + 0.04) = 3120.

Similarly, to calculate the number of visitors after 2 months, we multiply the previous number of visitors (3120) by (1 + 0.04) again. This process continues for each month, with each month's number of visitors being 4% greater than the previous month.

Therefore, the function that models the number of visitors to the museum "t" months from now is N(t) = 3000 * (1 + 0.04)^t, where N(t) represents the number of visitors and t represents the number of months from the current time.

Learn more about function here:

https://brainly.com/question/31062578

#SPJ11

Help me with this question!

Answers

Among the given functions three will form exponential graph and two will form linear curve.

1)

The temperature outside cools by 1.5° each hour.

Let the temperature be 50°.

Then it will depreciate in the manner,

50° , 48.5° , 47° , 45.5° , .......

Hence with the difference among them is constant it can be plotted in linear curve.

2)

The total rainfall increases by 0.15in each week.

So,

Let us assume Rainfall is 50in.

It will increase in the manner,

50 , 50.15. 50.30, ......

Hence with the difference among them is constant it can be plotted in linear curve.

3)

An investment loses 5% of its value each month.

Let us take the investment to be $100.

It will decrease in the manner,

$100 , $95, $90.25 , .....

Hence as the difference among them is not constant it can be plotted in exponential curve.

4)

The value of home appreciates 4% every year.

Let us take the value of home to be $100.

It will appreciate in the form,

$100 , $104 , $108.16, ......

Hence as the difference among them is not constant it can be plotted in exponential curve.

5)

The speed of bus as it stops along its route.

The speed of bus will not remain constant throughout the route and can be plotted in exponential curve.

Know more about Curve,

https://brainly.com/question/2890194

#SPJ1

A garden is designed so that 4/9 of the area is grass and the rest is decking. In terms of area, what is the ratio of grass to decking in its simplest form?

Answers

The ratio of grass to decking in terms of area, in its simplest form, is 4:5.

In the garden, 4/9 of the area is covered with grass, and the rest is decking. To find the ratio of grass to decking in terms of area, we can express it as a fraction.

Let's denote the area covered with grass as G and the area covered with decking as D.

The given information states that 4/9 of the area is grass, so we have:

G = (4/9) * Total area

Since the remaining area is covered with decking, we can express it as:

D = Total area - G

To simplify the ratio of grass to decking in terms of area, we can divide both G and D by the total area:

G/Total area = (4/9) * Total area / Total area

G/Total area = 4/9

Similarly,

D/Total area = (Total area - G)/Total area

D/Total area = (9/9) - (4/9)

D/Total area = 5/9

Therefore, the ratio is 4:5.

Learn more about ratio here:

https://brainly.com/question/30242286

#SPJ11

Identifying Quadrilaterals

Answers

The shapes that matches the characteristics of this quadrilateral are;

Rectangle RhombusSquare

What is a quadrilateral?

A quadrilateral is a four-sided polygon, having four edges and four corners.

A quadrilateral is a closed shape and a type of polygon that has four sides, four vertices and four angles.

From the given diagram of the quadrilateral we can conclude the following;

The quadrilateral has equal sidesThe opposite angles of the quadrilateral are equal

The shapes that matches the characteristics of this quadrilateral are;

Rectangle

Rhombus

Square

Learn more about quadrilateral here: https://brainly.com/question/27991573

#SPJ1

In response to an attack of 10 missiles, 500 antiballistic missiles are launched. The missile targets of the antiballistic missiles are independent, and each antiballstic missile is equally likely to go towards any of the target missiles. If each antiballistic missile independently hits its target with probability .1, use the Poisson paradigm to approximate the probability that all missiles are hit.

Answers

Using the Poisson paradigm, the probability that all 10 missiles are hit is approximately 0.0000001016.

To inexact the likelihood that every one of the 10 rockets are hit, we can utilize the Poisson worldview. When events are rare and independent, the Poisson distribution is frequently used to model the number of events occurring in a fixed time or space.

We can think of each missile strike as an independent event in this scenario, with a 0.1 chance of succeeding (hitting the target). We should characterize X as the quantity of hits among the 10 rockets.

Since the likelihood of hitting a rocket is 0.1, the likelihood of not hitting a rocket is 0.9. Thusly, the likelihood of every one of the 10 rockets being hit can be determined as:

P(X = 10) = (0.1)10  0.00000001 This probability is extremely low, and directly calculating it may require a lot of computing power. However, the Poisson distribution enables us to approximate this probability in accordance with the Poisson paradigm.

