The value of x will make the triangles similar by the sss similarity theorem is 77
Simlarity theorem of trianglesA triangle is a 2-dimensional shape with 3 sides and angles
From the given diagram, we will take the ratio of simlar sides to determine the value of "x"
35/x = 20/44
Cross multiply
20x = 35 * 44
20x = 1540
x = 154/2
x = 77
Hence the value of x will make the triangles similar by the sss similarity theorem is 77
Learn more on similarity theorem here; https://brainly.com/question/21247688
Answer: The answer is 28
Find all possible values of x. The triangles are NOT drawn to scale.
Answer:
0 < x < 28
Step-by-step explanation:
The triangle inequality theorem states that the sum of any two sides of the triangle should be greater than the third side.
Therefore,
0 < x < 28All the possible values of x are 26 < x < 28.
What is Triangle?A triangle is a two dimensional figure which consist of three vertices, three edges and three angles.
Sum of the interior angles of a triangle is 180 degrees.
So a triangle has three sides.
We have the triangle inequality theorem which states that,
The length of any side of the triangle is always less than the sum of the other two sides.
And the range of the possible measure of the third side is the sum and the difference of the other two sides.
So x < 27 + 1 = 28
and,
x > 27 - 1 = 26
So 26 < x < 28
Hence the measures of third side is 26 < x < 28.
Learn more about Triangles here :
https://brainly.com/question/11680381
#SPJ2
The diagram shows a right angled triangle. What is the value of h.
Round to 1 decimal place
Answer:
h = 13.4cm
Step-by-step explanation:
BAC + ACB = 90°
BAC + 48° = 90°
BAC = 42°
cos(BAC) = AB/BC
cos(42°) = h/18
h = 13.377 ≈ 13.4cm
Nikki went to a concert that started at 2:30pm.it ended at 4:00pm. How long was the concert?
started= 2:30 PM
ended= 4:00 PM
to find:the duration of the concert.
solution;( just find the difference of finishing time and starting time)
= 1 hour 30 mins
so, the duration of the concert is 1 hour 30 mins.
0400-0230
= 1 hour 30 minutes
hope this helps :)
Surface Area of Cylinders 4 cellus 6 = SA = 2tr2 + 2nrh 2πη2 + 2πχh (Use 3.14 for 7.) Resources 5 in. Find the surface area. Help square inches 30 in. Do NOT round your answer. B If
Answer:
1099in²
Step-by-step explanation:
SA = [tex] \sf A=2\pi rh+2 \pi r² [/tex]
⇒ SA=2πrh+2πr²
⇒ SA = 2((3.14)(5)(30)+(2)(3.14)(5²)
⇒ SA = 2((3.14)(5)(30)+(2)(3.14)(25)
⇒ SA = 1099
Surface Area = 1,099 in²
A parking garage is located in the downtown area of a city. The
table below shows the cost for parking in the garage for different
amounts of time.
Hours Parked
Cost of Parking
1
$8.80 1 1/2 $10.70
4
$20.20
5
$24
7 1/2
$33.50
10
$43
a) What equation represents the cost of parking in the garage,
y, for x hours?
b) Sketch a graph to represent the cost of parking over time.
Answer:
a) y = 3.80x +5.00
b) see attached
Step-by-step explanation:
A graph shows the given table values lie on a straight line.
__
a)Finding the slope of the line is made easier by an appropriate choice of a pair of table values:
m = (y2 -y1)/(x2 -x1)
m = (24 -20.20)/(5 -4) = 3.80/1 = 3.80 . . . . using (4, 20.20) and (5, 24)
The y-intercept can likewise be found with an appropriate choice of table values. Solving the slope-intercept equation for b, we get ...
y = mx +b
b = y -mx
b = 8.80 -3.80 × 1 = 5.00 . . . . using the first table value
An equation that represents the cost of parking could be ...
y = 3.80x +5.00
__
b)A graph of the table values and the equation is shown in the attachment.
The length, width and height of one of the small cubes is 1/3m.
Find the volume of the figure.
For a standard normal distribution, find the approximate value of p (negative 0.78 less-than-or-equal-to z less-than-or-equal-to 1.16). use the portion of the standard normal table below to help answer the question.
The approximate value of P(-0.78 ≤ Z ≤ 1.16) is obtained being 0.6593
How to get the z scores?If we've got a normal distribution, then we can convert it to standard normal distribution and its values will give us the z score.
