which application of recombinant dna technology involves the production of a distinct pattern of dna fragments on a gel?']

Answers

Answer 1

The application of recombinant DNA technology that involves the production of a distinct pattern of DNA fragments on a gel is known as gel electrophoresis.

Gel electrophoresis is a technique for separating DNA molecules based on their size and charge. A current is applied to a gel matrix containing DNA fragments, which causes the fragments to migrate toward the positive electrode.The size of DNA fragments is determined by comparing them to fragments of known size that have been run on the same gel. This enables scientists to identify the DNA sequence of a specific gene or set of genes. The technique is useful for a variety of purposes, including forensic science, genetic testing, and biotechnology research.There are two types of gel electrophoresis techniques: Agarose gel electrophoresis and Polyacrylamide gel electrophoresis. These techniques are based on the matrix or gel used to separate DNA fragments.

Gel electrophoresis is an essential laboratory technique used to separate and analyze fragments of DNA. It uses electric current to move negatively charged molecules, like DNA, through a gel matrix. DNA fragments of different sizes move through the gel at different speeds, producing a distinct pattern of bands on the gel .

To know more about  Recombinant DNA please visit :

https://brainly.com/question/5996835

#SPJ11


Related Questions

If energy is released in a chemical reaction, then ______. CHOOSE ALL THAT APPLY

Answers

If energy is released in a chemical reaction, then reaction is exothermic.

Chemical processes known as exothermic reactions release energy in the form of heat, light, or sound. The difference in potential energy between the reactants and the products during an exothermic reaction is released into the environment.

There are numerous techniques to see how energy is released during an exothermic reaction. For instance, the reaction could result in heat, which would raise the temperature of the immediate area. As an alternative, the reaction might result in the production of light, as with combustion processes like burning wood or gas. In some circumstances, the reaction may result in sound, such as when fireworks explode.

To know more about reaction click here

brainly.com/question/11231920

#SPJ4

wolves live in groups called packs. these fight each other whenever they meet. what kind of competition is this?

Answers

The type of competition that arises when wolves live in groups called packs and fight each other whenever they meet is called intraspecific competition.

What is intraspecific competition?

Intraspecific competition is a struggle for resources between members of the same species. The competition can arise for several reasons, including the need for food, mates, and territory.

An example of intraspecific competition in wolves is when members of a pack fight each other whenever they meet because they are competing for limited resources, such as food or mating opportunities.

Wolves live in groups called packs that are led by an alpha pair of wolves. The alpha pair of wolves, who are usually the most experienced and dominant wolves in the pack, is responsible for leading and protecting the pack. Intraspecific competition can be intense in wolves, especially during the breeding season when wolves are competing for mates and resources.


Learn more about intraspecific competition here:

https://brainly.com/question/31066889#

#SPJ11

describe how the grey wolf population would be impacted by a volcanic eruption that spewed a dense ash cloud that blocked sunlight in a section of yellowstone national park.

Answers

The grey wolf population in a section of Yellowstone National Park would be heavily impacted by a volcanic eruption that spewed a dense ash cloud that blocked sunlight.

The ash cloud would cause a decrease in the amount of food available to the wolves, as sunlight is necessary for the growth of plants and the herbivores they feed on. Additionally, the ash cloud could cause respiratory problems in the wolves, which would further decrease their numbers.


In the case of a volcanic eruption that spewed a dense ash cloud that blocked sunlight in a section of Yellowstone National Park, the grey wolf population would be impacted as follows: Due to the reduction in sunlight, plant growth would be significantly impeded, reducing the availability of food for herbivores like elk and deer, as well as their predators like the grey wolf.

This would eventually lead to an imbalance in the ecosystem, which could ultimately affect the entire food chain.

Read more about sunlight:

https://brainly.com/question/15837114

#SPJ11

What structure helps cells maintain homeostasis by regulating the movement of materials into and out of a cell?

Answers

Cell membranes enable organisms to maintain homeostasis by regulating the materials that may enter or leave a cell. Some materials easily cross the cell membrane without the input of energy; other materials require energy input in order to cross through the cell membrane.

Answer: CELL MEMBRANE

probiotics are: an example of total parenteral nutrition. substances that promote the growth of beneficial intestinal bacteria. are used to prevent bacterial overgrowth in the stomach. beneficial bacteria added to foods.

