what is the common meaning of m and b, 2 + 3x + 5 - 2x = y

Answers

Answer 1

Answer:

m=the slope

b=the y intercept


Related Questions

What is the answer to? -15∣x−7∣+4=10∣x−7∣+4

50 points for anybody that answers

Answers

Answer: Only x=7

Step-by-step explanation:

(5r^2+5r+1)-(-2+2r^2-5r)

Answers

Answer:

3r^2+10r+3

Step-by-step explanation:

THIS IS TWO PARTS !!

Angela worked on a straight 11%
commission. Her friend worked on a salary of $950
plus a 7%
commission. In a particular month, they both sold $23,800
worth of merchandise.

Step 1 of 2 : How much did Angela earn for this month? Follow the problem-solving process and round your answer to the nearest cent, if necessary.

Answers

To calculate Angela's earnings, we need to first find the total amount of commission earned on the sales of $23,800, which is 11% of $23,800:

Commission earned by Angela = 0.11 x $23,800
= $2,618

Therefore, Angela earned a commission of $2,618 in this month.

The amount Angela earned this month is $2,618.

How much did Barbara earn?

Percentage can be described as a fraction of an amount expressed as a number out of hundred.

Angela's earnings = percentage commission x worth of goods sold

[tex]11\% \times 23,800[/tex]

[tex]0.11 \times 23,800 = \bold{\$2618}[/tex]

To learn more about percentages, please check: brainly.com/question/25764815

You leave your house to go the mall. You drive due north 8 miles, due east 7.5 miles, and due north again 2 miles. Answer b and c.

Answers

Answer:

CD = 1.5 milesAE = 12.5 miles

Step-by-step explanation:

Given the figure with triangle ABC similar to triangle EDC and AB=8 mi, ED=2 mi, BD = 7.5 mi, you want the measures of CD and AE.

b. CD

Similar triangles will have corresponding sides proportional. That means ...

  ED/CD = AB/CB

  2/CD = 8/(7.5 -CD)

Inverting the ratios and multiplying by 8 gives ...

  4·CD = 7.5 -CD

  5·CD = 7.5 . . . . . . . add CD

  CD = 1.5 . . . . . . . . . divide by 5

c. AE

The distance AE is the hypotenuse of a right triangle with side lengths 7.5 and (8+2) = 10. The Pythagorean theorem can be used to find AE:

  AE² = 7.5² +10² = 56.25 +100 = 156.25

  AE = √156.25 = 12.5

AE = 12.5 miles, the distance to the mall.

__

Additional comment

You may recognize these triangles are 3-4-5 triangles. ABC has a scale factor of 2, so has side lengths 6-8-10. EDC has a scale factor of 1/2, so has side lengths 1.5, 2, 2.5. The triangle with AE as its hypotenuse is the sum of these, so has a scale factor of 2.5 (miles).

  AE = (2.5 miles) · 5 = 12.5 miles

a pilot of an airplane flying at 12000 feet sights a water tower. the angle of depression to the base of the tower is 22 degrees. what is the length of the line of sight from the plane to tower

Answers

The length of the line of sight from the plane to the base of the water tower is approximately 19298 feet.

The length of the line of sight from the plane to the base of the water tower can be determined using trigonometry. We can use the tangent function, which relates the opposite side of a right triangle (in this case, the height of the water tower) to the adjacent side (the length of the line of sight), to find the length of the line of sight.

First, we can draw a diagram and label the relevant angles and sides:

       |\

       | \

12000 ft|  \ height of tower

       |   \

       |22°\

       -----

Let x be the length of the line of sight. Then, we can use the tangent function:

tan(22°) = height of tower / x

We know the height of the tower is not given, but we can set up a right triangle with the height of the tower as one of the legs and the distance from the tower to the point directly below the plane as the other leg. Since the angle of depression is 22 degrees, the angle between the two legs of the triangle is 90 - 22 = 68 degrees.

