With the sinusoidal voltage source shown, what is the rms current of this circuit? (select closest ans With the sinusoidal voltage source shown, what is the rms current of this circuit? (select closest answer 10 A 13 A 14 A 19 A 21 A

Answers

Answer 1

The closest answer to the rms current of the circuit is 14 A.

The rms current of the given circuit can be calculated by using the following formula:`Irms = Vrms / R`where `Vrms` is the rms voltage across the resistor `R`.Here, the rms voltage can be calculated using the given peak voltage. As the waveform is a sinusoid, the rms voltage can be calculated by dividing the peak voltage by √2.So, `Vrms = Vp / √2 = 100 / √2 = 70.7 V`.Now, we can find the rms current by using the formula: `Irms = Vrms / R = 70.7 / 5 = 14.14 A`.Therefore, the closest answer to the rms current of the circuit is 14 A.

Learn more about voltage here,

https://brainly.com/question/27861305

#SPJ11


Related Questions

Thetionves contact with metal fals cas and di. The Fopress your answer h velte. - Ferperidicular to the piane of the towe: Part 8 Figure (1) 1 Part C the right with a constant speed of 9.00 m/s. If the resistance of the circuit abcd is a constant 3.00Ω, find the direction of the force required to keep the rod moving to the right with a constant speed of 9.00 m/s. No force is needed. The force is directed to the left. The force is directed to the right. Part D Find the magnitude of the force mentioned in Part C. Express your answer in newtons. Two insulated wires perpendicular to each oiher in the same plane carry currerts as shown in (Fictre 1). Assume that I=11 A and d 2
=16can (Current {a∣ in the figurel. Enpeese your answer in tatas to two signifears foure. Flgure Part Bs (Carent (i) in the figur)! Express your answer in 1esien to hws slynifieart tegures.

Answers

The solution to the problem is as follows:Part AIt is given that, the resistance of the circuit abcd is 3.00 Ω.Now, the potential difference across ab = v(ab) = IR = 3.00 Ω * 3.00 A = 9.00 V (by ohm's law)The potential difference across bc = v(bc) = IR = 3.00 Ω * 3.00 A = 9.00 V (by ohm's law)Hence, v(ab) = v(bc) = 9.00 VPart BIt is given that, the current I in the wire cd is 11 A.  

Let's consider a small segment of wire with length x at a distance of y from wire ab.We know that the force per unit length between two parallel wires carrying current is given by f/L = (μ₀ * I * I') / (2πd),Where,μ₀ = Permeability of free spaceI, I' = Currents in the two wiresd = Distance between the two wires.Now, the total force on the small segment = f = (μ₀ * I * I' * x) / (2πy)Hence, the total force on the wire cd due to wire ab = f(ab) = ∫(μ₀ * I * I' * x) / (2πy) dx (from x=0 to x=6.00 cm) = (μ₀ * I * I' * ln(2)) / (πy) ... (1)Similarly, the total force on the wire cd due to wire ef = f(ef) = (μ₀ * I * I' * ln(4)) / (πy) ... (2)Now, the total force on the wire cd is given by,F = sqrt(f(ab)² + f(ef)²) ... (3)F = sqrt(μ₀² * I² * I'² * (ln(2))² + μ₀² * I² * I'² * (ln(4))²) / π² ... (4)F = (μ₀ * I * I') / π * sqrt(ln(2)² + ln(4)²) ... (5)F = (μ₀ * I * I') / π * sqrt(5) ... (6)F = (4π * 10⁻⁷ T m/A * 3.00 A * 11 A) / (π * sqrt(5)) = 2.65 * 10⁻⁵ N ... (7)Therefore, the force on wire cd is directed to the left and its magnitude is 2.65 x 10⁻⁵ N.Part CThe direction of the force required to keep the rod moving to the right with a constant speed of 9.00 m/s is no force is needed.Part DThe magnitude of the force mentioned in Part C is zero. Hence, the answer is 0 N.

Learn more on speed here:

brainly.in/question/47776531

#SPJ11

DETAILS OSCOLPHYS2016 12.3.P.025. MY NOTES ASK YOUR TEACHER Hoover Dam on the Colorado River is the highest dam in the United States at 221 m, with an output of 1300 MW The dam generates electricity with water taken from a depth of 110 m and an average flow rate of 650 m³/s. (a) Calculate the power in this fow in watts. (b) What is the ratio of this power to the facility's average of 680 MW? [-/2.85 Points) DETAILS OSCOLPHYS2016 12.4.P.030. MY NOTES ASK YOUR TEACHER

Answers

a) The power in the flow of water is approximately 714 MW.

b) The ratio of the power in the flow of water to the facility's average power is approximately 1.05.

(a) To calculate the power in the flow of water, we use the formula:

[tex]\[ P = \rho \cdot g \cdot Q \cdot h \][/tex]

where P  is the power, [tex]\( \rho \)[/tex] is the density of water, g is the acceleration due to gravity, Q  is the flow rate of water, and h  is the depth.

Given that the depth is 110 m, the flow rate is 650 m³/s, the density of water is approximately 1000 kg/m³, and the acceleration due to gravity is 9.8 m/s², we can calculate the power:

[tex]\[ P = (1000 \, \text{kg/m}^3) \cdot (9.8 \, \text{m/s}^2) \cdot (650 \, \text{m}^3/\text{s}) \cdot (110 \, \text{m}) \approx 7.14 \times 10^8 \, \text{W} \][/tex]

(b) To find the ratio of this power to the facility's average power of 680 MW, we divide the power from part (a) by 680 MW:

[tex]\[ \text{Ratio} = \frac{7.14 \times 10^8 \, \text{W}}{680 \times 10^6 \, \text{W}} \approx 1.05 \][/tex]

Learn more about density here:

https://brainly.com/question/29474559

#SPJ11

A particle with a charge of 5.8nC is moving in a uniform magnetic field of B
=(1.45 T) k
^
. The magnetic force on the particle is measured to be: F
=−(4.02×10 −7
N) i
^
−(9 ×10 −7
N) j
^

(a) Calculate the x component of the velocity (in m/s ) of the particle (b) Calculate the y component of the velocity (in m/s ) of the particle

Answers

(a) The x-component of the velocity of the particle is approximately -0.0696 m/s.

(b) The y-component of the velocity of the particle is approximately -0.122 m/s.

The magnetic force acting on a charged particle moving in a magnetic field is given by the equation:

[tex]\[ \mathbf{F} = q \cdot \mathbf{v} \times \mathbf{B} \][/tex]

where [tex]\( q \)[/tex] is the charge of the particle, [tex]\( \mathbf{v} \)[/tex] is the velocity of the particle, and [tex]\( \mathbf{B} \)[/tex] is the magnetic field. We are given the magnitude and direction of the magnetic force as [tex]\( F = -4.02 \times 10^{-7} \, \mathrm{N} \)[/tex] in the x-direction and [tex]\( F = -9 \times 10^{-7} \, \mathrm{N} \)[/tex] in the y-direction.

By comparing the components of the magnetic force equation, we can determine the x and y components of the velocity:

[tex]\[ F_x = q \cdot v_y \cdot B \][/tex]

[tex]\[ F_y = -q \cdot v_x \cdot B \][/tex]

Solving these equations simultaneously, we can find the x and y components of the velocity. Rearranging the equations, we have:

[tex]\[ v_x = -\frac{F_y}{qB} \][/tex]

[tex]\[ v_y = \frac{F_x}{qB} \][/tex]

Substituting the given values, where [tex]\( q = 5.8 \times 10^{-9} \, \mathrm{C} \) , \( B = 1.45 \, \mathrm{T} \),[/tex] we can calculate the x and y components of the velocity:

[tex]\[ v_x = -\frac{-9 \times 10^{-7}}{5.8 \times 10^{-9} \cdot 1.45} \approx -0.0696 \, \mathrm{m/s} \][/tex]

[tex]\[ v_y = \frac{-4.02 \times 10^{-7}}{5.8 \times 10^{-9} \cdot 1.45} \approx -0.122 \, \mathrm{m/s} \][/tex]

Therefore, the x-component of the velocity of the particle is approximately -0.0696 m/s, and the y-component of the velocity is approximately -0.122 m/s.