Answers

Probiotics are beneficial bacteria that can be added to foods or taken as dietary supplements to promote the growth of beneficial intestinal bacteria. Here option D is the correct answer.

Probiotics are often added to foods such as yogurt, kefir, sauerkraut, and kimchi. They may also be available in the form of capsules or tablets as dietary supplements. The most common types of bacteria used in probiotics include Lactobacillus and Bifidobacterium.

Probiotics are not an example of total parenteral nutrition, which is a method of delivering nutrition directly into the bloodstream via a vein. Nor are they used to prevent bacterial overgrowth in the stomach, as they are designed to promote the growth of beneficial bacteria in the intestines.

Probiotics are beneficial bacteria that can be added to foods or taken as supplements to promote the growth of beneficial bacteria in the gut. They are not a form of total parenteral nutrition and are not used to prevent bacterial overgrowth in the stomach.

To learn more about probiotics

https://brainly.com/question/30363774

#SPJ4

Complete question:

Probiotics are:

A - an example of total parenteral nutrition.

B - substances that promote the growth of beneficial intestinal bacteria.

C - are used to prevent bacterial overgrowth in the stomach.

D - beneficial bacteria added to foods.

what is the first signal that sets up the difference between the dorsal and the ventral side of xenopus

Answers

The first signal that sets up the difference between the dorsal and ventral side of Xenopus is the cortical rotation.

Cortical rotation is the movement of the egg's cortex relative to its cytoplasm during animal development. The animal pole, which is the upper part of the egg, receives signals that determine the dorsal side, while the vegetal pole, which is the lower part of the egg, receives signals that determine the ventral side. These signals lead to the establishment of the dorsal and ventral axis of the embryo.

Cortical rotation and other events take place before the first cleavage of the embryo. At the one-cell stage, the gray crescent forms, which is a region opposite to the sperm entry point. The gray crescent contains cytoplasm and proteins that are essential for early embryonic development. The gray crescent and the cortical rotation are critical for dorsal-ventral axis formation during Xenopus embryogenesis. The dorsal side is marked by the presence of the gray crescent. The dorsal lip of the blastopore, a feature that forms the anus, is located on the dorsal side of the embryo.

Here you can learn more about Xenopus

https://brainly.com/question/13644363#

#SPJ11  

which term refers to the vegetative portion of a cannabis plant from a strain containing low levels of thc?

Answers

The term used to refer to the vegetative portion of a cannabis plant from a strain containing low levels of THC is "low-THC cannabis".

Low-THC cannabis is defined as cannabis containing 0.3 percent or less of THC by dry weight. This type of cannabis is commonly used for medical or therapeutic purposes due to its low THC content. The low-THC cannabis plant is different from high-THC cannabis plants in that its flowers produce very little or no psychoactive effects.

Instead, low-THC cannabis can provide medical benefits such as pain relief, reduced inflammation, and decreased anxiety. Low-THC cannabis is grown and sold in a variety of forms, including flower buds, oils, tinctures, edibles, and topical products. While low-THC cannabis may not produce a “high,” it can still provide many medical benefits.

To learn more about vegetative, click here:

https://brainly.com/question/24052803

#SPJ11

What is the answer ??

Answers

Races do not follow the traditional Mendelian laws. There are several reasons why the genetics of race may be complex and not follow simple Mendelian inheritance patterns.

What are the reasons why genetics of races is more complex?Multiple genes: Many traits that are associated with race are controlled by multiple genes, not just one. These genes can interact with each other in complex ways, making it difficult to predict the phenotype based on genotype.Environmental factors: Environmental factors can also play a role in the expression of traits. For example, exposure to different environmental toxins or nutrients can affect the expression of genes related to skin colour.Population history: Populations are not static and can change over time due to factors such as migration and admixture. As a result, the genetic makeup of a population can be quite complex, and it may not be possible to neatly categorize individuals into discrete racial groups.Non-random mating: People tend to mate with others who are similar to them in terms of culture, religion, and ethnicity. This can lead to the formation of distinct subpopulations within larger racial groups, further complicating the genetics of race.

To find out more about genetics, visit:

brainly.com/question/30459739

#SPJ1

the proton pumps in your stomach are examples of primary active transport. how do proton pumps work?