If we have [tex]X \sim N(\mu, \sigma)[/tex]
(X is following normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex])
then it can be converted to standard normal distribution as
[tex]Z = \dfrac{X - \mu}{\sigma}, \\\\Z \sim N(0,1)[/tex]
(Know the fact that in continuous distribution, probability of a single point is 0, so we can write
[tex]P(Z \leq z) = P(Z < z) )[/tex]
Also, know that if we look for Z = z in z-tables, the p-value we get is
[tex]P(Z \leq z) = \rm p \: value[/tex]
For this case, we have to find:
[tex]P(-0.78\leq Z \leq 1.16)[/tex]
It can be rewritten as:
[tex]P(-0.78\leq Z \leq 1.16) = P(Z \leq 1.16) - P(Z < -0.78) \\P(-0.78\leq Z \leq 1.16) = P(Z \leq 1.16) - P(Z \leq -0.78)[/tex]
The p-values for Z = 1.16 and Z = -0.78 from the z-table is found as 0.8770 and 0.2177 respectively, and therefore, we get:
[tex]P(-0.78\leq Z \leq 1.16) = P(Z \leq 1.16) - P(Z \leq -0.78)\\P(-0.78\leq Z \leq 1.16) = 0.8770 - 0.2177 = 0.6593[/tex]
Thus, the approximate value of P(-0.78 ≤ Z ≤ 1.16) is obtained being 0.6593
Learn more about z-score here:
https://brainly.com/question/21262765
Answer:
B.) The answer is 66% if you convert it from decimals
Given SA 108 units squared SA=192 units squared V-1408 units squared Find Volume of the smaller figure
You throw three number cubes that are numbers 1-6 all at the same time. What is the probability that you would get a triple 3 on the first throw?
Answer:
3/18 but if you have to simplify it, it would be 1/6
Answer:
1/27Step-by-step explanation:
For each cube the probabilty of number 3 is 1/6 since it is one option out of 6 possible numbers.
The probability of same number on all three cubes is:
P(3,3,3) = 1/3*1/3*1/3 = 1/279 A boy takes a penalty 40 times against a goalkeeper. He scores 16 times.
What is the relative frequency of him scoring a penalty? zu
(b) If the boy took 200 penalties how many times would you expect him to score?
Answer:
I think for A It is 3.
Step-by-step explanation:
I need help please....
Answer:
[tex]y \geqslant - x - 4[/tex]
Step-by-step explanation:
y≥-x-4 is the required equation
6.
The cost of 5. 5 pounds of apples is $40. 81
What is the constant of proportionality that relates
the cost in dollars, y
to the number of pounds of apples, X?
A) 5. 5
B) 5. 94
C) 6. 37
D) 7. 42
F)8. 16
G) Not listed
Answer:
D 7.42
Step-by-step explanation:
y = k x
40.81 = k ( 5.5)
k = 40.81/5.5 =
How do you work out the intersection?
Answer:
Get the two equations for the lines into slope-intercept form. ... Set the two equations for y equal to each other.Solve for x. ... Use this x-coordinate and substitute it into either of the original equations for the lines and solve for y.
Step-by-step explanation:
How do i solve this pls help
Answer:
7.07106781
simplified
7.07
Step-by-step explanation:
PLS HELP WILL MARK YOU BRAINLIEST! NO FAKE ANSWERS!
Answer:
angle HCG- 45/c
angle DF- 105/b
Step-by-step explanation:
m<HCG and m<ECD are opposite angles hence they are equal
m<HCG=45°Now
mDF=
M<ECD+m<ECF45+60105°Region R is bounded by the curves y = √x, y = 1, and x = 4. A solid has base R, and cross sections perpendicular to the x-axis are squares. The volume of this solid is
A. 4/3
B. 8
C. 7/6
D. 15/2
The cross sections have side length equal to the vertical distance between y = √x and y = 1, or |√x - 1|. The two curves meet at the point (1, 1), and y = √x meets x = 4 at (4, 2), so we'll be integrating with respect to x on the interval [1, 4]. Over this interval, √x ≥ 1, so |√x - 1| = √x - 1.
A cross section of thickness ∆x has volume
(√x - 1)² ∆x = (x - 2√x + 1) ∆x
Then the volume of the solid is
[tex]\displaystyle \int_1^4 (x - 2\sqrt x + 1) \, dx = \boxed{\frac76}[/tex]
Line k is graphed at right.