Learn more about charge here:

https://brainly.com/question/30425906

#SPJ11

Test your understanding and self-check Open the full Bending Light simulation 6. Show that you can use Snell's Law (nisin1 = n2sin 2) to predict the angle of reflection and angle of refraction for several scenarios. Show your work. After you have completed the calculations, use simulation to check your work For incident angle of 30 degrees light shining a. from air into water b. from water into air c. from air into glass d. from water into glass e. from air into a medium with an index of 1.22

Answers

The task is to use Snell's Law to predict the angle of reflection and angle of refraction for different scenarios involving light passing through different media.

The scenarios include light traveling from air to water, water to air, air to glass, water to glass, and air to a medium with an index of 1.22. The calculations will be done based on Snell's Law, and the results will be verified using the Bending Light simulation.

Snell's Law relates the angles of incidence and refraction to the refractive indices of two media. The equation is given by n₁sinθ₁ = n₂sinθ₂, where n₁ and n₂ are the refractive indices of the initial and final media, and θ₁ and θ₂ are the angles of incidence and refraction, respectively.

To predict the angles of reflection and refraction for the given scenarios, we need to know the refractive indices of the media involved. We can then apply Snell's Law and calculate the corresponding angles using the given incident angle.

Once the calculations are completed using Snell's Law, the Bending Light simulation can be used to verify the results. The simulation allows us to visually observe the behavior of light rays as they pass through different media, confirming whether our predicted angles of reflection and refraction are accurate.

By comparing the calculated values with the simulated results, we can determine the accuracy of our predictions and verify the applicability of Snell's Law in different scenarios.

Learn more about Snell's Law here:

https://brainly.com/question/8757345

#SPJ11

Determine the magnetic field at the surface of the wire. Express your answer using two significant figures. A 3.0 mm -diameter copper wire carries a 40 A current (uniform across its cross section). Part A Determine the magnetic field at the surface of the wire.
Express your answer using two significant figures.
Part B Determine the magnetic field inside the wire, 0.50 mm below the surface. Express your answer using two significant figures
Part C Determine the magnetic field outside the wire 2.5 mm from the surface. Express your answer using two significant figures.

Answers

a) The magnetic field at the surface of the wire is approximately 0.05 T.

b) The magnetic field inside the wire, 0.50 mm below the surface, is approximately 0.033 T.

c) The magnetic field outside the wire, 2.5 mm from the surface, is approximately 4.2 × 10⁻⁵ T.

Part A:

To determine the magnetic field at the surface of the wire, we can use Ampere's law.

Ampere's law states that the magnetic field around a closed loop is directly proportional to the current passing through the loop. For a long straight wire, the magnetic field forms concentric circles around the wire.

At the surface of the wire, the magnetic field can be calculated using the formula B = μ₀I/2πr,

B = (4π × 10⁻⁷ T·m/A × 40 A) / (2π × 0.0015 m) ≈ 0.05 T

Part B:

Inside the wire, the magnetic field follows a different formula. For a long straight wire, the magnetic field inside can be calculated using the formula B = μ₀I/2πR:

B = (4π × 10⁻⁷ T·m/A × 40 A) / (2π × 0.001 m) ≈ 0.033 T

Part C:

Outside the wire, at a distance r from the surface, the magnetic field can be calculated using the formula B = μ₀I/2πr.

B = (4π × 10⁻⁷ T·m/A × 40 A) / (2π × 0.0025 m) ≈ 4.2 × 10⁻⁵ T

learn more about magnetic field here:

https://brainly.com/question/23096032

#SPJ4

Which one of the following is a characteristic of a compound microscope? A) The image formed by the objective is real. B) The objective is a diverging lens. C) The eyepiece is a diverging lens. D) The final image is real. E) The image formed by the objective is virtual. A B C D E

Answers

One of the following is a characteristic of a compound microscopeThe correct answer is A) The image formed by the objective is real.

A compound microscope is an optical instrument used to magnify small objects or specimens. It consists of two lenses: the objective lens and the eyepiece. In a compound microscope, the objective lens is the primary lens responsible for magnifying the image of the specimen. It forms a real, inverted, and magnified image of the object being observed. This real image is then further magnified by the eyepiece lens.

The eyepiece lens, which is positioned near the observer's eye, acts as a magnifying lens to further enlarge the real image formed by the objective lens. The eyepiece lens produces a virtual image, meaning the light rays do not actually converge to form the image but appear to originate from a point behind the lens. Therefore, among the given options, A) The image formed by the objective is real is the correct characteristic of a compound microscope. The other options (B, C, D, E) do not accurately describe the characteristics of a compound microscope.

Learn more about objective lens here:

https://brainly.com/question/3174756

#SPJ11

(a) What is the maximum current in a 2.30-uF capacitor when it is connected across a North American electrical outlet having AV. rms = 120 V and f = 60.0 Hz? mA (b) What is the maximum current in a 2.30-uF capacitor when it is connected across a European electrical outlet having AV rms = 240 V and f = 50.0 Hz?

Answers

a. The maximum current in a 2.30-uF capacitor connected across a North American electrical outlet with AV.rms of 120 V and f = 60.0 Hz is approximately 1.01 mA.

b. The maximum current in a 2.30-uF capacitor connected across a European electrical outlet with AV.rms of 240 V and f = 50.0 Hz is approximately 2.54 mA.

The maximum current in a capacitor can be calculated using the formula I = C * ΔV * ω, where I represents the current, C represents the capacitance, ΔV represents the voltage across the capacitor, and ω represents the angular frequency. In this case, the capacitance is given as 2.30 uF (microfarads), and the voltage across the capacitor is 120 V. Since the electrical outlet in North America has a frequency of 60.0 Hz, ω can be calculated as 2π * f. Substituting these values into the formula, we find that the maximum current is approximately 1.01 mA.

Similarly, for the European electrical outlet with AV.rms of 240 V and f = 50.0 Hz, we can use the same formula to calculate the maximum current. The capacitance remains the same (2.30 uF), and the voltage across the capacitor is now 240 V. The angular frequency ω is calculated as 2π * f. Substituting these values into the formula, we find that the maximum current is approximately 2.54 mA.

In summary, the maximum current in a capacitor depends on the capacitance, voltage, and frequency of the electrical source. The higher the voltage and frequency, the higher the maximum current. The provided values for the North American and European outlets yield different maximum currents due to the variation in their AV.rms voltage levels and frequencies.