Using the trigonometric ratio for the tangent of 68 degrees, we get:

tan(68°) = height of tower/distance from the tower to point below the plane

Solving for the height of the tower, we get:

height of tower = distance from tower to point below the plane x tan(68°)

Substituting this into the first equation, we get:

x = height of tower / tan(22°) = (distance from tower to point below the plane x tan(68°)) / tan(22°)

We don't have any values for the distance or the height of the tower, but we can simplify the expression by noting that the distance from the tower to the point directly below the plane is equal to the length of the line of sight plus the height of the plane above the ground. Assuming the height of the plane is negligible compared to the distance from the tower, we can approximate the distance as just the length of the line of sight:

distance from the tower to the point below the plane ≈ x

Substituting this approximation into the expression for x, we get:

x = x tan(68°) / tan(22°)

Solving for x, we get:

x ≈ 19298 ft

Find out more about the line of sight

at brainly.com/question/31186911

#SPJ1

Consider f(x)= 4 cos x (1 – 3 cos 2x +3 cos² 2x − cos³ 2x).
Show that for f(x) dx = 3/2 sin7 m, where m is a positive real constant.

Answers

Answer:

We can start by simplifying the expression inside the parentheses using the identity:

cos 2x = 2 cos² x - 1

Substituting this in, we get:

1 – 3 cos 2x + 3 cos² 2x − cos³ 2x

= 1 – 3(2 cos² x - 1) + 3(2 cos² x - 1)² − (2 cos² x - 1)³

= 1 – 6 cos² x + 9 cos⁴ x - 4 cos⁶ x

Therefore, we can rewrite f(x) as:

f(x) = 4 cos x (1 – 6 cos² x + 9 cos⁴ x - 4 cos⁶ x)

Next, we can use the trigonometric identity:

sin 2x = 2 cos x sin x

to express cos x in terms of sin x:

cos x = √(1 - sin² x)

Substituting this in, we get:

f(x) = 4 sin x cos³ x (1 – 6 cos² x + 9 cos⁴ x - 4 cos⁶ x)

= 4 sin x (√(1 - sin² x))³ (1 – 6 (2 sin² x - 1) + 9 (2 sin² x - 1)² - 4 (2 sin² x - 1)³)

= 4 sin x (1 - sin² x)^(3/2) (16 sin⁶ x - 48 sin⁴ x + 36 sin² x - 8)

Next, we can use the substitution u = 1 - sin² x, du = -2 sin x cos x dx, to obtain:

f(x) dx = -2 du (u^(3/2)) (16 - 48u + 36u² - 8u³)

Integrating, we get:

f(x) dx = 2/3 (1 - sin² x)^(5/2) (8 - 36(1 - sin² x) + 36(1 - sin² x)² - 8(1 - sin² x)³) + C

Now, we can use the trigonometric identity:

sin² x = (1 - cos 2x)/2

to simplify the expression inside the parentheses. After some algebra, we obtain:

f(x) dx = 3/2 sin 7x + C

where C is the constant of integration. Since m is a positive real constant, we can set:

7x = m

and solve for x:

x = m/7

Substituting this in, we get:

f(x) dx = 3/2 sin(7m/7) = 3/2 sin m

Therefore, we have shown that:

f(x) dx = 3/2 sin m, where m is a positive real constant.

A system of inequalities is shown. The graph shows a dashed upward opening parabola with a vertex at negative 2 comma negative 6, with shading inside the parabola. It also shows a dashed line passing through the points negative 3 comma negative 5 and 0 comma 4, with shading below the line. Which system is represented in the graph? y < x2 + 4x – 2 y > 3x + 4 y > x2 + 4x – 2 y < 3x + 4 y ≤ x2 + 4x – 2 y ≥ 3x + 4 y > x2 + 4x – 2 y > 3x + 4

Answers

Answer:

y > x² – 2x – 3

y > 3x + 4

Step-by-step explanation:

I took the test;. hoped this help.

i need help please

A car was valued at $44,000 in the year 1992. The value depreciated to $15,000 by the year 2006.
A) What was the annual rate of change between 1992 and 2006?
r=---------------Round the rate of decrease to 4 decimal places.
B) What is the correct answer to part A written in percentage form?
r=---------------%
C) Assume that the car value continues to drop by the same percentage. What will the value be in the year 2009 ?
value = $ -----------------Round to the nearest 50 dollars.