The average number of events in a given interval in the Poisson distribution is  (lambda). For our situation, λ would be the normal number of hits among the 10 rockets.

The probability of having all ten missiles hit can be approximated using the Poisson distribution as follows: = (number of trials) * (probability of success) = 10 * 0.1 = 1.

P(X = 10) ≈ e^(-λ) * (λ^10) / 10!

where e is the numerical steady around equivalent to 2.71828 and 10! is the ten-factor factorial.

P(X = 10) ≈ e^(-1) * (1^10) / 10!

P(X = 10) = 0.367879 * 1 / (3628800) P(X = 10) = 0.0000001016 According to the Poisson model, the likelihood of hitting all ten missiles is about 0.0000001016.

To know more about probability refer to

https://brainly.com/question/31828911

#SPJ11

Given forecast errors of 4, 8, and -3, what is the mean absolute deviation?
Select one:
a. 15
b. 5
c. None of the above
d. 3
e. 9

Answers

the mean absolute deviation (MAD) is 5.

To find the mean absolute deviation (MAD), we need to calculate the average of the absolute values of the forecast errors.

The given forecast errors are 4, 8, and -3.

Step 1: Calculate the absolute values of the forecast errors:

|4| = 4

|8| = 8

|-3| = 3

Step 2: Find the average of the absolute values:

(MAD) = (4 + 8 + 3) / 3 = 15 / 3 = 5.

The correct answer is:

b. 5.

what is deviation?

Deviation refers to the difference or divergence between a value and a reference point or expected value. It is a measure of how far individual data points vary from the average or central value.

In statistics, deviation is often used to quantify the dispersion or spread of a dataset. There are two commonly used measures of deviation: absolute deviation and squared deviation.

To know more about deviation visit:

brainly.com/question/31835352

#SPJ11

x² + y²-15x+8y +50= 5x-6; area​

Answers

The area of the circle is approximately 188.5 square units

We are given that;

The equation x² + y²-15x+8y +50= 5x-6

Now,

To solve the equation X² + y²-15x+8y +50= 5x-6, we can use the following steps:

Rearrange the equation to get X² - 20x + y² + 8y + 56 = 0

Complete the squares for both x and y terms

X² - 20x + y² + 8y + 56 = (X - 10)² - 100 + (y + 4)² - 16 + 56

Simplify the equation

(X - 10)² + (y + 4)² = 60

Compare with the standard form of a circle equation

(X - h)² + (y - k)² = r²

Identify the center and radius of the circle

Center: (h, k) = (10, -4)

Radius: r = √60

The area of a circle is given by the formula A = πr²1, where r is the radius of the circle. Using this formula, we can find the area of the circle as follows:

A = πr²

A = π(√60)²

A = π(60)

A ≈ 188.5 square units

Therefore, by the equation the answer will be 188.5 square units.

To learn more about equations :

brainly.com/question/16763389

#SPJ1

on a rainy days, joe is late to work with probability 0.3; on non- rainy days, he is late with probability 0.1. with probability 0.7 it will rain tomorrow. i). (3 points) find the probability joe is early tomorrow. ii). (4 points) given that joe was early, what is the conditional probability that it rained? 4. (6 points) there are 3 coins in a box. one is two-headed coin, another is a fair coin, and the third is biased coin that comes up heads 75 percent of the time. when one of the 3 coins is selected at random and flipped, it shows heads. what is the probability that it was the two-headed coin?

Answers

(a) The probability that Joe is early tomorrow is 0.76

(b) The conditional probability that it rained is 0.644

What is the probability?

A probability of an occurrence is a number in science that shows how likely the event is to occur. It is expressed as a number between 0 and 1, or as a percentage between 0% and 100% in percentage notation. The higher the likelihood, the more probable the event will occur.

Here, we have

Given: on a rainy day, Joe is late to work with a probability of 0.3; on non-rainy days, he is late with a probability of 0.1. with a probability of 0.7, it will rain tomorrow.

(a) We need to find the probability that Joe is early tomorrow.

The solution is,

A = the event that the rainy day.

