Explanation:
In this chapter, we will study the important concepts of kinetic energy and the
closely related concept of work and power.
A- Kinetic Energy
Kinetic energy is a physical quantity, which is associated with the moving objects
and defined as:
K = ½ mv2
If the body is stationary (v=0), its kinetic energy is zero. The SI unit of kinetic
energy is kg.m2
/s2
or Joule (J), where 1 J=1 kg.m2
/s2
. Kinetic energy is a scalar
quantity.
B- Work
The work is defined as the ability to perform a force along a certain displacement.
There are different types of work as follows:
1- Work done by a constant force
The work done by the constant force F is given by the scalar product of the force F
and the displacement d.
WF = F.d = Fd cosθ
where θ is the angle between the force and displacement. The above equation means
that the work is the product of the displacement magnitude by component of the
force parallel to the displacement. Therefore, work is a scalar quantity (only
magnitude, no direction) and can be positive, negative, or zero. The SI unit of work
is (N.m) or joule (J) where 1 N.m = 1 J.
Special cases and remarks:
• If the angle between the force and displacement is zero (parallel), the work is
WF = F d (maximum work)
For the vertical part, W = (200 N) * (10 m) * cos (0 deg) = 2000 J. For the horizontal part, W = (50 N) * (35 m) * cos (0 deg) = 1750 J. The total work done is 3750 J (the sum of the two parts).
1. Explain who is doing more work and why: a bricklayer carrying bricks and placing them on the wallof a building being
constructed, or a project supervisor observing and recording the progress of the
workers from an observation booth.
What does Newton's third law describe?
A) the tendency of stationary objects to remain at rest.
B) How the force applied to an object is related to a change in its motion.
C) The four fundamental forces of nature.
D) The forces between two objects
Thanks!!
Answer:
What does Newton's third law describe?
D) The forces between two objectsIf you drop your keys from the tallest building in San Antonio, how fast will
they be falling after 3 seconds?
9.8 m/s
0 14,7 m/s
29.4 m/s
44,1 m/s
Hi there!
We can use the equation:
v = at, where in this instance:
v = velocity (m/s)
a = acceleration due to gravity (m/s²)
t = time (s)
g ≈ 9.8 m/s², so:
v = 9.8(3) = 29.4 m/s
a body of mass 15 kg accelerates from rest of the rate of 4.0 ms^-2. determine the distance with the body travel in 25 seconds
The distance traveled by the body in the given time is 1,250 m.
The given parameters;
mass of the body, m = 15 kgacceleration of the body, a = 4 m/s²time of motion, t = 25 sinitial velocity, u = 0The distance traveled by the body in the given time is calculated as follows;
[tex]s =ut + \frac{1}{2} at^2\\\\s = 0 \ + \ \frac{1}{2} (4)(25^2)\\\\s =1,250 \ m[/tex]
Thus, the distance traveled by the body in the given time is 1,250 m.
Learn more here:https://brainly.com/question/17067013
How do light travels
Answer:
Light can travel in three ways from a source to another location: (1) directly from the source through empty space; (2) through various media; (3) after being reflected from a mirror.
Explanation:
An artificial satellite circles the Earth in a circular orbit at a location where the acceleration due to gravity is 6.44 m/s2. Determine the orbital period of the satellite.
Explanation:
The artificial satellite experiences a centripetal force [tex]F_c[/tex] as it moves around the earth and it is defined as
[tex]F_c = m\dfrac{v^2}{r} = m\left(\dfrac{2\pi r}{T}\right)^2\left(\dfrac{1}{r}\right) = \dfrac{4\pi^2mr}{T^2}[/tex]
where m is the mass of the satellite, r is its orbital radius and T is its orbital period. But we need to find the radius first.