Answers

(A)  the annual rate of change between 1992 and 2006 was 0.0804

(B) r = 0.0804 * 100% = 8.04%

(C) value in 2009 = $11,650

What is the rate of change?

The rate of change is a mathematical concept that measures how much one quantity changes with respect to a change in another quantity. It is the ratio of the change in the output value of a function to the change in the input value of the function. It describes how fast or slow a variable is changing over time or distance.

A) The initial value is $44,000 and the final value is $15,000. The time elapsed is 2006 - 1992 = 14 years.

Using the formula for an annual rate of change (r):

final value = initial value * [tex](1 - r)^t[/tex]

where t is the number of years and r is the annual rate of change expressed as a decimal.

Substituting the given values, we get:

$15,000 = $44,000 * (1 - r)¹⁴

Solving for r, we get:

r = 0.0804

So, the annual rate of change between 1992 and 2006 was 0.0804 or approximately 0.0804.

B) To express the rate of change in percentage form, we need to multiply by 100 and add a percent sign:

r = 0.0804 * 100% = 8.04%

C) Assuming the car value continues to drop by the same percentage, we can use the same formula as before to find the value in the year 2009. The time elapsed from 2006 to 2009 is 3 years.

Substituting the known values, we get:

value in 2009 = $15,000 * (1 - 0.0804)³

value in 2009 = $11,628.40

Rounding to the nearest $50, we get:

value in 2009 = $11,650

Hence, (A)  the annual rate of change between 1992 and 2006 was 0.0804

(B) r = 0.0804 * 100% = 8.04%

(C) value in 2009 = $11,650

To learn more about the rate of change visit:

https://brainly.com/question/29504549

#SPJ1

3x-4>2
solve the inequality

Answers

Answer:

x > 2

Hope this helps!

Step-by-step explanation:

3x - 4 > 2

3x - 4 ( + 4 ) > 2 ( + 4 )

3x > 6

3x ( ÷ 3 ) > 6 ( ÷ 3 )

x > 2

Kevin and Randy Muise have a jar containing 28 ​coins, all of which are either quarters or nickels. The total value of the coins in the jar is ​$3.80. How many of each type of coin do they​ have?

Answers

Answer:

The answer is 15 nickels and 13 quarters\

Step-by-step explanation:

Choose the intervals where the graph has a decreasing average rate of change.

Answers

When the x-values rise while the y-values fall, this is known as a declining pattern. So, as x increases from 3 to 6, the graph declines. When the point on the graph at the interval's left end is higher than the interval's right end, the average rate of change will be declining.

What is the graph's average rate?

An indicator of how much the function changed on average per unit throughout that time is the graph's average rate. In the graph of the function, it is calculated from the slope of the straight line joining the interval's ends. So, by applying the average rate of change formula, the slope of a graphed function is calculated.

Hence divide the y-value change by the x-value change in order to determine the average rate of change. When analyzing changes in observable parameters like average speed or average velocity, finding the average rate of change is extremely helpful.

To learn more about graph's average rate, visit:

https://brainly.com/question/17179711

#SPJ1

The complete question is:

Choose the intervals where the graph has a decreasing average rate of change. The graph is attached below:

x = 0 to x = 13

x = 3 to x = 6

x = 4 to x = 8

x = 6 to x = 10

39÷63=? in simplest form as proper fraction ​

Answers

13/21 due to dividing both the denominator and numerator by 3

Answer:

[tex]\frac{13}{21}[/tex]

Hope this helps!

Step-by-step explanation:

[tex]\frac{39}{63}[/tex]  ( Simplify both numerator and denominator by 3 )

39 ÷ 3 / 63 ÷ 3

[tex]\frac{13}{21}[/tex]

. Mateo and Haley both collect coins. Mateo has 8 more (+) coins in his
collection than Haley. Which expression represents the total number of
coins (c) in both collections?