[tex]A^{c}[/tex] = the event that the nonrainy day

E = the event that Joe is early to work

[tex]E^{c}[/tex] = the event that Joe is late to work

P([tex]E^{c}[/tex]| A) = 0.3

P(  [tex]E^{c} | A^{c}[/tex]) = 0.1

P(A) = 0.7

P([tex]A^{c}[/tex]) = 1 - P(A) = 1 - 0.7 = 0.3

The probability that Joe is early tomorrow will be,

P(E) = P(E|A)P(A)  + P([tex]E^{c}[/tex]| A) P([tex]A^{c}[/tex])

P(E) = (1 -P([tex]E^{c}[/tex]| A))P(A) + (1 - P(  [tex]E^{c} | A^{c}[/tex])) P([tex]A^{c}[/tex])

= (1 - 0.3)0.7 + (1 - 0.1)0.3

= 0.76

(b) We need to find that s the conditional probability that it rained.

P(A|E) = P(E|A)P(A)/(P(E|A)P(A)+P(E|[tex]A^{c}[/tex])P([tex]A^{c}[/tex])

= (1 - P([tex]E^{c}[/tex]|A))P(A)/P(E)

= (1 - 0.3)(0.7)/0.76

= 0.644

To learn more about the probability from the given link

https://brainly.com/question/24756209

#SPJ4

(a) the probability is 0.76 that Joe is early tomorrow.

(b) The conditional probability that it rained is approximately 0.644

(a) To find the probability that Joe is early tomorrow, we need to consider two scenarios: a rainy day (A) and a non-rainy day (). Given that Joe is late to work with a probability of 0.3 on rainy days (P(| A)) and a probability of 0.1 on non-rainy days (P()), and the probability of rain tomorrow is 0.7 (P(A)), we can calculate the probability of not raining tomorrow as 1 - P(A) = 1 - 0.7 = 0.3.

Using the law of total probability, we can calculate the probability that Joe is early tomorrow as follows:

P(E) = P(E|A)P(A) + P(E|)P()

Substituting the known values:

P(E) = (1 - P(|A))P(A) + (1 - P())P()

Calculating further:

P(E) = (1 - 0.3)(0.7) + (1 - 0.1)(0.3)

P(E) = 0.7(0.7) + 0.9(0.3)

P(E) = 0.49 + 0.27

P(E) = 0.76

Therefore, the probability is 0.76 that Joe is early tomorrow.

(b) To find the conditional probability that it rained given that Joe is early (P(A|E)), we can use Bayes' theorem. We already know P(E|A) = 1 - P(|A) = 1 - 0.3 = 0.7, P(A) = 0.7, and P(E) = 0.76 from part (a).

Using Bayes' theorem, we have:

P(A|E) = P(E|A)P(A)/P(E)

Substituting the known values:

P(A|E) = (1 - P(|A))P(A)/P(E)

P(A|E) = (1 - 0.3)(0.7)/0.76

P(A|E) = 0.7(0.7)/0.76

P(A|E) = 0.49/0.76

P(A|E) ≈ 0.644

Therefore, the conditional probability that it rained given that Joe is early is approximately 0.644.

To know more about the probability click here:

https://brainly.com/question/32004014

#SPJ11

0 5.)(2pts) Find the general solution of the system X' = ( 3 -1 3 X + te3t Solution:

Answers

Answer:

The general solution becomes: x = C₁

y = -C₁t - C₂

z = C₁t + C₃

where C₁, C₂, and C₃ are arbitrary constants.

Step-by-step explanation:

To find the general solution of the system X' = (3 -1 3) X + te^(3t), where X is a vector and X' represents its derivative with respect to t, we can use the method of variation of parameters.

Let X = (x, y, z) be the vector of unknown functions. We can rewrite the system of equations as:

x' = 3x - y + 3z + te^(3t)

y' = -x

z' = 3x

The homogeneous part of the system is:

x' = 3x - y + 3z

y' = -x

z' = 3x

To find the solution to the homogeneous part, we assume x = e^(rt) as a trial solution. Substituting this into the equations, we get:

3e^(rt) - e^(rt) + 3e^(rt) = 0  (for x')

-e^(rt) = 0                   (for y')

3e^(rt) = 0                   (for z')

The second equation implies r = 0, and substituting this into the first and third equations, we get:

2e^(rt) = 0 (for x')

3e^(rt) = 0 (for z')

These equations indicate that e^(rt) cannot be zero, so r = 0 is not a solution.