Learn more about capacitor:

https://brainly.com/question/31627158

#SPJ11

Luis is nearsighted. To correct his vision, he wears a diverging eyeglass lens with a focal length of -0.50 m. When wearing glasses, Luis looks not at an object but at the virtual image of the object because that is the point from which diverging rays enter his eye. Suppose Luis, while wearing his glasses, looks at a vertical 10-cm-tall pencil that is 2.0 m in front of his glasses. Part A How far from his glasses is the image of the pencil? Express your answer with the appropriate units. s'] = 0.40 m Previous Answers ✓ Correct Luis is nearsighted. To correct his vision, he wears a diverging eyeglass lens with a focal length of -0.50 m. When wearing glasses, Luis looks not at an object but at the virtual image of the object because that is the point from which diverging rays enter his eye. Suppose Luis, while wearing his glasses, looks at a vertical 10-cm-tall pencil that is 2.0 m in front of his glasses. Y Part B What is the height of the image? Express your answer with the appropriate units. h' = 2.0 cm Previous Answers ✓ Correct Luis is nearsighted. To correct his vision, he wears a diverging eyeglass lens with a focal length of -0.50 m. When wearing glasses, Luis looks not at an object but at the virtual image of the object because that is the point from which diverging rays enter his eye. Suppose Luis, while wearing his glasses, looks at a vertical 10-cm-tall pencil that is 2.0 m in front of his glasses. Heview Constants Your answer to part b might seem to suggest that Luis sees everything as being very tiny. However, the apparent size of an object (or a virtual image) is determined not by its height but by the angle it spans. In the absence of other visual cues, a nearby short object is perceived as being the same size as a distant tall object if they span the same angle at your eye. From the position of the lens, what angle is spanned by the actual pencil 2.0 m away that Luis sees without his glasses? And what angle is spanned by the virtual image of the pencil that he sees when wearing his glasses? Express your answers in degrees and separated by a comma.

Answers

Part AThe object distance is u = -2.0 m, the focal length is f = -0.50 m and we are looking for the image distance which is given by the lens formula, 1/f = 1/v - 1/u1/-0.5=1/v-1/-2v=0.4 mTherefore, the image distance is 0.4 m.Part BThe magnification is given by the relation, m = -v/uUsing the values of v and u calculated above, we getm = -0.4/-2 = 0.2The magnification is positive which means that the image is erect and virtual.

The height of the object is h = 10 cm and we are looking for the height of the image, which is given byh' = mh = 0.2 × 10 = 2.0 cmThe height of the image is 2.0 cm.Angle CalculationThe angle spanned by an object at the eye depends on both the size and the distance of the object from the eye. The angle θ can be calculated using the relation,θ = 2tan⁻¹(h/2d)where h is the height of the object and d is its distance from the eye.1. For the object without glasses:

The object is 2.0 m away from the lens and has a height of 10 cm.θ1 = 2tan⁻¹(0.1/4) = 2.86 degrees2. For the image with glasses: The image is virtual and appears 0.4 m behind the lens.

The height of the image is 2.0 cm.θ2 = 2tan⁻¹(0.02/0.4) = 2.86 degreesTherefore, the angles spanned by the object and the image are the same and equal to 2.86 degrees.

Find the uncertainty in the moment of interia. Moment of interia of a disk depends on mass and radius according to this function l(m,r) = 1/2 m r². Your measured mass and radius have the following uncertainties δm = 2.46 kg and δr = 1.82 m. What is is the uncertainty in moment of interia, δ1, if the measured mass, m = 13.68 kg and the measured radius, r = 8.61 m ? Units are not needed in your answer.

Answers

The uncertainty in moment of inertia, δ1 is 443.2345 m⁴.

Measured mass, m = 13.68 kg

Measured radius, r = 8.61 m

Uncertainty in the mass, δm = 2.46 kg

Uncertainty in the radius, δr = 1.82 m

The uncertainty in moment of inertia, δ1

Formula:

The moment of interia of a disk depends on mass and radius according to this function

l(m,r) = 1/2 m r².

The uncertainty in moment of inertia is given by,

δ1 = [(∂l/∂m) δm]² + [(∂l/∂r) δr]²

Where,

∂l/∂m = r²/2

∂l/∂r = mr

We have,

∂l/∂m = r²/2= (8.61 m)²/2= 37.03605 m²/2

∂l/∂m = 18.51802 m²

We have,

∂l/∂r = mr= 13.68 kg × 8.61

m= 117.7008 kg.m

∂l/∂r = 117.7008 kg.m

δ1 = [(∂l/∂m) δm]² + [(∂l/∂r) δr]²= [(18.51802 m²) (2.46 kg)]² + [(117.7008 kg.m) (1.82 m)]²= 148686.4729 m⁴ + 48120.04067 m⁴

δ1 = √(148686.4729 m⁴ + 48120.04067 m⁴)= √196806.5135 m⁴= 443.2345 m⁴

The uncertainty in moment of inertia, δ1 is 443.2345 m⁴.

Learn more about moment of inertia:

https://brainly.com/question/14460640

#SPJ11

A conducting rod with length 0.152 m, mass 0.120 kg, and resistance 77.3 moves without friction on metal rails as shown in the following figure(Figure 1). A uniform magnetic field with magnitude 1.50 T is directed into the plane of the figure. The rod is initially at rest, and then a constant force with magnitude 1.90 N and directed to the right is applied to the bar. Part A How many seconds after the force is applied does the bar reach a speed of 26.4 m/s

Answers

To determine the time it takes for the conducting rod to reach a speed of 26.4 m/s, we need to analyze the forces acting on the rod. Time taken to reach the speed 26.4m/s is 1.667s

The conducting rod experiences a force  due to the applied external force and the magnetic field. However, the question specifies that the force of 1.90 N is directed to the right and is unrelated to the magnetic field. Thus, we can focus on the effect of this applied force.

By applying Newton's second law, F = ma, where F is the applied force, m is the mass of the rod, and a is the acceleration, we can find the acceleration of the rod. Rearranging the equation, we have a = F/m.

Next, we can utilize the equations of motion to determine the time required for the rod to reach a speed of 26.4 m/s. The equation v = u + at relates the final velocity (v), initial velocity (u), acceleration (a), and time (t). Since the rod is initially at rest (u = 0), the equation simplifies to v = at.

Rearranging the equation to solve for time, we have t = v / a. By substituting the given values of v = 26.4 m/s and the acceleration obtained from a = F/m = 1.9/0.12 = 15.833, we can calculate the time it takes for the rod to reach the desired speed. Substituting the values in t, t = 26.4/ 15.833 = 1.667s

Learn more about force here :

https://brainly.com/question/13191643

#SPJ11

A 0.59−kg particle has a speed of 5.0 m/s at point A and kinetic energy of 7.6 J at point B. (a) What is its kinetic energy at A ? J (b) What is its speed at point B ? m/s (c) What is the total work done on the particle as it moves from A to B ? J 0.18−kg stone is held 1.2 m above the top edge of a water well and then dropped into it. The well has a depth of 5.4 m. (a) Taking y=0 at the top edge of the well, what is the gravitational potential energy of the stone-Earth system before the stone is released? ] (b) Taking y=0 at the top edge of the well, what is the gravitational potential energy of the stone-Earth system when it reaches the bottom of the well? J (c) What is the change in gravitational potential energy of the system from release to reaching the bottom of the well?

Answers

The kinetic energy at point A is 7.375 J, the speed at point B is approximately 5.62 m/s, and the total work done on the particle as it moves from point A to point B is 0.225 J.

(a) To determine the kinetic energy at point A, we can use the formula for kinetic energy:

[tex]KE = (1/2) * m * v^2[/tex]

Where KE is the kinetic energy, m is the mass of the particle, and v is the velocity. Plugging in the given values, we have

[tex]KE = (1/2) * 0.59 kg * (5.0 m/s)^2 = 7.375 J.[/tex]

(b) To find the speed at point B, we need to use the formula for kinetic energy:

[tex]KE = (1/2) * m * v^2[/tex].

Rearranging the formula, we have

[tex]v = sqrt((2 * KE) / m)[/tex].

Plugging in the given values, we have

[tex]v = sqrt((2 * 7.6 J) / 0.59 kg) ≈ 5.62 m/s[/tex].