Answers

Answer:

Let Haley be represented as x

Now Mateo has 8 more coins than haley

Mateo = 8 + x

total number of coins is Mateo coins and Haley coins.

x + 8 + x

2x + 8

what is p(divisor of 6) write your answer as a percentage rounded to the nearest tenth

Answers

The probability of selecting a divisor of 6 is 66.7%.

What is probability?

It is expressed as a number between 0 and 1, where 0 represents an impossible event (it will never occur) and 1 represents a certain event (it will always occur).

According to question:

1, 2, 3, and 6 can be divided by 6.

To find the probability (p) of selecting a divisor of 6, we need to divide the number of divisors of 6 by the total number of possible outcomes, which is also 6 (since there are 6 positive integers from 1 to 6).

So, p(divisor of 6) = number of divisors of 6 / total number of outcomes

= 4 / 6

= 2 / 3

We can multiply this fraction by 100 to get the percentage:

p(divisor of 6) = 2 / 3 * 100

= 66.7%

Rounded to the nearest tenth, the answer is 66.7%. Therefore, the probability of selecting a divisor of 6 is 66.7%.

To know more about probability visit:

https://brainly.com/question/29221515

#SPJ1

Construct a labeled diagram of the circular fountain in the public park and Find the map location in coordinates of the centerand Find the distance from the center of the fountain to its circumference.

Answers

Answer:

I'm sorry, I cannot create a labeled diagram of the circular fountain in the public park or find its map location in coordinates without more specific information about the park and fountain. However, I can provide some general information about circular fountains.

To find the map location in coordinates of the center of a circular fountain, you would need to know the specific location of the park and fountain. Once you have the location, you can use a mapping tool or website to find the coordinates of the center of the fountain.

To find the distance from the center of the fountain to its circumference, you would need to know the radius of the fountain. Once you have the radius, you can use the formula for the circumference of a circle, which is C = 2πr, where C is the circumference and r is the radius. The distance from the center of the fountain to its circumference is equal to the radius of the fountain.

I hope this information helps. If you have more specific information about the circular fountain in the public park, please let me know and I can try to provide more detailed information.

(-3+i)^2 in simplest a + bi form

Answers

Answer:

[tex]\boxed{8-6i}[/tex]

Step-by-step explanation:

First, we developed the square binomial [tex](-3+\mathrm{i})^2[/tex].

[tex]\implies (-3+\mathrm{i})(-3+\mathrm{i})\\9-3\mathrm{i}-3\mathrm{i}+i^2\\9-6\mathrm{i}+\mathrm{i}^2[/tex]

Remember the next product:

[tex]i^2= \mathrm{i} \times \mathrm{i} = -1[/tex]

then:

[tex]9-6\mathrm{i}+ (-1)\\8-6i[/tex]

Hope it helps

[tex]\text{-B$\mathfrak{randon}$VN}[/tex]

What is the range of the function represented by the graph?


A.
all real numbers

B.
y ≤ 1

C.
1 ≤ y ≤ 6

D.
y ≥ 1

Answers

Answer is D, or y ≥ 1

Tell whether the three side measure will make a triangle or not.

1. 6 cm, 5 cm, 3 cm
2. 5 cm, 12 cm, 13 cm
3. 2 in, 3 in, 2 in
4. 2 cm, 4 cm, 1 cm
5. 6 cm, 8 cm, 10 cm
6. 1 in, 2 in, 1 in
7. 5 cm, 7 cm, 4 cm
8. 2 in, 2 in, 2 in
9. 1 in, 5 in, 3 in
10. 3 cm, 4 cm, 5 cm

Please explain why, also this is due for me tomorrow and I’ll mark you brainlist if you can help me pls

Answers

1) Not a triangle as According to the triangle inequality theorem  ,2)Triangle. as According to the triangle inequality theorem    ,  3)Not a triangle. ,  4)Not a triangle., 5)Triangle. ,  6)Not a triangle.,  7) Not a triangle., 8)Equilateral triangle. 9)Not a triangle   10)  Triangle.

what is  triangle ?