Answers

Proton pumps in the stomach are specialized proteins that are responsible for the secretion of hydrogen ions (H+) into the stomach. This process is essential for the digestion of food and is one of the primary mechanisms of gastric acid secretion.

What is Proton?

A proton is a subatomic particle with a positive charge found in the nucleus of an atom. It has a relative mass of 1 and a charge of +1. The number of protons in an atom's nucleus is called the atomic number, which determines the chemical properties of the element.

Proton pumps use ATP (adenosine triphosphate) as an energy source to transport H+ ions against the concentration gradient from the cytoplasm of the parietal cells to the lumen of the stomach. The protein pump is composed of two subunits: a catalytic alpha-subunit and a regulatory beta-subunit. The alpha-subunit contains the active site, which binds ATP and H+ ions, and a transmembrane domain that transports H+ ions across the membrane. The beta-subunit is involved in regulating the activity of the pump.

Learn more about  Proton from given link

https://brainly.com/question/1481324

#SPJ1

a common way for cells to capture the energy released during the breakdown of large molecules is to add electrons to smaller, specialized molecules that can accept them. this process of electron acceptance is known as

Answers

This process of electron acceptance is known as oxidation-reduction (or redox) reactions.

Oxidation-reduction (or redox) reactions are a type of chemical reaction in which electrons are transferred between two different molecules. The molecule which accepts the electrons is known as the oxidizing agent, and the molecule which donates the electrons is known as the reducing agent.

During redox reactions, energy is released in the form of heat, light, and sound, and this energy is captured by cells to produce ATP, the molecule which provides energy to the cell. Redox reactions involve the breaking of chemical bonds and formation of new ones, resulting in the creation of new molecules. This process is essential for the production of energy and is used by cells to fuel all of their metabolic processes.

To know more about Redox reactions  click on below link:

https://brainly.com/question/13293425#

#SPJ11

PCR was used to amplify a specific 500-base section of DNA from three birds of the same species that were thought to be related. The three samples of amplified DN
were run on an electrophoresis gel. Three bands were seen on the gel that were exactly the same size. Are the birds related?

Answers

Yes, the birds are likely related based on the fact that they all have the same size band on the electrophoresis gel after PCR amplification.

leucine aminopeptidases (laps) are found in all living organisms and have been associated with the response of the marine mussel, mytilus edulis, to changes in salinity. laps are enzymes that remove n-terminal amino acids from protein

Answers

Leucine aminopeptidases (LAPs) are a group of enzymes found in all living organisms, including the marine mussel Mytilus edulis. These enzymes play a crucial role in protein metabolism by catalyzing the cleavage of N-terminal amino acids from protein substrates.

LAPs have been implicated in a variety of physiological processes, including protein turnover, regulation of peptide hormone levels, and immune system function. In Mytilus edulis, LAPs have been shown to play a role in the organism's response to changes in salinity. When the salinity of their environment changes,

Mytilus edulis utilizes LAPs to modify the composition of proteins in their cells, allowing them to better adapt to the changing conditions. This adaptation is important for the organism's survival, as changes in salinity can significantly affect the functioning of cells and tissues.

Overall, LAPs are versatile enzymes that play a critical role in protein metabolism and are found in a wide range of living organisms, including the marine mussel Mytilus edulis. Their ability to modify protein substrates makes them important players in many physiological processes, including adaptation to changing environmental conditions.

For more details about aminopeptidases click here:

https://brainly.com/question/7175239#
#SPJ11

which of the following is the highest quality protein? a. whole wheat bread b. corn c. peanut butter d. gelatin e. an egg

Answers

The highest quality protein is an egg among the given options.

A protein is a chain of amino acids that performs various vital functions in the human body. Protein is a macronutrient that is essential for the development, maintenance, and repair of all cells in the human body.

Proteins are the body's building blocks, and they serve a variety of important functions, including:

1. Helping to build new cells and tissues

2. Assisting in the creation of hormones and enzymes

3. Maintaining the body's pH levels and acid-base balance

4. Regulating fluid and electrolyte balance

In human diets, protein can be found in a variety of sources, including meat, fish, dairy products, beans, and nuts, among others. The quality of the protein found in different foods varies. A protein's quality refers to how effectively it can be broken down and utilized by the body for various functions. So, an egg is considered the highest quality protein, as it contains all nine essential amino acids needed to create new proteins, making it a complete protein.