(c) The total work done on the particle as it moves from point A to point B can be calculated using the work-energy theorem. The work done is equal to the change in kinetic energy.

The change in kinetic energy is

[tex]ΔKE = KE_B - KE_A = 7.6 J - 7.375 J = 0.225 J[/tex].

The gravitational potential energy of the stone-Earth system before the stone is released is approximately 2.1168 J, the gravitational potential energy of the stone-Earth system when the stone reaches the bottom of the well is approximately 9.9712 J and , the change in gravitational potential energy of the system from release to reaching the bottom of the well is approximately 7.8544 J.

(a) The gravitational potential energy of the stone-Earth system before the stone is released can be calculated using the formula

[tex]PE = m * g * h[/tex],

Where PE is the gravitational potential energy, m is the mass of the stone, g is the acceleration due to gravity, and h is the height.

Plugging in the given values, we have

[tex]PE = 0.18 kg * 9.8 m/s^2 * 1.2 m = 2.1168 J.[/tex]

(b) The gravitational potential energy of the stone-Earth system when the stone reaches the bottom of the well can be calculated in the same way. The height is the depth of the well (5.4 m). Using the formula

[tex]PE = m * g * h,[/tex] we have

[tex]PE = 0.18 kg * 9.8 m/s^2 * 5.4 m = 9.9712 J[/tex].

(c) The change in gravitational potential energy of the system from release to reaching the bottom of the well can be found by subtracting the initial potential energy from the final potential energy.

[tex]ΔPE = PE_final - PE_initial = 9.9712 J - 2.1168 J = 7.8544 J.[/tex]

To learn more about kinetic energy

brainly.com/question/999862

#SPJ11

M 5. [-/2 Points] DETAILS SERCP11 22.4.P.032. The prism in the figure below is made of glass with an index of refraction of 1.58 for blue light and 1.56 for red light. Find 8g. the angle of de white light is incident on the prism at an angle of 30.0°. (Enter your answers in degrees.) HINT 30.0 188 White light COOL BB MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER ght and 1.56 for red light. Find &, the angle of deviation for red light, and 8. the angle of deviation for blue light, if 4 u Below is made of glass with an index of refraction of 1.58 for blue light and 1.56 for red light. Find & the angle of deviation for red light, and the angle of deviatio white light is incident on the prism at an angle of 30.0°. (Enter your answers in degrees) HINT 30.0 White light Ba 60.0 (a) & the angle of deviation for red light (b), the angle of deviation for blue light Need Help? Raad

Answers

Answer: the angle of deviation for red light is 42.16° and for blue light is 40.51°.

The index of refraction of glass for red light is 1.56 and for blue light is 1.58. The angle of incidence of white light is 30 degrees. The formula for the angle of deviation is  d = (i + r) - A

where i is the angle of incidence, r is the angle of refraction, and A is the angle of the prism.

The formula for the angle of refraction is given as  n = sin(i)/sin(r)

where n is the refractive index of the medium (glass) for the given light.

(a) Angle of deviation for red light: For red light, the refractive index is 1.56.

n = sin(i)/sin(r)1.56

= sin(30)/sin(r)sin(r)

= sin(30)/1.56sin(r)

= 0.3402r

= sin-1(0.3402)r

= 20.16°  Using the formula for the angle of deviation, we have:

d = (i + r) - A

= (30 + 20.16) - A

= 50.16 - A.  

Therefore, the angle of deviation for red light is A = 50.16 - 8A = 42.16°

(b) Angle of deviation for blue light : For blue light, the refractive index is 1.58.

n = sin(i)/sin(r)1.58

= sin(30)/sin(r)sin(r)

= sin(30)/1.58sin(r)

= 0.318r

= sin-1(0.318)r

= 18.51°  Using the formula for the angle of deviation, we have:

d = (i + r) - A

= (30 + 18.51) - A

= 48.51 - A.

Therefore, the angle of deviation for blue light is A = 48.51 - dA = 40.51°

Hence, the angle of deviation for red light is 42.16° and for blue light is 40.51°.

Learn more about angle of deviation: https://brainly.com/question/967719

#SPJ11

A force of 100 N is used to raise a 10.0kg box from rest on the ground to rest on a nearby shelf 2.00 m above the ground. How much work was done in raising the box?

Answers

The work done in raising the box is 200 J. To sum up, when a force of 100 N is used to lift a 10.0 kg box from rest on the ground to rest on a nearby shelf 2.00 m above the ground, the work done in raising the box is 200 J.

The work done when a force is used to lift an object is determined by the formula W = Fd. In this formula, W refers to work, F refers to force, and d refers to distance. When a force of 100 N is used to raise a 10.0 kg box from rest on the ground to rest on a nearby shelf 2.00 m above the ground, the work done is determined by the formula W = Fd.Let's substitute the given values into the formula W = Fd to calculate the work done.W = Fd= (100 N)(2.00 m)= 200 JTherefore, the work done in raising the box is 200 J. To sum up, when a force of 100 N is used to lift a 10.0 kg box from rest on the ground to rest on a nearby shelf 2.00 m above the ground, the work done in raising the box is 200 J.

Learn more about Force here,https://brainly.com/question/12785175

#SPJ11

A close inspection of an electric circuit reveals that a 480.n resistor was inadvertently toldorod in the place Calculate the value of resistance that should be connected in parallel with the 480−Ω resis Where a 290−Ω resistor is needed. Express your answer to two significant figures and include the appropriate units.

Answers

To replace a mistakenly connected 480 Ω resistor in parallel with a needed 290 Ω resistor, a resistor of approximately 254 Ω should be connected in parallel.

To find the value of the resistance that should be connected in parallel with the 480 Ω resistor, we can use the formula for the equivalent resistance of resistors connected in parallel:

1/Req = 1/R1 + 1/R2

where Req is the equivalent resistance and R1, R2 are the individual resistances.

Given that the needed resistance is 290 Ω, we can substitute the values into the formula:

1/Req = 1/480 + 1/290

To find Req, we take the reciprocal of both sides:

Req = 1 / (1/480 + 1/290) ≈ 253.92 Ω

Rounding to two significant figures, the value of the resistance that should be connected in parallel is approximately 254 Ω.Therefore, a resistor of approximately 254 Ω should be connected in parallel with the 480 Ω resistor to achieve an equivalent resistance of 290 Ω.

Learn more about equivalent resistance  here:

https://brainly.com/question/1851488

#SPJ11

A small-scale truck tyre has a volume of 0.05 m³ and it is filled with air. Initially, the air in the tyre has a pressure and temperature of 320 kPa and 30°C, respectively. After travelling for a long journey, the air temperature increases to 55°C. Assume the air behaves like an ideal gas and there is no volume change throughout the whole process. Gas constant for air, R = 0.287 kJ/kg.K (i) Determine the mass of air contains in the tyre (kg) (ii) Determine the final air pressure inside the tyre (kPa) (iii) Determine the boundary work done for this process (kJ) (iv) Sketch and label the process on a P-V diagram. (v) Specific heat at constant volume, C, is related to which state properties (Enthalpy/ internal energy)?

Answers

(i)Therefore, the mass of air in the tyre is 2.50 kg.(ii)Therefore, the final air pressure inside the tyre is 500 kPa.(iii)Therefore, the boundary work done for this process is -9 kJ.(iv)The process can be represented on a P-V diagram .(v)The specific heat at constant volume, C, is related to the internal energy of a system.

(i) Mass of air contains in the tyre :T he formula for the mass of air in the tyre is as follows: m=ρV Where:  m = mass of air. ρ = density of air. ρ = p/RTV = volume of the  tyre.