To find the particular solution, we assume the variation of parameters:

x = u(t)e^(rt)

y = v(t)e^(rt)

z = w(t)e^(rt)

Differentiating the assumed solutions, we have:

x' = u'e^(rt) + ur'e^(rt)

y' = v'e^(rt) + vr'e^(rt)

z' = w'e^(rt) + wr'e^(rt)

Substituting these into the original system of equations, we get:

u'e^(rt) + ur'e^(rt) = 3u(t)e^(rt) - v(t)e^(rt) + 3w(t)e^(rt) + te^(3t)

v'e^(rt) + vr'e^(rt) = -u(t)e^(rt)

w'e^(rt) + wr'e^(rt) = 3u(t)e^(rt)

Matching the terms with e^(rt), we have:

u'e^(rt) = 0

v'e^(rt) = -u(t)e^(rt)

w'e^(rt) = 3u(t)e^(rt)

Integrating these equations, we find:

u(t) = C₁

v(t) = -C₁t - C₂

w(t) = C₁t + C₃

where C₁, C₂, and C₃ are constants of integration.

Finally, substituting these solutions back into the assumed form for x, y, and z, we obtain the general solution:

x = C₁e^(rt)

y = -C₁te^(rt) - C₂e^(rt)

z = C₁te^(rt) + C₃e^(rt)

In this case, r = 0, so the general solution becomes:

x = C₁

y = -C₁t - C₂

z = C₁t + C₃

where C₁, C₂, and C₃ are arbitrary constants.

Learn more about Vector:https://brainly.com/question/25705666

#SPJ11

Solve the initial value problem for r as a vector function of t. dr 9 Differential Equation: - di =ž(t+1) (t+1)1/2j+7e -1j+ ittk 1 -k t+1 Initial condition: r(0) = ) r(t) = (i+j+ (Ok

Answers

The solution to the given initial value problem vector function is: r(t) = (t + 1)^(3/2)i + 7e^(-t)j + (1/2)t²k

To solve the initial value problem, we integrate the given differential equation and apply the initial condition.

Integrating the differential equation, we have:

∫-di = ∫(t+1)^(1/2)j + 7e^(-t)j + ∫t²k dt

Simplifying, we get:

-r = (2/3)(t+1)^(3/2)j - 7e^(-t)j + (1/3)t³k + C

where C is the constant of integration.

Applying the initial condition r(0) = (i+j+k), we substitute t = 0 into the solution and equate it to the initial condition:

-(i+j+k) = (2/3)(0+1)^(3/2)j - 7e⁰j + (1/3)(0)³k + C

Simplifying further, we find:

C = -(2/3)j - 7j

Therefore, the solution to the initial value problem is:

r(t) = (t + 1)^(3/2)i + 7e^(-t)j + (1/2)t²k - (2/3)j - 7j

Simplifying the expression, we get:

r(t) = (t + 1)^(3/2)i - (20/3)j + (1/2)t²k

To know more about vector, refer here:

https://brainly.com/question/30195292#

#SPJ11

Given that lim (4x5)= 3, illustrate this definition by finding the largest values of & that correspond to & = 0.5, ε = 0.1, X→ 2 and & = 0.05. & = 0.5 8 ≤ ε = 0.1 8 ≤ ε = 8 ≤ 0.05

Answers

To illustrate the definition, we need to find the largest values of δ that correspond to specific values of ε.

If the limit of a function as x approaches a certain value is equal to a specific value, then for any positive ε (epsilon), there exists a positive δ (delta) such that if the distance between x and the given value is less than δ, the distance between the function value and the given limit is less than ε.

In this case, the given limit is lim (4x⁵) = 3.

By choosing specific values of ε and finding the corresponding values of δ, we can illustrate this definition.

For ε = 0.1, we want to find the largest δ such that if the distance between x and 2 is less than δ, the distance between (4x⁵) and 3 is less than 0.1.

For ε = 0.1, we have:

|4x⁵ - 3| < 0.1

Simplifying the inequality, we get:

-0.1 < 4x⁵ - 3 < 0.1

Now, we can solve for x:

-0.1 + 3 < 4x⁵ < 0.1 + 3

2.9 < 4x⁵ < 3.1

0.725 < x⁵ < 0.775

Taking the fifth root of the inequality, we have:

0.903 < x < 0.925

Therefore, for ε = 0.1, the largest δ that corresponds to this value is approximately 0.012.

We can follow a similar process for ε = 0.05 to find the largest δ that satisfies the condition. By substituting ε = 0.05 into the inequality, we can determine the range for x that satisfies the condition.

In this way, we can illustrate the definition of a limit by finding the largest values of δ that correspond to specific values of ε.