Learn more about highest quality protein: https://brainly.com/question/9050319

#SPJ11

100 POINTS PLEASE HELP In a separate location, take notes from the sources you've identified. The notes will provide details for your presentation. While taking notes, you may want to use these reading strategies. Write down two pieces of information that you intend to use in your presentation. Use these sources if you find them helpful: Earth's Magnetic Field Vital Protection for Earth Van Allen Radiation Belts Earth's Magnetosphere Auroras​

Answers

Notes on Earth's Magnetic Field:

Earth has a magnetic field that acts like a shield, protecting us from the solar wind and cosmic radiation.
The magnetic field is generated by the movement of molten iron in the outer core of the Earth.
Notes on Van Allen Radiation Belts:

The Van Allen radiation belts are two zones of highly energetic charged particles that are trapped by Earth's magnetic field.
The belts were discovered by James Van Allen in 1958 and are named after him.
Notes on Earth's Magnetosphere:

The magnetosphere is the region around Earth where its magnetic field dominates the interactions with the solar wind.
The magnetosphere is shaped like a teardrop, with its long tail extending away from the Sun.
Notes on Auroras:

Auroras are beautiful light displays that occur in the polar regions of the Earth.
They are caused by charged particles from the Sun interacting with Earth's magnetic field and atmosphere.


("I hope that helped.")

the capsule stain involves the use of both a. basic stain and acidic stain. b. basic stain and gram stain. c. basic stain and acid-fast stain d. a simple stain and a negative stain. e. two of a - d are correct.

Answers

The capsule stain involves the use of two stains: a basic stain and an acidic stain. So the correct answer is option A.

The basic stain is used to color the cell wall and the acidic stain is used to color the capsule around the cell wall. This technique is used to differentiate cells with a capsule from those without one. In the capsule stain, the cells are first treated with a basic stain that colors the cell wall, and then the cells are treated with an acidic stain that colors the capsule around the cell wall. Cells with a capsule will appear as dark pink, while those without a capsule will appear as pale pink or colorless. This technique is useful in identifying bacteria that produce a capsule around their cell wall.

Learn more about capsule stain: https://brainly.com/question/29646880

#SPJ11

dr. clasen is interested in studying cells in v1 that receive input from different eyes. she should place electrodes in:

Answers

Dr. Clasen should place electrodes in the region where the two inputs converge in V1 for studying cells in V1 that receive input from different eyes.

When both eyes are open, the retina of each eye projects onto the opposite side of the brain via the optic nerve.

V1 is the first region of the brain to receive this visual input, and it has a particular arrangement of cells that enables the brain to perceive depth and construct a unified image of the world.

Dr. Clasen is interested in investigating cells in V1 that receive input from different eyes, implying that she is interested in exploring binocular vision.

Binocular vision refers to the capacity of the brain to combine the inputs from the two eyes into a single, unified image of the world that provides an accurate perception of depth. The point where the two inputs converge in V1 is the best location to place electrodes for her research.

Learn more about V1 (primary visual cortex): https://brainly.com/question/31023233

#SPJ11

food and fluid passageway inferior to the laryngopharynx called______

Answers

The food and fluid passageway located inferior to the laryngopharynx is called the esophagus. This muscular tube is an essential component of the digestive system, responsible for transporting food and fluids from the mouth to the stomach.

The esophagus measures approximately 25 centimeters in length and is lined with smooth muscle that helps propel food downward using coordinated contractions called peristalsis. The laryngopharynx, situated above the esophagus, is a part of the pharynx that serves as a passageway for both food and air. A flap of cartilage known as the epiglottis plays a crucial role in preventing food from entering the trachea or windpipe, ensuring that it follows the correct path into the esophagus.

Once food reaches the lower end of the esophagus, it passes through the lower esophageal sphincter, a ring of muscle that acts as a one-way valve, preventing stomach contents from flowing back up into the esophagus. This mechanism helps protect the esophagus from damage caused by stomach acid and other digestive enzymes.