A triangle is a two-dimensional geometric shape that has three sides and three angles. It is one of the basic shapes in geometry, and it is formed by connecting three non-collinear points. The sum of the angles in a triangle is always 180 degrees.

In the given question,

Not a triangle. (6 + 5 = 11 > 3)

Explanation: According to the triangle inequality theorem, the sum of any two sides of a triangle must be greater than the third side. However, in this case, 6 + 5 is equal to 11, which is not greater than the third side of length 3.

Triangle. (5 + 12 > 13)

Explanation: The sum of the two smaller sides (5 and 12) is greater than the largest side (13), satisfying the triangle inequality theorem. Therefore, a triangle can be formed with these side lengths.

Not a triangle. (2 + 2 = 4 > 3)

Explanation: Similar to the first case, the sum of the two smaller sides (2 and 2) is equal to 4, which is not greater than the third side of length 3.

Not a triangle. (1 + 2 = 3 > 4)

Explanation: Again, the sum of the two smaller sides (1 and 2) is equal to 3, which is not greater than the third side of length 4.

Triangle. (6 + 8 > 10)

Explanation: The sum of the two smaller sides (6 and 8) is greater than the largest side (10), satisfying the triangle inequality theorem. Therefore, a triangle can be formed with these side lengths.

Not a triangle. (1 + 1 = 2 > 2)

Explanation: Similar to cases 1 and 3, the sum of the two smaller sides (1 and 1) is equal to 2, which is not greater than the third side of length 2.

Not a triangle. (4 + 5 = 9 > 7)

Explanation: In this case, the sum of the two smaller sides (4 and 5) is greater than 7, but the difference between the two larger sides (7 - 5) is smaller than the smallest side (4), violating the triangle inequality theorem.

Equilateral triangle. (All sides are equal)

Explanation: All sides are equal, satisfying the criteria for an equilateral triangle.

Not a triangle. (1 + 3 = 4 > 5)

Explanation: The sum of the two smaller sides (1 and 3) is greater than the largest side (5), but the difference between the two larger sides (5 - 3) is smaller than the smallest side (1), violating the triangle inequality theorem.

Triangle. (3 + 4 > 5)

Explanation: The sum of the two smaller sides (3 and 4) is greater than the largest side (5), satisfying the triangle inequality theorem. Therefore, a triangle can be formed with these side lengths.

To know more about triangle , visit:

https://brainly.com/question/2773823

#SPJ1

Victor is using the distributive property on the expression 9-4(5x-6) Here is his work:

9-4(5x-6)
9+(4)(5x+-6)
9+-20x+-6
3-20x

a. Find the step where victor made an error and explain what he did wrong

b. Correct victor's work

Answers

Answer:

33 - 24x

Step-by-step explanation:

a. He made mistake here

9+(4)(5x+-6)

b.

9 - 4(5x - 6)

= 9 + (- 4)(5x - 6)

= 9 + (- 4)(5x) - (- 4)(6)

= 9 + (- 20x) - (- 24)

= 9 - 20x + 24

= 9 + 24 - 24x

= 33 - 24x

Find the sum of the first 25 terms of the following arithmetic sequence. Rather that write out each term use a Fourmula
a1=5,d=3

Answers

Answer:

1025

Step-by-step explanation

The formula to find the sum of the first n terms of an arithmetic sequence is

Sn = n/2 * [2a1 + (n-1)d]

Where

a1 = the first term of the sequence

d = the common difference between consecutive terms

n = the number of terms we want to sum

Substituting the given values,  we get

a1 = 5

d = 3

n = 25

S25 = 25/2 * [2(5) + (25-1)3]

= 25/2 * [10 + 72]

= 25/2 * 82

= 25 * 41

= 1025

Suppose that $10,405 is invested at an interest rate of 6.4% per year, compounded continuously.
a) Find the exponential function that describes the amount in the account after time t, in years.
b) What is the balance after 1 year? 2 years? 5 years? 10 years?
c) What is the doubling time?