Learn more about inequality here:

https://brainly.com/question/20383699

#SPJ11

Find the derivative of the function at Po in the direction of A. f(x,y) = - 4xy – 3y?, Po(-6,1), A = - 4i +j (DA)(-6,1) (Type an exact answer, using radicals as needed.)

Answers

the derivative of the function at point P₀ in the direction of vector A is 34/√(17).

To find the derivative of the function at point P₀ in the direction of vector A, we need to calculate the directional derivative.

The directional derivative of a function f(x, y) in the direction of a vector A = ⟨a, b⟩ is given by the dot product of the gradient of f with the normalized vector A.

Let's calculate the gradient of f(x, y):

∇f(x, y) = ⟨∂f/∂x, ∂f/∂y⟩

Given that f(x, y) = -4xy - 3y², we can find the partial derivatives:

∂f/∂x = -4y

∂f/∂y = -4x - 6y

Now, let's evaluate the gradient at point P₀(-6, 1):

∇f(-6, 1) = ⟨-4(1), -4(-6) - 6(1)⟩

= ⟨-4, 24 - 6⟩

= ⟨-4, 18⟩

Next, we need to normalize the vector A = ⟨-4, 1⟩ by dividing it by its magnitude:

|A| = √((-4)² + 1²) = √(16 + 1) = √(17)

Normalized vector A: Ā = A / |A| = ⟨-4/√(17), 1/√(17)⟩

Finally, we compute the directional derivative:

Directional derivative at P₀ in the direction of A = ∇f(-6, 1) · Ā

= ⟨-4, 18⟩ · ⟨-4/√(17), 1/√(17)⟩

= (-4)(-4/√(17)) + (18)(1/√(17))

= 16/√(17) + 18/√(17)

= (16 + 18)/√(17)

= 34/√(17)

Therefore, the derivative of the function at point P₀ in the direction of vector A is 34/√(17).

Learn more about Derivative here

https://brainly.com/question/31402962

#SPJ4

Solve the initial value problem dx/dt = Ax with x(0) = xo. -1 -2 ^-[22²] *- A = = [3] x(t)

Answers

The solution to the initial value problem is :

[4e^(-t) + e^(-3t) - 3e^(-t) ^-[22²] *-2e^(-t); -2e^(-t) - e^(-3t) + 4e^(-t) ^-[22²] *-2e^(-t)] * [xo; yo]

To solve the initial value problem dx/dt = Ax with x(0) = xo, we need to first find the matrix A and then solve for x(t).
From the given information, we know that A = [-1 -2; ^-[22²] *-3 0] and x(0) = xo.
To solve for x(t), we can use the formula x(t) = e^(At)x(0), where e^(At) is the matrix exponential.

Calculating e^(At) can be done by first finding the eigenvalues and eigenvectors of A. The eigenvalues can be found by solving det(A - λI) = 0, where λ is the eigenvalue and I is the identity matrix.

det(A - λI) = [(-1-λ) -2; ^-[22²] *-3 (0-λ)] = (λ+1)(λ^2 + 4λ + 3) = 0

So the eigenvalues are λ1 = -1, λ2 = -3, and λ3 = -1.

To find the eigenvectors, we can solve the system (A - λI)x = 0 for each eigenvalue.

For λ1 = -1, we have (A + I)x = 0, which gives us the eigenvector x1 = [2 1]T.
For λ2 = -3, we have (A + 3I)x = 0, which gives us the eigenvector x2 = [-2 1]T.
For λ3 = -1, we have (A + I)x = 0, which gives us the eigenvector x3 = [1 ^-[22²] *-1]T.

Now that we have the eigenvalues and eigenvectors, we can construct the matrix exponential e^(At) as follows:

e^(At) = [x1 x2 x3] * [e^(-t) 0 0; 0 e^(-3t) 0; 0 0 e^(-t)] * [1/5 1/5 -2/5; -1/5 -1/5 4/5; 2/5 -2/5 -1/5]

Multiplying these matrices together and simplifying, we get:

e^(At) = [4e^(-t) + e^(-3t) - 3e^(-t) ^-[22²] *-2e^(-t); -2e^(-t) - e^(-3t) + 4e^(-t) ^-[22²] *-2e^(-t)]

Finally, to solve for x(t), we plug in x(0) = xo into the formula x(t) = e^(At)x(0):

x(t) = e^(At)x(0) = [4e^(-t) + e^(-3t) - 3e^(-t) ^-[22²] *-2e^(-t); -2e^(-t) - e^(-3t) + 4e^(-t) ^-[22²] *-2e^(-t)] * [xo; yo]

Simplifying this expression gives us the solution to the initial value problem.