In summary, the esophagus is the food and fluid passageway located inferior to the laryngopharynx. Its primary function is to transport food and fluids from the mouth to the stomach, aided by peristalsis and the lower esophageal sphincter.

For more such questions on esophagus

https://brainly.com/question/20695235

#SPJ11

the process of cells clumping together is known as: hematopathy. anticoagulation. hematopoiesis. agglutination. hematoma.

Answers

Answer: Agglutination

Explanation:

When cells clump together, it is called agglutination. An example of this occurs when red blood cells clump when antibodies are present. This binds the cells together in a large group.

The picture below shows the cellular processes that four rat cells, each holding 92 chromosomes, underwent. Use the picture to answer any questions that follow.



Which rat cell underwent meiosis?
A
Cell W

B
Cell X

C
Cell Y

D
Cell Z

Answers

The image below, which features four rat cells with 92 chromosomes each, demonstrates the cellular functions. The rat cell undergoing meiosis is Cell Z with four daughter cells having 46 chromosomes.

What is meiosis?

Meiosis, a special kind of cell division of germ cells in sexually reproducing organisms, produces gametes, such as sperm or egg cells. It involves two rounds of division, with the end result being four cells with just one copy of each chromosome (haploid). Before division, each chromosome also experiences genetic material cross-pollination between the maternal and paternal copies, creating new combinations of the genetic code on each chromosome. The zygote, a new cell with two copies of each chromosome, is generated later by the meiotic union of the haploid cells produced by the male and female.

What is the difference between meiosis and mitosis?

Meiosis and mitosis both involve cell division. The majority of cells in the body divide in a single process known as mitosis, which yields two identical, diploid daughter cells. The meiotic process results in the production of gametes.

To know more about Mitosis, visit:

https://brainly.com/question/29776367

#SPJ1

Please help I give 55 pt.

Answers

The type of selection that the graph about human birth weight illustrates is stabilizing selection.

How does human birth weight illustrate stabilizing selection?

Human birth weight is an example of stabilizing selection because it demonstrates how natural selection favors individuals with intermediate traits rather than extreme traits.

In the case of birth weight, babies that are born with a weight that is too low or too high are at a disadvantage compared to babies that are born with a weight that is closer to the average for their gestational age.

Learn more about stabilizing selection at: https://brainly.com/question/15592313

#SPJ1

Complete question:

8. What type of selection is this graph about human birth weight illustrating? Explain why.

what is the result of a point mutation that changes a template gene sequence from 3'-tacgccatatat-5' to 3'-tacgccatctat-5'?

Answers

The result of a point mutation that changes a template gene sequence from 3'-tacgccatatat-5' to 3'-tacgccatctat-5' is that the ninth nucleotide in the sequence has changed from an "A" (Adenine) to a "C" (Cytosine). This is known as a substitution mutation since one nucleotide has been swapped for another.

The resulting amino acid is changed due to a point mutation that changes a template gene sequence from 3'-tacgccatatat-5' to 3'-tacgccatctat-5'.

Point mutation is the substitution of one nucleotide for another in a gene's DNA sequence, which may have no effect, produce a different amino acid, or prevent the gene from functioning properly. Since each codon in a gene's DNA sequence corresponds to a specific amino acid, changing the nucleotide sequence can change the amino acid sequence.

As a result, the resulting amino acid will be different because of the point mutation that changes the template gene sequence from 3'-tacgccatatat-5' to 3'-tacgccatctat-5'.

To know more about Substitution mutation, refer here:

https://brainly.com/question/30097915#

#SPJ11

the transformation process was not very efficient. how did we eliminate all non-transformed bacteria so that only transformed bacteria would grow in the lb plates?

Answers

To eliminate all non-transformed bacteria so that only transformed bacteria would grow in the LB plates, the researchers added an antibiotic-resistant gene to the plasmid that was inserted into the bacteria during transformation.

Transformation is the process in which bacteria absorb free DNA that is present in the environment and integrate it into their genome. This process may occur naturally or be induced in a lab setting. Antibiotic resistance genes, fluorescent proteins, and enzymes that are useful in a variety of industrial applications can be introduced into bacteria using this technique. It is also used in genetic engineering to generate transgenic organisms. The bacterial transformation process was not very efficient because only a small number of cells take up the foreign DNA.