Answers

Therefore, the doubling time is approximately 10.83 years.

a) The exponential function that describes the amount in the account after time t, in years, is given by:

[tex]$A(t) = A_0 e^{rt}$[/tex]

where $A_0$ is the initial investment, $r$ is the annual interest rate as a decimal, and $t$ is the time in years. Since the interest is compounded continuously, we have $r = 0.064$.

Substituting the given values, we get:

[tex]$A(t) = 10,405 e^{0.064t}$[/tex]

b) To find the balance after 1 year, we plug in $t=1$ into the exponential function:

[tex]$A(1) = 10,405 e^{0.064(1)} \approx 11,069.79$[/tex]

Similarly, we can find the balance after 2, 5, and 10 years:

[tex]$A(2) = 10,405 e^{0.064(2)} \approx 11,778.79$[/tex]

[tex]$A(5) = 10,405 e^{0.064(5)} \approx 14,426.77$[/tex]

[tex]$A(10) = 10,405 e^{0.064(10)} \approx 19,682.08$[/tex]

c) The doubling time can be found using the formula:

[tex]$t_{double} = \frac{\ln 2}{r}$[/tex]

Substituting $r = 0.064$, we get:

[tex]$t_{double} = \frac{\ln 2}{0.064} \approx 10.83$ years[/tex]

To know more about time, click here,

https://brainly.com/question/28050940

#SPJ1

Determine the equation of the circle with center (-6, -2 containing the point (-9, -2).

Answers

The equatiοn οf the circle is (x + 6)(x+6) + (y + 2)(y+2) = 9.

What is circle ?

A circle is a twο-dimensiοnal geοmetric figure that cοnsists οf all pοints that are equidistant frοm a single fixed pοint called the center. A circle can alsο be defined as the lοcus οf a pοint that mοves in a plane in such a way that its distance frοm a fixed pοint is always cοnstant.

Tο find the equatiοn οf a circle, we need the cοοrdinates οf the center and the radius.

The center οf the circle is given as (-6, -2), sο the cοοrdinates οf the center are (h, k) = (-6, -2).

The pοint (-9, -2) is οn the circle, sο its distance frοm the centre is equal tο the radius. We can use the distance fοrmula tο find the radius:

[tex]\rm r = \sqrt{((x_2 - x_1)\times (x_2 - x1) + (y_2 - y_1)\times(y_2 - y_1))}[/tex]

[tex]= \sqrt{((-3)^2 + 0^2)[/tex]

= 3

Therefοre, the radius οf the circle is 3.

Nοw we can use the standard fοrm οf the equatiοn οf a circle, which is:

(x - h)(x-h)+ (y - k)(y-k)= r*r

Substituting the values we fοund, we get:

Simplifying:

(x + 6)(x+6) + (y + 2)(y+2) = 9

Therefοre, The equatiοn οf the circle is [tex](x + 6)(x+6) + (y + 2)(y+2) = 9[/tex].

To learn more about Circle from given link.

https://brainly.com/question/266951

#SPJ1

Prove that,
If I = A then I U{—A} is not satisfiable.

Answers

Our assumption that I U{—A} is satisfiable must be false. Hence, I U{—A} is not satisfiable if I = A.

What is concept of satisfiability?

A set of propositional formulae, sometimes referred to as a propositional theory, can be satisfiable in terms of propositional logic by having the quality of being true or untrue according to a certain interpretation or model. If there is at least one interpretation that makes all of a set of formulae true, the set is said to be satisfiable.

Using the proof by contradiction we have:

Assume that I U{—A} is satisfiable.

Then, by definition of satisfiability, every formula in the set I U{—A} is true in M.

Since I = A, every formula in I is also in A. Therefore, every formula in I is true in M, since A is true in M.

Consider the formula —A, which is in {—A}. Since M satisfies {—A}, —A is true in M.

But this contradicts the fact that A is true in M, since —A is the negation of A.