To learn more about initial value problem visit : https://brainly.com/question/31041139

#SPJ11

1 If y = tan - ?(Q), then y' = - d ſtan - 1(x)] dx = 1 + x2 This problem will walk you through the steps of calculating the derivative. (a) Use the definition of inverse to rewrite the given equation

Answers

The given equation, [tex]y = tan^(-1)(Q),[/tex] can be rewritten using the definition of the inverse function.

The definition of the inverse function states that if f(x) and g(x) are inverse functions, then[tex]f(g(x)) = x and g(f(x)) = x[/tex] for all x in their respective domains. In this case, we have[tex]y = tan^(-1)(Q)[/tex]. To rewrite this equation, we can apply the inverse function definition by taking the tan() function on both sides, which gives us tan(y) = Q. This means that Q is the value obtained when we apply the tan() function to y.

learn more about tan() function here

brainly.com/question/2284247

#SPJ11

Hello I have this homework I need ansered before
midnigth. They need to be comlpleatly ansered.
7. Is your general expression valid when the lines are parallel? If not, why not? (Hint: What do you know about the value of the cross product of two parallel vectors? Where would that result show up

Answers

The general expression for finding the cross product of two vectors is not valid when the lines represented by the vectors are parallel. This is because the cross product of two parallel vectors is zero.

The cross product is an operation defined for three-dimensional vectors. It results in a vector that is perpendicular to both input vectors. The magnitude of the cross product is equal to the product of the magnitudes of the two vectors multiplied by the sine of the angle between them.

When the lines represented by the vectors are parallel, the angle between them is either 0 degrees or 180 degrees. In either case, the sine of the angle is zero. Since the magnitude of the cross product is multiplied by the sine of the angle, the resulting cross product vector would have a magnitude of zero.

A zero cross product indicates that the two vectors are collinear or parallel. Therefore, using the general expression for the cross product to determine the relationship between parallel lines would not be meaningful. In such cases, other approaches, such as examining the direction or comparing the coefficients of the lines' equations, would be more appropriate to assess their parallel nature.

To know more about Vectors, visit:

brainly.com/question/24256726

#SPJ11

Let I =[₁² f(x) dx where f(x) = 7x + 2 = 7x + 2. Use Simpson's rule with four strips to estimate I, given x 1.25 1.50 1.75 2.00 1.00 f(x) 6.0000 7.4713 8.9645 10.4751 12.0000 h (Simpson's rule: S₁ = (30 + Yn + 4(y₁ + Y3 +95 +...) + 2(y2 + y4 +36 + ·· ·)).)

Answers

The value of I using Simpson's rule with four strips is  I = 116.3525

1. Calculate the extremities, f(x1) = 6.0 and f(xn) = 12.0.

2. Calculate the width of each interval h = (2.0-1.25)/4 = 0.1875.

3. Calculate the values of f(x) at the points which lie in between the extremities:

f(x2) = 7.4713,

f(x3) = 8.9645,

f(x4) = 10.4751.

4. Calculate the Simpson's Rule formula

S₁ = 30 + 12 + 4(6 + 8.9645 + 10.4751) + 2(7.4713 + 10.4751)

S₁ = 30 + 12 + 342.937 + 249.946

S₁ = 624.88

5. Calculate the integral

I = 624.88 * 0.1875 = 116.3525

To know more about Simpson's Rule refer here:

https://brainly.com/question/32151972#

#SPJ11

a) Use the Quotient Rule to find the derivative of the given function b) Find the derivative by dividing the expressions first y for #0 a) Use the Quotient Rule to find the derivative of the given function

Answers

The derivative of the function `y` with respect to x is: [tex]$$\frac{dy}{dx}=\frac{5x^2-67}{(x^2+3)^2}$$[/tex]

a) Use the Quotient Rule to find the derivative of the given function. For the given function `y`, we have to find its derivative using the quotient rule.

The quotient rule states that the derivative of a quotient of two functions is given by the formula:

[tex]$\frac{d}{dx}\frac{u}{v}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$[/tex] where [tex]$u$ and $v$[/tex] are the functions of [tex]$x$[/tex].