Write an equation of a line parallel to K
Write an equation of a line perpendicular to K
Answer:
See below ↓↓
Step-by-step explanation:
Equation of line k
y = mx + bm = Δy/Δx (ratio of change in y to change in x) = 2/3b = 3 (as y-intercept is [0,3])⇒ y = 2/3x + 3a. parallel line
For parallel lines, slope (m) remains the same, but the y-intercept (b) changes⇒ y = 2/3x + 1b. perpendicular line
For perpendicular lines, the slope (m) is the negative reciprocal of the original line and the value of b stays the same [it can be any point as long as it intersects the line]⇒ y = -3/2x + 1What is the slope of a line parallel to the line whose equation is
6x – 10y = -100. Fully simplify your answer.
Answer:
3/5
Step-by-step explanation:
6x - 10y = -100
Write this equation in slope-intercept form: y = mx +b
-10y = -6x - 100
Divide the entire equation by (-10)
[tex]\dfrac{-10}{-10}y=\dfrac{-6}{-10}x-\dfrac{100}{-10}\\\\y =\dfrac{3}{5}x+10[/tex]
Slope = 3/5
Parallel lines have same slope.
Slope of the parallle line = 3/5
Naomi bought stock in a company two years ago that was worth
x
x dollars. During the first year that she owned the stock, it increased by 23%. During the second year the value of the stock increased by 26%. Write an expression in terms of
x
x that represents the value of the stock after the two years have passed.
The expression that represents the value of the stock after two years have passed is 1.5498x
What is the expression that reperesnts the value of the stock after two years?
Percentage is the fraction of an amount expressed as a number out of hundred. The sign used to represent percentages is %.
The value of the stock after year 1 = worth of the stock when it was bought x (1 + percentage increase in year one)
1.23x
The value of the stock after year 2 = worth of the stock in year 1 x (1 + percentage increase in year two)
1.26 x 1.23x = 1.5498x
To learn more about percentages, please check: https://brainly.com/question/25764815
is 6 and 9 like terms or unlike terms
Answer:
i think they are unlike terms
Step-by-step explanation:
Which of the following graphs represent a function?
4 graphs. Graph A is a curved line, graph b is horizontal, vertical, and then horizontal, graph C is a line with positive slope, graph D is a circle.
a.
Graph A and Graph C
b.
Graph A
c.
Graph D
d.
Graph B and Graph D
1. 7h + 2h - 5h
Α 4h
Β. 14h
Answer:
A 4h
Step-by-step explanation:
[tex]7 + 2 - 5 = 9 - 5 = 4[/tex]
If the length of a cube is l then find the area of cross section
Answer:
The cross section of a cube is square...
and we know that ,Area of square = side²
so, Area of cross section= l²
Hope it helps you
A ring-toss toy is composed of a rectangular prism on top of a cylinder. The rectangular prism is completely fill with water. The dimensions of the rectangular prism are shown in the diagram.
a) 90cm3
b) 208cm3
c) 29cm3
d) 480cm3
Answer:
answer = C) 3 x 10 x 16 = 480 cm³
A car rental company charges $28 per day for a rented car and $0.50 for every mile driven. A second car rental
company charges $20 per day and $0.75 for every mile driven. What is the number of miles at which both
companies charge the same amount for a one-day rental?
Answer:
56 miles
Step-by-step explanation:
According to the question, lets say the miles at x they charge the same rental
34 + 0.50x = 20 + 0.75x (Solve equation)
0.75x - 0.50x = 34 - 20
0.25x = 14
x = [tex]\frac{14}{0.25}[/tex]
x = 56
So at 56 miles, they charge the same rental.
A screening test for a newly discovered disease is being evaluated. In order to determine the effectiveness of the new test, it was administered to 900 workers. 150 of the individuals diagnosed with the disease tested positive. A negative test finding occurred in 60 people who had the disease. A total of 50 persons not diseased tested positive for it. Assume the prior probability is not known. What is the overall accuracy of the test
The overall accuracy of the screening test for a newly discovered disease is being evaluated for this case is 87.78% approximately.
What is the accuracy of a test?Accuracy of a test is the ratio of the correct results to the total results the test gives.
Thus, we have:
[tex]\rm Accuracy =\dfrac{\text{Total number of correct results}}{\text{Total number of results}} = \dfrac{TP + TN}{TP + FP + TN + FN}[/tex]
where T represents True, F represents False, N represents Negative, and P represents Positive. The negativity and positivity are the results of the test.