Therefore, our assumption that I U{—A} is satisfiable must be false. Hence, I U{—A} is not satisfiable if I = A.

Learn more about proof by contradiction here:

https://brainly.com/question/8062770

#SPJ1

Please help me with this math work

Answers

Answer:

{0, 1, 2}

Step-by-step explanation:

4x<8x+2

-4x<2

x<-1/2

Only {0, 1, 2} meets the critera.

A report on consumer financial literacy summarized data from a representative sample of 1,669 adult Americans. When asked if they typically carry credit card debt from month to month, 587 of these people responded "yes." Estimate p, the proportion of adult Americans who carry credit card debt from month to month. (Round your answer to three decimal places.)

Answers

The answer is 0.351

To estimate the proportion p of American adults with monthly credit card debt, the sample proportion can be used as an estimate. The sample ratio is simply the number of people in the sample with monthly credit card debt divided by the total number of people in the sample.

p hat = 587/1669

p-hat = 0.3511 (rounded to four decimal places)

Therefore, based on this sample, the percentage of adult Americans with monthly credit card debt is estimated to be approximately 0.351. After rounding to three decimal places, its estimate is 0.351.

To know more about proportion visit : https://brainly.com/question/30657439

#SPJ1

98+x=154
x-4=20
x+25=-10

Answers

Answer:

98+x=154

x=154-98

x=56

x-4=20

x=20+4

x=24

x+25=-10

x=-10-25

x=-35

Find the area of this composite figure: *find the area of each figure, then add those areas together

Answers

Answer:

136 units

Step-by-step explanation:

All sides are equal in a rectangle:

Value of b : 16-8 = 8 units

h = 13-7 = 6 units.

So Area of triangle= bh/2 = 8*6/2 = 24 units

Area of rectangle = lb = 16*7 = 112 units

So Area of figure= 112+24 units = 136 units

Sixty-nine percent of U.S. college graduates expect stay at their first employer for three or more years. You randomly select 18 U.S. college graduates and ask them whether they expect to stay at their first employer for three or more years. Find the probability that the number who expect to stay at their first employer for three or more years is (a) than at least 15. Identify any unusual events. Explain

Answers

P(X >= 15) ≈ 0.271 is an unusual event would be one that has a very low probability of occurring (e.g., less than 5%).

What is probability?

Probability is a numerical measurement that represents the likelihood or chance of an event happening. The value of probability always lies between 0 and 1, where 0 indicates that the event is impossible and 1 indicates that the event is certain to occur.

a) To find the probability that at least 15 out of 18 U.S. college graduates expect to stay at their first employer for three or more years, we can also use the CDF of the binomial distribution:

P(X >= 15) = 1 - P(X < 15)

Using a calculator or statistical software, we find:

P(X >= 15) ≈ 0.271

An unusual event would be one that has a very low probability of occurring (e.g., less than 5%). Therefore, these outcomes could be considered unusual.

To learn more about probability visit:

https://brainly.com/question/24756209

#SPJ1

what is the quotient? x^2-9 / x+3

Answers

Answer:

x-3

Step-by-step explanation:

Name: 7. A line segment has endpoints (4.25, 6.25) and (22, 6.25). What is the length of the line segment?​

Answers

Answer:

distance = sqrt((x2 - x1)^2 + (y2 - y1)^2)

where (x1, y1) and (x2, y2) are the coordinates of the two endpoints.

In this case, (x1, y1) = (4.25, 6.25) and (x2, y2) = (22, 6.25).

Plugging these values into the distance formula, we get:

distance = sqrt((22 - 4.25)^2 + (6.25 - 6.25)^2)

= sqrt(17.75^2 + 0^2)

= sqrt(315.0625)

= 17.75

Therefore, the length of the line segment is 17.75 units.