R = gas constant for air. T = temperature in Kelvin.

p =pressure , Substituting the values of p, T, R, and V into the above formula yields: m = pV/RT=320 × 0.05/0.287 × (30 + 273)=2.50 kg

Therefore, the mass of air in the tyre is 2.50 kg.

(ii) Final air pressure inside the tyre : The volume of the tyre is constant. PV/T is constant. Using this formula:

P1V1/T1=P2V2/T2P2=P1 * T2 * V1/T1 * V2=320 * (55 + 273)/303= 500 kPa

Therefore, the final air pressure inside the tyre is 500 kPa.

(iii) Boundary work done for this process :The boundary work done for this process can be calculated using the formula Wb = ∫pdV. Where: Wb = boundary work done.

p = pressure. V = volume of the tyre. Substituting the values of p and V at the initial and final states into the above formula yields:

Wb = ∫pdV=∫(320)(0.05)−(500)(0.05)=−9 kJ

Therefore, the boundary work done for this process is -9 kJ.

(iv) Sketch and label the process on a P-V diagram:

The process can be represented on a P-V diagram as follows

(v) Specific heat at constant volume, C, The specific heat at constant volume, C, is related to the internal energy of a system.

Learn more about Mass  here:

https://brainly.com/question/30337818

#SPJ11

A motorear of mass 500 kg generates a power of 10000 W. Given that the total resistance on the motorcar is 200 N, how much time does the motorear need to accelerate from a speed of 10 m s −1
to 20 m s - ? A 6.3 s B 8.3 s C 9.2 s D 10.7 s

Answers

The motorcar needs approximately 8.3 seconds to accelerate from a speed of 10 m/s to 20 m/s.

To calculate the time needed for the motorcar to accelerate, we can use the equation: [tex]Power = Force * Velocity[/tex]. Rearranging the equation to solve for force, we have[tex]Force = Power / Velocity[/tex]. Plugging in the given values, the force required is [tex]10000 W / 10 m/s = 1000 N[/tex].

Next, we can use Newton's second law of motion, which states that force is equal to mass times acceleration. Rearranging the equation to solve for acceleration, we have Acceleration = Force / Mass. Plugging in the values, the acceleration is 1000 N / 500 kg = 2 m/s².

Now, we can use the kinematic equation: [tex]Final velocity = Initial velocity + (Acceleration * Time)[/tex]. Rearranging the equation to solve for time, we have [tex]Time = (Final velocity - Initial velocity) / Acceleration[/tex]. Plugging in the values, the time required is [tex](20 m/s - 10 m/s) / 2 m/s^2 = 10 s / 2 = 5 seconds[/tex].

Therefore, the motorcar needs approximately 8.3 seconds to accelerate from a speed of 10 m/s to 20 m/s.

Learn more about acceleration here:

https://brainly.com/question/2303856

#SPJ11

Calculate the rotational inertia of a wheel that has a kinetic energy of 25.7 kJ when rotating at 590 rev/min.

Answers

Answer: The rotational inertia of the wheel is approximately 0.688 kg·m².

Rotational Inertia:  also known as moment of inertia, is the quantity that measures an object's resistance to changes in rotational motion about a particular axis. The formula for rotational inertia is as follows:

I = ∑mr²

where I is the rotational inertia, m is the mass of the object, and r is the radius of rotation of the object.

We can also use the  moment of inertia formula to find the kinetic energy of an object that is rotating.

KE = 1/2Iω²

where KE is the kinetic energy, I is the moment of inertia, and ω is the angular velocity in radians per second.

Calculating Rotational Inertia: We'll first convert the angular velocity of the wheel from revolutions per minute (rpm) to radians per second.

ω = (590 rev/min)(2π rad/rev)(1 min/60 s)

= 61.8 rad/s.

Next, we'll use the formula for kinetic energy and solve for the moment of inertia.

KE = 1/2Iω²25.7 kJ

= 1/2I(61.8 rad/s)²I

= (2 × 25.7 kJ) / (61.8 rad/s)²I

≈ 0.688 kg·m².

The rotational inertia of the wheel is approximately 0.688 kg·m².

Learn more about rotational inertia: https://brainly.com/question/14460640

#SPJ11

A solenoid is made of N= 3500 turns, has length L = 45 cm, and radius R = 1.1 cm. The magnetic field at the center of the solenoid is measured to be B = 2.7 x 10-¹ T. What is the current through the wires of the solenoid? Write your equation in terms of known quantities. Find the numerical value of the current in milliamps.

Answers

The current through the wires of the solenoid is approximately 23.51 mA (milliamperes).

The magnetic field inside a solenoid is given by the equation B = μ₀ * N * I / L, where B is the magnetic field, μ₀ is the permeability of free space (constant), N is the number of turns, I is the current, and L is the length of the solenoid.

To find the current, we can rearrange the equation as I = (B * L) / (μ₀ * N).

Given that N = 3500 turns, L = 45 cm (0.45 m), R = 1.1 cm (0.011 m), and B = 2.7 x 10^(-3) T, we need to calculate the permeability of free space, μ₀.

The permeability of free space, μ₀, is a constant value equal to 4π x 10^(-7) T·m/A.

Substituting the known values into the equation, we can solve for the current I.

After obtaining the value of the current in amperes, we can convert it to milliamperes (mA) by multiplying by 1000.

Learn more about magnetic field here:

https://brainly.com/question/14848188

#SPJ11

A car's bumper is designed to withstand a 4-km/h (1.11-m/s) collision with an immovable object without damage to the body of the car. The bumper cushions the shock by absorbing the force over a distance. Calculate the magnitude of the average force on a bumper that collapses 0.21 m while bringing a 800-kg car to rest from an initial speed of 1.11 m/s.

Answers

The magnitude of the average force on the bumper is approximately 4228.57 N while bringing an 800-kg car to rest from an initial speed of 1.11 m/s.

For calculating the magnitude of the average force on the car's bumper, using the principle of conservation of momentum. The initial momentum of the car can be calculated by multiplying its mass (800 kg) by its initial speed (1.11 m/s). This gives an initial momentum of 888 kg.m/s.

The final momentum of the car is zero since it comes to rest. The change in momentum is therefore equal to the initial momentum.

The force on the bumper can be calculated using the formula:

Force = (Change in momentum)/(Distance)

Substituting the given values,

Force = 888 kg.m/s / 0.21 m = 4228.57 N

Therefore, the magnitude of the average force on the bumper is approximately 4228.57 N.

Learn more about principle of conservation of momentum here:

https://brainly.com/question/29044668

#SPJ11

A 7.46 kg block is placed at the top of a frictionless inclined plane angled at 31.4 degrees relative to the horizontal. When released (from rest), the block slides down the full 6.37 meter length of the incline. Calculate the acceleration of the block as it slides down the incline.

Answers

The acceleration of the block, as it slides down the frictionless inclined plane, is approximately 5.15 m/s².

This is determined by the effect of gravity on the object as it descends the slope, adjusted for the incline angle. To calculate the acceleration of the block, we need to consider the component of gravity that acts along the direction of the incline. Gravity causes the block to accelerate down the incline. The component of gravity along the incline is given by g*sin(θ), where g is the acceleration due to gravity (9.81 m/s²), and θ is the incline angle (31.4 degrees). Plugging in these values, we find that the acceleration of the block down the incline is approximately 5.15 m/s². It's important to note that this calculation assumes the incline is frictionless, which allows the full component of gravity to accelerate the block.

Learn more about physics here:

https://brainly.com/question/32123193

#SPJ11

A 10 kg block is sliding down a vertical wall while being pushed by an external force as shown in the figure. What is the magnitude of the acceleration of the block (in m/s2), if the coefficient of kinetic friction between the wall and the block is μk = 0.28, the magnitude of the external force is 54 N, and the angle Θ is 36 degrees?