For this case, we're specified that:
The test is happening for diagnosis of a newly discovered disease.Total number of tests done = total number of workers administered = 900True positive (TP)= test result positive (ie test saying that the person has disease) when disease is actually present (that actual presense is known by some other method, and here we're evaluating the quality of 'disease testing procedure' in consideration) = 150 in count.False Negative (FP)= test result negative (no disease detected by the test) when person is diseased in reality = 60False positive (FN) = test result positive when person has no disease in reality = 50As total 900 tests were done, so we get: True negative(TN) = 900 - TP - FP - FN = 640(as each test result would be one of the TP, TN, FP, FN and these four no test result can lie in more than one of these categories).
Now, we have:
true results = TP + TN = 640 + 150 = 790
total results = 900
Thus, we get:
[tex]\text{Test accuracy} = \dfrac{TP + TN}{TP + FP + TN + FN} = \dfrac{790}{900} \approx 0.8778 = 87.78%[/tex]
Thus, the overall accuracy of the screening test for a newly discovered disease is being evaluated for this case is 87.78% approximately.
Learn more about accuracy of a test here:
https://brainly.com/question/21268478
#SPJ1
Write the equation of the line that passes through the points (-1, 3) and (-5, -3)
Answer:
[tex]y= \frac{3}{2}x+\frac{9}{2}[/tex]
Step-by-step explanation:
First find the slope: [tex]\frac{y_{2} - y_{1} }{x_{2} - x_{1} } = \frac{-3 - (3)}{-5-(-1)} = \frac{-6}{-4} = \frac{3}{2}[/tex]
Next use the point-slope fomula and one of the points to find the line:
[tex]y-y_{1} =m(x-x_{1} )[/tex] and the ordered pair (-1,3)
[tex]y-3=\frac{3}{2}(x-(-1))\\ y-3 = \frac{3}{2}(x+1)\\y-3=\frac{3}{2}x + \frac{3}{2}\\y=\frac{3}{2}x +\frac{3}{2}+3\\y = \frac{3}{2}x + \frac{9}{2}[/tex]
Multiply and combine like terms to determine the product of these polynomials.
(3x – 4)(2x + 5)
Answer: Find attached the workings in the picture.
Step-by-step explanation:
Can someone please help me factor this
Answer:
[tex]\huge\boxed{\bf\:1}[/tex]
Step-by-step explanation:
[tex]\frac{ x ^ { 2 } -4x+3 }{ x ^ { 2 } -7x+12 } \times \frac{ x ^ { 2 } +2x-24 }{ x ^ { 2 } +5x-6 } ^ { }[/tex]
Take [tex]\frac{ x ^ { 2 } -4x+3 }{ x ^ { 2 } -7x+12 }[/tex] & factorise it at first.
[tex]\frac{ x ^ { 2 } -4x+3 }{ x ^ { 2 } -7x+12 } \\= \frac{\left(x-3\right)\left(x-1\right)}{\left(x-4\right)\left(x-3\right)}\\= \frac{x-1}{x-4}[/tex]
Now factorise the next set : [tex]\frac{ x ^ { 2 } +2x-24 }{ x ^ { 2 } +5x-6 } ^ { }[/tex].
[tex]\frac{ x ^ { 2 } +2x-24 }{ x ^ { 2 } +5x-6 } ^ { }\\= \frac{\left(x-4\right)\left(x+6\right)}{\left(x-1\right)\left(x+6\right)}\\= \frac{x-4}{x-1}[/tex]
Now, multiply the two simplified results.
[tex]\frac{ x ^ { 2 } -4x+3 }{ x ^ { 2 } -7x+12 } \times \frac{ x ^ { 2 } +2x-24 }{ x ^ { 2 } +5x-6 } ^ { }\\= \frac{x-1}{x-4}\times \frac{x-4}{x-1} \\= \frac{\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-1\right)} \\= \boxed{\bf\: 1}[/tex]
[tex]\rule{150pt}{2pt}[/tex]
HELP ME PLEASE THERES A PICTURE I WILL GIVE BRAINLIEST TO BEST ANSWER
Answer:
we need to know how many students are in the class
if there are more boys, than the probability of picking a boy is higher, and if there is more girls, the probability of picking a girl is higher and if the amount of boys and girls are the same, then the probability of picking a girl or a boy is the same.
Step-by-step explanation:
Please mark my answer as brainliest