Other Questions
heloise is evaluating a client and finds the following: normal body weight, irregular menstrual cycles, tooth loss, and dehydration caused by chronic diarrhea. which is the most likely diagnosis heloise will give to these issues? question 19 options: june and ward were really tired of beaver burping at the dinner table. even wally thought it was kind of creepy. wally wanted his mom and dad to yell at beaver but ward and june simply ignored the rude behavior and it went away. what procedure did june and ward use to decrease beaver's burping behavior Amanda was watching her little brother Mike play on a swingset. She decided that she would like to find his distance abovethe ground using a sine or cosine curve. She starts timing andfinds that at t-2 seconds Mike is at his highest point. Hereachers his lowest point exactly 1.5 seconds later. Amandaalso records the highest Mike gets as 9 feet whle the lowestpoint occurs at 1 foot. Write an equation that will find Mike'sheight after t seconds. use microsoft's windows terminal (powershell) to find the answers to the following questions: what is the ipv4 address of the workstation? what is the subnet mask? what is the default gateway address? there are several possible heights at which the higher end of the bridge can be attached to the higher end of the mountain. Fill in the table below to use 5 possible values for y, and calculate the resulting values for r what would be the transformation from the parent function 4x^2-5 botswana institutions that keeps number of unemployed people in the country like any other language, php eventually has deprecated commands. how can webpages or other web applications mitigate the risk of having deprecated code in the code base that can be exploited? if the volume of a cube can be represented by a polynomial of degree 9, what is the degree of the polynomial that represents each side lenght Forensic Toxicology definition ? Use the Exterior Angle Theorem to solve for xO60O120O155O85 How does the opioid epidemic affect our society? PROJECT: NEWSPAPER ANALYSISHere are your goals for this assignment:Analyze the use of statistics in newspaper adsAnalyze and evaluate a newspaper's use of space for various purposesStatistics. Clip ten ads from newspapers and magazines that use statistics to sell a product.1. Mount each ad on a piece of paper.2. Write an analysis of the use (or misuse) of statistics by the copywriter.3. Draw a conclusion for each one as to whether the statistics were used fairly.Show the completed work to your teacher.The Content of Newspapers. Make a chart that shows the number of column inches (a column inch equals the width of a single newspaper column by one inch deep) the paper devotes to each type of material listed below. Be aware that some papers have special sections one day a week to cover religious news, entertainment, or other special-interest material. They may also include extra sections weekly or occasionally for local sports or business in addition to the daily sports and business sections.a. local newsb. national and international newsc. editorial opiniond. religious newse. sportsf. entertainment (art, music, movies, books, etc.)g. features (comics, syndicated columns, recipes, etc.)h. society news and gossipi. filler materialj. advertisingDo you think the balance is a fair one? Write a paragraph about your findings and what you think should be changed.Remember to document your newspaper source properly, using MLA format. Click here to review the MLA Style Guide.PLS DO ALL OF THIS I REALLY NEED THIS DONE AND PLS DO ALL WHAT IT SAYS THANK U A ladder forms the hypotenuse of a right triangle with a building and the ground, as shown. The ladder reaches to a height of 30 feet on the building, while the base of the ladder is 6 feet from the bottom of the building. What is the length of the ladder? Discuss how foreign religion has destroyed the African family fabric and structures of Zimbabwe communities For once the battle is not lost, once our natural splendor is destroyed, it can never be recaptured.Which inference does this sentence best support? tech a says that the two-way catalytic convertor was the first type of catalytic convertor designed. tech b says that it converts hydrocarbons and carbon monoxide to carbon dioxide and water. who is correct? mona works at a bank. when luis, a colombian man, arrives to drop off his paycheck she pretends to be busy and directs him to another teller. she does this whenever a non-white person wants assistance. this is an example of . responses confirmation bias confirmation bias stereotype stereotype aggression aggression discrimination when providing comfort to a client during th last hours of life which wuld be th enurses primary concern?select all that apply pain nutrition elimination respiratory status cardiovascular status Tammy ran 4 25 miles on Saturday. On Sunday she ran for 12 of the distance she ran on Saturday. Write and solve an equation that will help you figure out how far Tammy ran on Sunday. Explain the steps you took to solve the problem