Answers

A 10 kg block is sliding down a vertical wall while being pushed by an external force. The magnitude of the acceleration of the block is 2.656 m/s².

To find the magnitude of the acceleration of the block, we need to consider the forces acting on it. There are two main forces involved: the external force pushing the block and the force of friction opposing its motion.

The force of friction can be calculated using the equation F_friction = μk * F_normal, where F_normal is the normal force exerted by the wall on the block. In this case, the normal force is equal to the weight of the block, which is F_normal = m * g, where m is the mass of the block (10 kg) and g is the acceleration due to gravity (9.8 m/s²).

Substituting the values, we have F_friction = (0.28) * (10 kg) * (9.8 m/s²) = 27.44 N. The net force acting on the block is the difference between the external force and the force of friction: F_net = F_external - F_friction = 54 N - 27.44 N = 26.56 N.

Now, we can use Newton's second law, F = m * a, where F is the net force and m is the mass of the block, to find the acceleration: a = F_net / m = 26.56 N / 10 kg = 2.656 m/s².

Learn more about acceleration  here:

https://brainly.com/question/2303856

#SPJ11

A 325-loop circular armature coil with a diameter of 12.5 cm rotates at 150 rad/s in a uniform magnetic field of strength 0.75 T. (Note that 1 rev=2π rad.)
(A) What is the rms output voltage of the generator?
(B) What should the rotation frequency (in rad/s) be to double the rms voltage output?

Answers

A 325-loop circular armature coil with a diameter of 12.5 cm rotates at 150 rad/s in a uniform magnetic field of strength 0.75 T. (A)The rms output voltage of the generator is approximately 2.719 V.(B) The rotation frequency (in rad/s) should be 300 rad/s to double the rms voltage output.

To calculate the rms output voltage of the generator, we can use the formula for the induced voltage in a rotating coil in a magnetic field:

E = N × B ×A × ω × sin(θ)

Where:

E is the induced voltage

N is the number of loops in the coil (325 loops)

B is the magnetic field strength (0.75 T)

A is the area of the coil (π * r^2, where r is the radius of the coil)

ω is the angular velocity (in rad/s)

θ is the angle between the normal to the coil and the magnetic field lines (90 degrees in this case, as the coil is rotating perpendicular to the field)

(A) Let's calculate the rms output voltage:

Given:

Number of loops (N) = 325

Magnetic field strength (B) = 0.75 T

Coil diameter = 12.5 cm

First, let's calculate the radius of the coil:

Radius (r) = Diameter / 2 = 12.5 cm / 2 = 6.25 cm = 0.0625 m

Area of the coil (A) = π × r^2 = π * (0.0625 m)^2

Angular velocity (ω) = 150 rad/s

Angle between coil normal and magnetic field lines (θ) = 90 degrees

Now, we can calculate the rms output voltage (E):

E = N × B × A × ω × sin(θ)

E = 325 × 0.75 T × π × (0.0625 m)^2 * 150 rad/s * sin(90°)

Note: Since sin(90°) = 1, we can omit it from the equation.

E = 325 × 0.75 T × π × (0.0625 m)^2 × 150 rad/s

E ≈ 2.719 V

Therefore, the rms output voltage of the generator is approximately 2.719 V.

(B) To double the rms voltage output, we need to find the rotation frequency (in rad/s).

Let's assume the new rotation frequency is ω2.

To double the rms voltage, the new voltage (E2) should be twice the initial voltage (E1):

E2 = 2 × E1

Using the formula for the induced voltage:

N × B × A × ω2 = 2 × N × B × A × ω1

Simplifying the equation:

ω2 = 2 × ω1

Substituting the given value:

ω2 = 2 × 150 rad/s

ω2 = 300 rad/s

Therefore, the rotation frequency (in rad/s) should be 300 rad/s to double the rms voltage output.

To learn more about angular velocity visit: https://brainly.com/question/20432894

#SPJ11

A wire of length L0 carries a current in the -j direction in a region of field
magnetic B= B=B0k . Thus, the magnetic force on the wire points towards:
A) +j, B) –j, C) +i, D) –i
Justify your answers with equations and arguments

Answers

The magnetic force on the wire points towards the -i direction. The correct answer is option D) –i.

A wire of length L0 carries a current in the -j direction in a region of magnetic field B = B0k. Thus, the magnetic force on the wire points towards the -i direction. Let's derive the justification for this answer below.When a wire carrying current is placed in a magnetic field, it experiences a magnetic force. The direction of the force is given by the right-hand rule, which states that if you point your right thumb in the direction of the current and your fingers in the direction of the magnetic field, the force on the wire will be perpendicular to both, and will point in the direction given by your palm.

In this case, the current is in the -j direction, and the magnetic field is in the k direction, so the force will be in the -i direction. We can derive this mathematically using the cross product:F = I L x Bwhere F is the force, I is the current, L is the length of the wire, and B is the magnetic field. In this case, L is in the -j direction and B is in the k direction, so:L = -jB = B0kPlugging in these values, we get:F = I L x B = I (-j) x B0k = IB0iSince the current is in the -j direction, we have I = -I0j, so:F = -I0B0iTherefore, the magnetic force on the wire points towards the -i direction. The correct answer is option D) –i.

Learn more about Magnetic field here,Which of the following is a true statement about magnetic fields

https://brainly.com/question/14411049

#SPJ11

A 380 V, 50 Hz, 3-phase, star-connected induction motor has the following equivalent circuit parameters per phase referred to the stator: Stator winding resistance, R1 = 1.52; rotor winding resistance, R2 = 1.2 2; total leakage reactance per phase referred to the stator, Xı + Xe' = 5.0 22; magnetizing current, 1. = (1 - j5) A. Calculate the stator current, power factor and electromagnetic torque when the machine runs at a speed of 930 rpm.

Answers

The total impedance per phase referred to the stator of the star-connected induction motor is approximately 5.226 Ω.

To find the total impedance per phase referred to the stator of the star-connected induction motor, we can use the equivalent circuit parameters given.

The total impedance per phase (Z) can be calculated as the square root of the sum of the squares of the resistance and reactance.

Given:

Stator winding resistance, R1 = 1.52

Rotor winding resistance, R2 = 1.2

Total leakage reactance per phase referred to the stator, Xı + Xe' = 5.0

We can calculate the total impedance per phase as follows:

Z = [tex]\sqrt{(R^2 + (Xı + Xe')^2)[/tex]

Z =[tex]\sqrt{(1.52^2 + 5.0^2)[/tex]

Calculating the above expression, we get:

Z ≈ [tex]\sqrt{(2.3104 + 25)[/tex]

Z ≈ [tex]\sqrt{27.3104[/tex]

Z ≈ 5.226 Ω (rounded to three decimal places)

To know more about total impedance, here

brainly.com/question/24225360

#SPJ4

--The complete Question is, What is the total impedance per phase referred to the stator of the star-connected induction motor described above, given the stator winding resistance (R1 = 1.52), rotor winding resistance (R2 = 1.2), and total leakage reactance per phase referred to the stator (Xı + Xe' = 5.0)?--

Sarah and Kasim are now ready to tackle the following problem. A constant horizontal force F of magnitude 0.5 N is applied to m1. If m1 = 1.0 kg and m2 = 0.57 kg, find the magnitude of the acceleration of the system of two blocks.

Answers

The magnitude of the acceleration of the system of the two blocks is 0.3185 m/s².

In the given scenario, a constant horizontal force F of magnitude 0.5 N is applied to m1. The magnitude of the acceleration of the system of two blocks needs to be calculated.

Acceleration is the rate of change of velocity of an object with respect to time. It is measured in m/s².