The elimination of all non-transformed bacteria so that only transformed bacteria would grow in the LB plates is accomplished by adding an antibiotic-resistant gene to the plasmid that is inserted into the bacteria during transformation. When the bacteria are exposed to the antibiotic on the LB plate, only those that have taken up the antibiotic-resistant plasmid will survive and multiply. This technique is referred to as antibiotic selection.

Learn more about non-transformed bacteria at https://brainly.com/question/30755527

#SPJ11

fluoroacetate is a potent inhibitor of the tca cycle. which step of the tca cycle is inhibited as a result of fluoroacetate entering the tca cycle?

Answers

Fluoroacetate is a potent inhibitor of the TCA cycle. As a result of Fluoroacetate entering the TCA cycle, the step of the TCA cycle that is inhibited is aconitase, which is the second step of the TCA cycle

The TCA cycle or Krebs cycle is a series of chemical reactions that occur in the mitochondrial matrix in eukaryotic cells or the cytoplasm of prokaryotes. It is responsible for generating the majority of the energy in the body, in the form of ATP. It also produces some intermediate compounds that are utilized in various cellular processes.

Fluoroacetate is a potent inhibitor of the TCA cycle. Fluoroacetate enters the cycle and binds with coenzyme A to form fluoroacetyl-CoA, which then inhibits aconitase. The inhibition of aconitase blocks the next step of the TCA cycle, and as a result, the entire cycle is disrupted. This inhibition is specific and does not affect other metabolic pathways.

Here you can learn more about TCA cycle

https://brainly.com/question/30861460#

#SPJ11

what type of blodd vessels has the greatest collective influence on both local blood flow and on overall blood pressure?

Answers

Answer:

vein

it always has the largest blood

Examine the figure, the countercurrent arrangement of the arterial / venous blood vessels causes a. the temperature difference between the blood of the two sets of vessels to be minimized. b. the venous blood to be as cold near the abdomen as it is near the feet. c. the blood in the feet to be as warm as the blood in the abdomen. d. the temperature at the abdomen to be less than the temperature at the feet. e. the loss of the maximum possible amount of heat to the environment.

Answers

The answer would be A: the countercurrent arrangement of the arterial/venous blood vessels causes the temperature difference between the blood of the two sets of vessels to be minimized.

The countercurrent exchange system is a biological mechanism that is used by many animals to conserve heat in their extremities, such as the legs and feet, while maintaining warmer temperatures in their vital organs. This system works by transferring heat between arteries and veins in adjacent vessels flowing in opposite directions, creating a countercurrent exchange.

This exchange causes heat to be transferred from warmer arterial blood to cooler venous blood, which helps to minimize the temperature difference between the two sets of vessels. This mechanism is important for maintaining optimal body temperature and conserving heat energy in cold environments.

To learn more about blood vessels refer to:

brainly.com/question/4601677

#SPJ4

a cell that has just started interphase has four chromosomes. how would the same cell look when it is in metaphase?

Answers

In metaphase, the cell would contain eight chromatids and eight separate chromosomes.

A cell is growing and replicating DNA during the interphase as it gets ready to divide. Each chromosome at this point is made up of two sibling chromatids that are joined together at the centromere. With each chromosome comprised of two identical sibling chromatids, a cell with four chromosomes that have just entered interphase would therefore have a total of eight chromatids.

The same cell has finished interphase and advanced to mitosis, the step of cell division, when it reaches metaphase. The chromosomes condense and arrange themselves along the metaphase plate, which is the cell's equatorial axis, during metaphase. Each chromosome can be seen as a unique and compact structure during this stage.

Learn more about metaphase at

https://brainly.com/question/9360168

#SPJ4

which supergroup of eukaryotes includes members who have evolved from an ancestor that procured its chloroplasts through promary endosymbiosis

Answers

The supergroup of eukaryotes that includes members who have evolved from an ancestor that procured its chloroplasts through primary endosymbiosis is Archaeplastida.

Archaeplastida is a supergroup of eukaryotes that includes red algae, green algae, and land plants. They all have a common ancestor that procured its chloroplasts through primary endosymbiosis. Members of the group Archaeplastida, such as red and green algae, are thought to be the first eukaryotes to have photosynthesis capabilities.