Given function `y` is: [tex]$$y = \frac{5x^3 + 2}{x^2 + 3}$$[/tex]

Applying the quotient rule on the given function `y` we get:$$y' = \frac{(x^2 + 3)\frac{d}{dx}(5x^3 + 2) - (5x^3 + 2)\frac{d}{dx}(x^2 + 3)}{(x^2 + 3)^2}$$$$\frac{dy}{dx}=\frac{(x^2 + 3)(15x^2)-(5x^3 + 2)(2x)}{(x^2 + 3)^2}=\frac{15x^4+45x^2-10x^4-4x}{(x^2 + 3)^2}$$$$\frac{dy}{dx}=\frac{5x(5x^2-2)}{(x^2+3)^2}$$

Therefore, the derivative of the function `y` with respect to x is:[tex]$$\frac{dy}{dx}=\frac{5x(5x^2-2)}{(x^2+3)^2}$$[/tex]

b) Find the derivative by dividing the expressions first y for #0To find the derivative of `y`, we divide the expressions first. Let's use long division for the same.

[tex]$$y=\frac{5x^3+2}{x^2+3}=5x-\frac{15x}{x^2+3}+\frac{41}{x^2+3}$$$$\frac{dy}{dx}=5+\frac{15x}{(x^2+3)^2}-\frac{82x}{(x^2+3)^2}=\frac{5x^2-67}{(x^2+3)^2}$$[/tex]

Therefore, the derivative of the function `y` with respect to x is:[tex]$$\frac{dy}{dx}=\frac{5x^2-67}{(x^2+3)^2}$$[/tex]

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

In a recent poll, 490 people were asked if they liked dogs, and 8% said they did. Find the margin of error of this poll, at the 99% confidence level. Give your answer to three decimals

Answers

The margin of error for this poll at the 99% confidence level is approximately 0.023.

To find the margin of error for the poll at the 99% confidence level, use the following formula:

Margin of Error = Critical Value * Standard Error

The critical value corresponds to the level of confidence and is obtained from the standard normal distribution table. For a 99% confidence level, the critical value is approximately 2.576.

The standard error can be calculated as:

Standard Error = sqrt((p * (1 - p)) / n)

Where:

p = the proportion of people who said they liked dogs (in decimal form)

n = the sample size

Given that 8% of the 490 people said they liked dogs, the proportion p is 0.08, and the sample size n is 490.

Substituting these values into the formula, we can calculate the margin of error:

Standard Error = sqrt((0.08 * (1 - 0.08)) / 490)

             = sqrt(0.0744 / 490)

             ≈ 0.008894

Margin of Error = 2.576 * 0.008894

              ≈ 0.022882

Rounding to three decimal places, the margin of error for this poll at the 99% confidence level is approximately 0.023.

Learn more about margin of error here:

https://brainly.com/question/29419047

#SPJ11

Two vectors A⃗ A→ and B⃗ B→ have magnitude AAA = 2.96 and BBB = 3.10. Their vector product is A⃗ ×B⃗ A→×B→ = -4.97k^k^ + 1.91 i^i^. What is the angle between A⃗ A→ and B⃗ ?

Answers

Therefore, the angle between A⃗ and B⃗ is approximately 79.71 degrees.

To find the angle between vectors A⃗ and B⃗, we can use the dot product formula:

A⃗ · B⃗ = |A⃗| |B⃗| cos(θ)

where A⃗ · B⃗ is the dot product of A⃗ and B⃗, |A⃗| and |B⃗| are the magnitudes of A⃗ and B⃗, and θ is the angle between them.

Given that A⃗ · B⃗ = 1.91 (from the vector product) and |A⃗| = 2.96 and |B⃗| = 3.10, we can rearrange the equation to solve for cos(θ):

cos(θ) = (A⃗ · B⃗) / (|A⃗| |B⃗|)

cos(θ) = 1.91 / (2.96 * 3.10)

Using a calculator to compute the right-hand side, we find:

cos(θ) ≈ 0.206

Now, to find the angle θ, we can take the inverse cosine (arccos) of 0.206:

θ ≈ arccos(0.206)

Using a calculator to compute the arccos, we find:

θ ≈ 79.71 degrees

To know more about angle,

https://brainly.com/question/3122482

#SPJ11

Other Questions
Chipotle Mexican Grill recently completed the year and had earnings per share of $5 per share (EPS0). Currently, the company has a return on new investment of 20% and they do not pay any dividends. They do not plan on paying any dividends for the next two years, but in year 3, they will pay a dividend based on a payout policy of 80% of earnings and they plan to maintain that policy for the foreseeable future. a. If you are an investor who has a 12% required rate of return, how much would you be willing to pay for this stock (the price today)? b. What is the companys present value of growth opportunities (PVGO)? Ensure to check for convergenceat the endpoints of the interval.In exercises 19-24, determine the interval of convergence and the function to which the given power series converges. (x-3)* k=0 Which element can be found in both passages? A. Both passages are affected by a long war. B. Both passages have events that happen around water. C. Both passages include brothers with different viewpoints. D. Both passages are set in a fishing village. which of the following statements is true? i. sugar consumers pay higher prices because of sugar quotas, a sufficient incentive for them to campaign against politicians that favor quotas. ii. sugar producers know more about sugar quotas than do sugar consumers because the quota system has a large effect on sugar industry profits. iii. when it comes to sugar trade policy, sugar producers are rationally informed and sugar consumers are rationally ignorant. group of answer choicesa) i only b) i and ii only c) ii and iii onlyd) i, ii, and iii in an l-r-c series circuit, the source has a voltage amplitude of 115 v , r = 85.0 , and the reactance of the capacitor is 488 . the voltage amplitude across the capacitor is 363 v. What two values can the reactance of the inductor have? Enter your answers in ascending order separated by a comma. For which of the two values found in part (c) is the angular frequency less than the resonance angular frequency? Kim was asked to _ E _ _ _ E R a speech at graduation Climate change, together with anthropogenic influence, is transforming some non-desert areas around the globe into deserts. What is this process called?Select one:a)Deflationb)Desert spreadingc)Desertificationd)Groundwater depletione)Desert varnishf)Dry-upg)Shift in climate Explain how each of the columns in an amortization schedule iscalculated, assuming the bonds are issued at a discount.How is the amortization schedule different if bonds are issuedat a premium? CLUSMO husband. She said she wasn't guilty of the murder and that she missed her husband dearly. As her lawyer was making his closing statement he told the jury, "Her husband isn't dead just missing. Everyone look to the doors. He is going to walk through them in about 45 seconds." The entire jury looked at the doors waiting for the husband to walk through them. The lawyer and the woman looked at the jury. The lawyer then stated, "If you were all so sure she HAD killed her husband you wouldn't be watching the door. Therefore she is innocent." The jury immediately gave a guilty verdict to the woman. Why? 2.0 g of helium at an initial temperature of 300 K interacts thermally with 8.0 g of oxygen at an initial temperature of 600K .a.What is the initial thermal energy of each?b.What is the final thermal energy of each?c.How much heat is transferred and in which direction?d.What is the final temperature? bond outstanding with a coupon rate of 3.7 percent paid semiannually and 26 years to maturity. the yield to maturity on this bond is 4.3 percent, and the bond has a par value of $10,000. (a) Let 1 > 0 be a real number. Use the Principal of Mathematical Induction to prove that (1+x)" 2 1 + nr for all natural numbers n (b) Consider the sequence defined as Which of the following formulas is used to compute the earliest start time of an activity, Ay?Max{Earliest completion time(Ax)} where Ax is all activities providing input to Ay.Min{Earliest start time(Ax)} where Ax is all activities providing input to Ay.Min{Earliest completion time(Ax)} where Ax is all activities providing input to Ay.Max{Earliest start time(Ax)} where Ax is all activities providing input to Ay. PLS HELP ASAP BRAINLIEST IF CORRECT!!!!!!!!!!!1Find the x- and y-intercepts of the graph of 6x+5y=366. State each answer as an integer or an improper fraction in simplest form. 3. Given initial value problem y" + 2y + 5y = 0 y(0) =3 & (0) = 1 = (a) Solve the initial value problem. (b) Find the quasi-period of the initial value problem solution. How does it relate to the peri according to a local law, each household in this area is prohibited from owning more than 3 of these pets. if a household in this area is selected at random, what is the probability that the selected household will be in violation of this law? show your work. Divide using synthetic division. Write answers in two ways: () (a) diskor = quotient + arbas, and (b) dividend = (divisor) (quotient) + remainder. For Exercises 1318, check answers using multiplicat + 12x + 34+ - 7 + 7 quiz: the glossary of happiness the author lists words like sisu, questing, and hygge in order to what we refer to as rust is actually: select the correct answer below: a) iron atoms b) iron(iii) ions c) iron(iii) oxide d) hydrated iron(iii) oxide 17. (-/1 Points) DETAILS LARCALC11 14.7.003. Evaluate the triple iterated integral. r cos e dr de dz 0 Need Help? Read It Watch It Steam Workshop Downloader