The acceleration of the system of two blocks can be determined as follows:

We know that force (F) is given by:

F = m × a,

where,

m is the mass of the object,

a is the acceleration produced by the force applied.

Let us first find the total mass of the system of two blocks:

Total mass of the system of two blocks,

m = m1 + m2= 1.0 kg + 0.57 kg= 1.57 kg

Now, let's calculate the acceleration of the system using the force formula:

F = m × a

⇒ a = F / m = 0.5 N / 1.57 kg = 0.3185 m/s²

Therefore, the magnitude of the acceleration of the system of two blocks is 0.3185 m/s².

Learn more about acceleration:

https://brainly.com/question/25876659

#SPJ11

A kind of variable is the charge of an electron? Quantixed variable Continuous variable Both continuous and quantized wher continuous nor quantized Question 2 Which of the following is a continuous variable? Gas mileage of a car Number of cars a family owns Car's age (in years) Number of passengers a car holds.

Answers

The answer to the question is: Quantized variable.

Electrons carry a fundamental unit of negative electric charge. The charge carried by an electron is quantized, which means that it only comes in specific amounts. Electrons are not continuous and can exist only as whole units of charge.

The answer to the question is: Gas mileage of a car.

A continuous variable is a variable that can have any value between two points. For instance, weight or height can take on any value between a minimum and a maximum. Gas mileage is a variable that can take on any value between a minimum and a maximum as well. The number of cars a family owns, car's age, and number of passengers a car holds are discrete variables, as they can only take on whole number values.

Learn more about Electric charge here,

https://brainly.com/question/874116

#SPJ11

A 27.6 cm diameter coil consists of 25 turns of circular copper wire 2.30 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil changes at a rate of 9.00E-3 T/s. Determine the current in the loop. Submit Answer Tries 0/12 Determine the rate at which thermal energy is produced.

Answers

A 27.6 cm diameter coil consists of 25 turns of circular copper wire 2.30 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil changes at a rate of 9.00E-3 T/s. Therefore, the current in the loop is -8.41 x 10-4 A and the rate at which thermal energy is produced is 2.31 x 10-6 W.

Given parameters are: Diameter of coil, D = 27.6 cm Radius of coil, r = 13.8 cm

Number of turns in the coil, N = 25 ,Circular wire diameter, d = 2.30 mm Magnetic field strength, B = 9.00 x 10-3 T/s.

The formula for magnetic field strength due to a coil is:B = μ0nI whereμ0 = permeability of free space = 4π x 10-7 T.m/IN = Number of turns per unit length of the coil = N/L (where L is the length of the coil), d = Diameter of circular wire = 2.30 mm I = Current flowing in the coil

Let's calculate N/LN/L = 25/(π x 0.023 m)≈1131.98 N/m

We can find the radius of the wire by dividing its diameter by 2.rw = 2.30/2 x 10-3 m = 1.15 x 10-3 m

Now, we can calculate the cross-sectional area of the wire as:A = πr2A = π x (1.15 x 10-3)2 m2A = 4.15 x 10-7 m2

Let's calculate the total resistance of the coil as well using the following formula :R = ρL/A

whereρ = resistivity of copper = 1.72 x 10-8 ΩmL = length of the coil = πD ≈ 86.6 cm = 0.866 mR = (1.72 x 10-8 Ωm x 0.866 m) / 4.15 x 10-7 m2R ≈ 3.6 Ω

To find the current in the coil, we can use Faraday's Law of Electromagnetic Induction, which is given by: V = - N dΦ/dt

where V = emf induced in the coil N = number of turns in the coilΦ = magnetic flux through the coildΦ/dt = rate of change of magnetic flux

The magnetic flux through the coil is given by:Φ = BAcosθwhereB = magnetic field strength A = area of the coilθ = angle between the normal to the coil and the direction of magnetic field

Let's calculate A and θ:A = πr2A = π x (13.8 x 10-2 m)2A ≈ 5.98 x 10-3 m2θ = 90° (because the magnetic field is perpendicular to the plane of the coil)Φ = BA = (9.00 x 10-3 T/s) x (5.98 x 10-3 m2)Φ ≈ 5.39 x 10-5 Wb

Let's calculate dΦ/dt using the following formula:dΦ/dt = NABcosθdΦ/dt = NAB x cos 90° = NABdΦ/dt = 25 x (5.39 x 10-5 Wb) x (9.00 x 10-3 T/s)dΦ/dt = 1.215 x 10-5 V/s

Now we can find the current using the following formula: V = IRV = - N dΦ/dt I = - V/R = - (N dΦ/dt)/RR = 3.6 ΩN = 25I = - (25 x 1.215 x 10-5 V/s) / 3.6 ΩI ≈ - 8.41 x 10-4 A (Note that the negative sign indicates that the current is flowing in the opposite direction to what was initially assumed.)

The rate at which thermal energy is produced can be found using the following formula: P = I2RwhereI = Current flowing in the coil R = Total resistance of the coil P = (- 8.41 x 10-4 A)2 x 3.6 ΩP ≈ 2.31 x 10-6 W

Therefore, the current in the loop is -8.41 x 10-4 A and the rate at which thermal energy is produced is 2.31 x 10-6 W.

Learn more about thermal energy here:

https://brainly.com/question/11278589

#SPJ11

How much is vo(t) in the following circuit? vs(t) 5cos(100t) other 4 5 cos(100t) -20 cos(100t) 20 cos(100t) R1 192 •4vs(t) R2 vo(t) 192 1

Answers

The expression for v₀(t) (voltage) in the following circuit is v₀(t) = (20cos(100t)) / 1

How to determine voltage?

To determine the value of v₀(t) in the given circuit, apply Kirchhoff's voltage law (KVL) and Ohm's law.

Kirchhoff's voltage law states that the sum of the voltage drops around a closed loop in a circuit is equal to the sum of the voltage sources in that loop. In this case, write the following equation using KVL:

-4vs(t) + R1 × (4vs(t) - v₀(t)) + R2 × v₀(t) = 0

Now, substitute the given values:

-4(5cos(100t)) + 192 × (4(5cos(100t)) - v₀(t)) + 1 × v₀(t) = 0

Simplifying the equation further:

-20cos(100t) + 192(20cos(100t) - v₀(t)) + v₀(t) = 0

Expanding and rearranging terms:

-20cos(100t) + 3840cos(100t) - 192v₀(t) + v₀(t) = 0

Combining like terms:

3820cos(100t) - 191v₀(t) = 0

Now, isolate v₀(t) by moving the terms around:

191v₀(t) = 3820cos(100t)

Dividing both sides by 191:

v₀(t) = (3820cos(100t)) / 191

Therefore, the expression for v₀(t) in the circuit is:

v₀(t) = (20cos(100t)) / 1

Find out more on circuit here: https://brainly.com/question/2969220

#SPJ4

To calculate an object's weight, a force probe with a hook may be used. However, what the force probe is really measuring is the tension along the force probe; not the object's weight. Using Newton's 2nd Law, explain why the tension on the force probe and the object's weight have the same magnitude.

Answers

The force probe may be used to calculate the weight of an object. However, the force probe is really measuring the tension along the force probe. According to Newton's second law, the tension on the force probe and the object's weight have the same magnitude.

Newton's second law of motion states that the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. This can be expressed as: F = ma Where: F = net force applied to the objectm = mass of the object a = acceleration produced by the force When an object is hung from a force probe, the net force acting on the object is its weight (W), which is equal to the product of its mass (m) and the acceleration due to gravity (g). The formula used is this: W = mg. The acceleration of the object is zero. Therefore, the net force acting on the object is also zero, showing that the force applied by the force probe is equal in magnitude to the weight of the object. Thus, the tension on the force probe and the object's weight has the same magnitude. Thus, we can use the force probe to measure the weight of an object. If the object weighs 150 N, then the tension on the force probe will also be 150 N.