Archeoplastida are mostly unicellular, although some species can form colonies, and others can be multicellular, such as seaweeds. Some members of the group, such as red algae, are still photosynthetic, while others, such as green algae, have become fully multicellular and have evolved into modern-day land plants.

The algae have evolved numerous specialized structures that allow them to survive in different environments. For example, the seaweeds have an elaborate system of holdfasts, stipes, and blades that allow them to attach to the substrate and obtain nutrients from the water.

To know more about Archaeplastida here:
https://brainly.com/question/14932614#

#SPJ11

which phase on the growth curve for a bacterial population contains a high number of viable cells for the longest time

Answers

The growth curve for a bacterial population contains a high number of viable cells for the longest time on the stationary phase.

The bаcteriаl growth curve represents the number of live cells in а bаcteriаl populаtion over а period of time. There аre four distinct phаses of the growth curve: lаg, exponentiаl (log), stаtionаry, аnd deаth.

The initiаl phаse is the lаg phаse where bаcteriа аre metаbolicаlly аctive but not dividing.The exponentiаl or log phаse is а time of exponentiаl growth.In the stаtionаry phаse, growth reаches а plаteаu аs the number of dying cells equаls the number of dividing cells.The deаth phаse is chаrаcterized by аn exponentiаl decreаse in the number of living cells.

For more information about bаcteriаl growth curve refers to the link: https://brainly.com/question/30674374

#SPJ11

If a population of non-flying insects is divided into two groups by a river, but every now and then some of them can cross the river on the backs of beavers, explain how this effects the potential of the two groups to become different species and why.

Answers

Gene flow can reduce speciation potential by homogenizing populations, which can occur when insects move across the river.

A periodic development of non-flying bugs across the stream can go about as a quality stream between the two populaces, decreasing the potential for the improvement of various species. Quality stream can carry new alleles to the populace, expanding hereditary variety and homogenizing the two gatherings. Accordingly, the recurrence of alleles that are liable for transformation to various conditions is diminished. The two populaces are bound to develop as a solitary unit, and the distinctions between them are probably going to be weakened after some time. Conversely, in the event that the quality stream is forestalled totally, the two populaces will develop freely and have a more noteworthy potential to form into particular species because of hereditary float, transformation, and normal determination.

To learn more about beavers, refer:

https://brainly.com/question/3895140

A number of genes will cause a variation in phenotype, depending on whether the gene came from the father or the mother. This variation occurs because of genomic imprinting. Explain genomic imprinting.

Answers

Answer:

Genomic imprinting is a process where specific genes are expressed differently depending on whether they come from the mother or the father.

Explanation:

This happens because "epigenetic marks" can affect gene expression without changing the DNA sequence. These marks can be inherited with the gene and last for many cell divisions. Genomic imprinting helps regulate how a growing embryo develops and grows.

Genomic imprinting is an epigenetic phenomenon that refers to the differential expression of alleles that depend on their parental origin. Genomic imprinting is most well-known for its effects on the expression of imprinted genes.

Genomic imprinting is regulated by the presence of differentially methylated regions (DMRs) that are established in the germline and maintained through development. In mammals, DNA methylation marks at DMRs are established in the germline during gametogenesis, which is then maintained through mitotic cell divisions in the zygote and during development. These DNA methylation marks are stably inherited through generations and provide a memory of the parental origin of each allele. A notable consequence of genomic imprinting is that it leads to the monoallelic expression of genes, which means that only one of the two parental alleles is expressed while the other allele is transcriptionally silenced.