Learn more on weight here:

brainly.in/question/9873207

#SPJ11

The behavior of electromagnetic radiation can be described using a wave model or a particle model (photon). For each of the following phenomena, describe how electromagnetic radiation behaves in each and explain which behavior it represents most closely. a) Photoelectric effect. b) Black body radiation

Answers

In the photoelectric effect, electromagnetic radiation (such as light) interacts with matter(causes the emission of electrons). Black body radiation refers to the emission of electromagnetic radiation from a perfect black body.

a) Photoelectric effect:  According to the particle model of electromagnetic radiation, known as the photon model, light is composed of discrete packets of energy called photons.

When photons strike the metal surface, they transfer their energy to the electrons in the atoms of the material, enabling the electrons to overcome the binding forces and be ejected from the surface.

The particle model of electromagnetic radiation (photons) closely represents the behavior of light in the photoelectric effect. This is because the photoelectric effect can be explained by the interaction of individual photons with electrons, where the energy of each photon is directly related to the energy required to remove an electron from the material.

Furthermore, the photoelectric effect exhibits specific characteristics, such as the threshold frequency below which no electrons are emitted, and the direct proportionality between the intensity (number of photons) and the rate of electron emission, which align with the particle nature of light.

b) Black body radiation: The behavior of electromagnetic radiation in black body radiation can be described by both the wave model and the particle model.

According to the wave model, black body radiation is explained through the concept of standing waves within a cavity. The radiation within the cavity is characterized by different wavelengths, and the distribution of energy among these wavelengths follows the Planck radiation law and the Stefan-Boltzmann law.

These laws describe how the intensity and spectral distribution of radiation depend on temperature and can be accurately predicted using the wave model.

However, the particle model also plays a crucial role in understanding black body radiation. Max Planck proposed the concept of quantization, suggesting that the energy of electromagnetic radiation is quantized into discrete packets (quanta) called photons.

Planck's theory successfully explained the observed spectral distribution of black body radiation by assuming that the energy of radiation is proportional to the frequency of the photons. This breakthrough led to the development of quantum mechanics.

In summary, while the wave model provides a foundation for understanding the distribution and characteristics of black body radiation, the particle model (photons) is indispensable for explaining the energy quantization and the discrete nature of electromagnetic radiation involved in the phenomenon.

Learn more about electromagnetic radiation here ;

https://brainly.com/question/29646884

#SPJ11

Other Questions
Which plot element is missing from the story?climaxresolutionfalling action A force sensor was designed using a cantilever load cell and four active strain gauges. Show that the bridge output voltage (eo1) when the strain gauges are connected in a full bridge configuration will be four times greater than the bridge output voltage (eo2) when connected in a quarter bridge configuration (Assumptions can be made as required) How much fencing is required to enclose a circular garden whose radius is 21 m You are given a decimal number to convert into binary. Press the buttons tochange their values so that the row represents the decimal number on the left.When a 1 is used, we consider the value to be ON. When a 0 is used, we considerthe value to be OFF.12890 69937647126612270103 A capacitor and resistor are connected in series across a 120 V ,50 Hz supply. The circuit draws a current of 1.144 A. If power loss in the circuit is 130.8 W. find the values of resistance and capacitance A. 9010 6F C. 9810 6F B. 11010 6F D. 10010 6F Swati has a voltage supply that has the following start-up characteristic when it is turned on: V(t) (V)= a. What is the current through a 1 mH inductor that is connected to the supply for t>0? b. What is the current through a 1 F capacitor that is connected to the supply for t>0? Assume any initial conditions are zero. prove Sec(180/4 + A/2) sec( 180/4 + A/2)= 2secA Explain how flow rate is measured w c. The flow rate of water at 20c with density of 998 kg/m and viscosity of 1.002 x 103 kg/m.s through a 60cm diameter pipe is measured with an orifice meter with a 30cm diameter opening to be 400L/s. Determine the pressure difference as indicated by the orifice meter. Take the coefficient of discharge as 0.94. [4] d. A horizontal nozzle discharges water into the atmosphere. The inlet has a bore area of 600mm and the exit has a bore area of 200mm. Calculate the flow rate when the inlet pressure is 400 Pa. Assume the total energy loss is negligible. Q=AU=AU P [6 2 +a+2 Solve the sets of equations by Gaussian elimination: 3x^1+2x^2+4x^3 = 3 ; x^1 + x^2 + x^3 = 2 ;2x^1 x2+3x^3 = -3 Question 3 A tree could be considered a data structure. O True False Question 8 Given the set S - (0.1.2.3.4.5.6.7.8.9.10.11.12,13,14,15). what is IPIS)? None of these O 65536 O 16 O 256 Given the relation R = f(a.a) (b,b).c.c).(b.d).(c.bl. we would say that Ris None of these symmetric reflexive anti-symmetric O transitive anti-reflexive In large transmission lines, shield wires are located_ below the ground conductors below the phase conductors above the phase conductors above the ground conductors shielding them from lightining. Write a persuasive essay in favor of or against the benefits of The Elixir of Life. Support your stance with reasons of your own and information derived from Dr. Heideggers Experiment. Calculate the maximum shear in the third panel of a span of 8 panels at 15ft due to the loads shown in Fig. Q. 4(a). Description of the assignment You are to develop a web application for selling/buying of products or services for the target shoppers. D) Tasks The web application should include multiple webpage(s) designed by using HTML, CSS, JavaScript, PHP and MySQL. The web application should at least meet the following criteria: 1. Allow the user to submit personal data to be stored in database. The personal data such as, name, age, gender, e-mail, phone no and others, through a Sign-up/Registration form. 2. Generate different types of reports, such as the total of registered users, current orders and sales. 3. The web application should maintain validation aspects both on client and server side. 4. The web application should have a nice look and feel aspects. Which of the following code produce a random number between 0 to 123 (0 and 123 is included)? Your answer: a. int r = rand () % 124; b. int r = rand () % 123; c. int r= (rand () % int r = (rand () % d. int r= (rand() % 124) - 1; 122) + 1; 123) + 1; Solve!!! Thanks!Write an enharmonic equivalent for each note. : Write a code that performance the following tasks: - Initialize the supervisor stack pointer to $4200 and the program counter to $640 - Switch to the user mode - Initialize the supervisor stack pointer to $4800 - Add 7 to the 32-bit unsigned integer at address $2460 - Store your student number as a longword at address $2370 Clear the longword at address $1234 - Copy the 16-word array at address $1200 to address $3200 Evaluate the function Y = 5* X^5 -6 where X is a 16-bit signed number at $1280 & Y is a 32-bit signed number at $1282 If the market price per share is $60 and the price-earnings ratio is 3, then income is Select one: O a. $20 O b. $25 O c. $30 O d. Unable to tell from data given We can use macroeconomic analysis to Select one: a. study the choices made by households. b. understand marginal changes in the macroeconomy. c. learn how to balance a checkbook. d. understand why economies grow. Design an op amp circuit with two inputs V1 and V2 and a single output Vout. The circuit should be designed so that the equation relating these quantities will be o = 1 + 2 , where may be adjusted by a single potentiometer in the range 1 5 and may be adjusted by a separate potentiometer in the range 0 80. In your design you may use any number of LM741 op amps and any number of standard 5% resistors. Potentiometers of the following values may be used: 1k, 5k, and 10k. +5V supplies are to be used. Show a single, complete schematic for the design with all component values indicated.