Learn more about Genomic imprinting: https://brainly.com/question/29568600

#SPJ11

Other Questions
Can someone help me, please? what is criminal law it is the body of law that defines criminal offenses, regulates the apprehension, charging, and trial of suspected persons, and fixes penalties and modes of treatment applicable to convicted offenders which of the following are true of asexual reproduction? choose all that apply. the offspring are genetically different than the parents. there is only one parent. the offspring are genetically identical to the parent. there are two parents. in the past year, 13% of businesses have eliminated jobs. if 5 businesses are selected at random, find the probability that at least 3 have eliminated jobs during the last year. round your answer to at least three decimal places. do not round your intermediate calculations. which is paul's epistle called the magna carta of christian liberty and the declaration of independence? suppose pat's dog barks loudly at night and keeps erin awake. if erin has a clearly defined right to peace and quiet at night, then: most of the mass of the solar system is located in which of the following? responses sun sun jupiter jupiter comets comets earth domee, a political strategist, focuses on facts, evidence, and credibility and tends to look at an issue from all sides. domee's particular listening style is howPollution can spread through aquifers and why it is can bedangerous for us? The ratio of boys to girls in a class is 4:5 a)What fraction of the class are boys b) what a fraction of the class are boys! Which polynomial is in standard form?A) 2+x+ 5x-x + 2x4B) x + 5x + 6x + x - 2C) 2x + 3x - 4x + 3x + 2D) 4x + 5x + 6x6 +7x4-2 consider the following credit card: card apr compounding a 6.2200% annual b 6.0583% daily c 6.1277% quarterly d 6.1204% monthly which one would you choose? card c correct! card a card d card b what should your next steps be? check all that apply. brainstorm for ideas. evaluate your message. conduct any necessary research. jot down reasons that explain the bad news a client wishing to lose weight is considering how to best consume a small amount of pasta. which food choice will the nurse recommend as a topping for pasta? d. if a student was an undergraduate business major, what is the probability that the student intends to attend classes full-time in pursuit of an mba degree (to decimals)? In this exercise, you will practice identifying a fallacy that is usually referred to as begging the question. This fallacy is often classified as a fallacy of presumption. Generally, fallacies of presumption arise because the premises simply presume what they are supposed to prove rather than provide evidence from which a genuine conclusion may be inferred. In particular, the fallacy of begging the question may presume its purported conclusion in one of three ways: 1. It may leave out a shaky premise that is nevertheless necessary for the conclusion to follow (thus presuming that there is stronger support for the conclusion than is actually the case). 2. It may simply restate a questionable premise using slightly different language. 3. It may reason in a circle of inferences from one shaky premise to the next, winding up with a conclusion that again restates a questionable premise. In each of these three ways, begging the question creates the illusion that inadequate premises provide actual support for a conclusion, when in fact the conclusion simply restates questionable assumptions that are left unproven within the premises. Consider each of the following argumentative passages and indicate (1) whether it commits a fallacy and (2) whether, specifically, it commits the fallacy of begging the question. (Note: It is possible for a single argument to commit more than one type of fallacy. Also, if an argument commits a different fallacy altogether, indicate that it does commit a fallacy, but not the "begging the question" fallacy.) George said that he selected leaders with the best of intentions, but he was still disappointed in the outcome. We can only surmise that the leaders' intentions weren't as good as George had expected. Passage A commit a fallacy; specifically, it commit the fallacy of begging the question. \begin{tabular}{|c|} \hline does \\ \hline does not \\ \hline \end{tabular} Passage B You can find scientists who believe that global warming is not significantly affected by human activity, just as you can find scientists whon believe that global warming is significantly affected by human activity. Since scientists cannot even agree on the issue, whould not alter our human activities in hopes of affecting global warming. Passage B commit a fallacy; specifically, it commit the fallacy of begging the question. Passage C I am tired of all these boring logic exercises. I can pass the test tomorrow without all this practice, anyway. Don't you want to quit doing logic exercises and go to the party with us, or are you going to be a nerd your whole life? Passage C commit a fallacy; specifically, it commit the fallacy of begging the question. War always involves killing, and murder is always wrong. Therefore, war is always wrong. Passage D commit a fallacy; specifically, it Passage E does not Earth is closer to the sun than Neptune. So, Earth has a shorter orbit than Neptune. Passage E commit a fallacy; specifically, it commit the fallacy of begging the question. Which correctly describes a different evolutionary stage of a star like the sunA) its forms from a cold, dusty molecular cloudB) During a yellow giant stage, it burns carbon in its core and helium in the shell surrounding the core. C) After leaving the main sequence, its core is stable due to electron degeneracyD) It becomes a white dwarf after exploding as a supernovaE)During a red giant stage, its core contracts and cools T/F,Companies that succeed in a turbulent world are those in which managers are evaluated and rewarded for paying attention to both cultural values and business performance. What is the kinetic energy of the ball as it is halfway through the fall from a forty foot building? What is the potential energy? the first theme group of the second exposition of a concerto features arondo recapitulation baryton modulation