Recall that the satellite is orbiting at a height where its acceleration due to gravity is 6.44 m/s^2. Since we know that the weight mg of the satellite is equal to the gravitational force [tex]F_G[/tex] between the earth and the satellite, we can write
[tex]mg = F_G = G\dfrac{mM}{r^2}[/tex]
[tex]\Rightarrow g = G\dfrac{M}{r^2}[/tex]
where M is the mass of the earth (=[tex]5.972×10^{24}\:\text{kg}[/tex]) and G is the universal gravitational constant (=[tex]6.674×10^{-11}\:\text{N-m}^2\text{/kg}[/tex]). Plugging in the values, we find that the radius of the satellite's orbit is
[tex]r = \sqrt{\dfrac{GM}{g}} = \sqrt{\dfrac{(6.674×10^{-11}\:\text{N-m}^2\text{/kg})(5.972×10^{24}\:\text{kg})}{6.44\:\text{m/s}^2}}[/tex]
[tex]\:\:\:\:\:= 7.87×10^6\:\text{m}[/tex]
Now that we have the value for the radius, we can now calculate the orbital period T. Recall that the centripetal force is equal to the weight of the satellite at its orbital radius. Therefore,
[tex]F_c = mg \Rightarrow \dfrac{4\pi^2mr}{T^2} = mg[/tex]
or
[tex]4\pi^2r = gT^2[/tex]
Solving for T, we get
[tex]T^2 = \dfrac{4\pi^2r}{g} \Rightarrow T = \sqrt{\dfrac{4\pi^2r}{g}}[/tex]
We can further simplify the above expression into
[tex]T = 2\pi\sqrt{\dfrac{r}{g}}[/tex]
Plugging in the values for r and g, we get
[tex]T = 2\pi\sqrt{\dfrac{(7.87×10^6\:\text{m})}{(6.44\:\text{m/s}^2)}}[/tex]
[tex]\:\:\:\:\:= 6945\:\text{s} = 1.93\:\text{hrs}[/tex]
what would happen if gravity were to stop everywhere?
Answer:
everything will float up and go up to space and die
Explanation:
gravity keeps us down and once it stops everything will float up. And if it were to stop everywhere everything and everyone will die and everything will be destroyed.
What is the best description of the distribution of the galaxies that lie within about 200 Mpc of Earth
When a 25000-kgkg fighter airplane lands on the deck of the aircraft carrier, the carrier sinks 0.30 cmcm deeper into the water.
Why metals have thermoconductivity higher than ceramic?
Answer:
Thermal Conductivity Easily Transmits Heat Among Fine Ceramics
An object is travels 50 m in 4 s. It had no initial velocity and experiences constant acceleration. What is the magnitude of the acceleration?
Free-fall Acceleration is -10 m/s^2
I also need the Formula
Answer:
Explanation:
s = s₀ + v₀t + ½at²
50 = 0 + 0(4) + ½a(4²)
50 = 8a
a = 50/8 = 6.25 m/s²
In which state of matter are molecules fastest?
A solid such as Sugar molecules or a liquid like in water molecules or gas molecules such as oxygen and nitrogen molecules in air. Since gas molecules have the weakest intermolecular forces than other molecules in the other two states then they will be the fastest.
Answer:
gas
Explanation:
since gas is in the air I think the answer is gas
Read the sentence from the text. “They are as glossy as satin or sunlight reflecting off water!" What does the word glossy mean in the sentence? O A. pointed o B. shiny O C. small O D. strong
Answer:
b Shiny
Explanation:
Trust me it's right
PLEASE HELP I DONT GET THISS
Answer:
I feel like its the second one but I'm not completely sure..
Explanation:
What causes an astigmatism?
A. damaged lens
B. retina not focusing the image
C. cornea being wavy or not spherical
D. sclera not refracting light properly
Answer:
c) cornea being wavy or not spherical
2 W' is the symbol of a) antimony b) gold c) polonium d) tungsten
Answer:
D. Tungsten
Explanation:
W - Wolfram
PLEASE HELP ME WITH THISSSS
Answer:
she will move in the same direction at the same speed forever.
Explanation:
If there are no outside forces like gravity the net force will never change, she will just keep flying for forever and ever! poor lady
A clothes dryer in a home draws a current of 10 amps when connected on a special 220-volts household circuit.what is the resistance of the dryer?
Answer:
22Ω
Explanation:
if V ⇒ voltage
I ⇒ current
R ⇒ resistance
V = IR
220 = 10 x R
220 / 10 = R
22 = R
a man can jump 9meteres on the moon.how high can he jump on the earth.
Answer:
You can jump 1.5 feet on Earth.
Explanation:
Because the moons gravity is weaker that earth so it would be easier to jump further on the moon.
An object accelerates from rest, with a constant acceleration of 6.4 m/s2, what will its velocity be after 7s?
I also need the Formula
Hi there!
The formula for velocity given acceleration:
v = at
Plug in given values:
v = 6.4(7) = 44.8 m/s
For the ballistic missile aimed to achieve the maximum range of 9500 km, what is the maximum altitude reached in the trajectory
Explanation:
The range R of a projectile is given the equation
[tex]R = \dfrac{v_0^2}{g}\sin{2\theta}[/tex]
The maximum range is achieved when [tex]\theta = 45°[/tex] so our equation reduces to
[tex]R_{max} = \dfrac{v_0^2}{g}[/tex]
We can solve for the initial velocity [tex]v_0[/tex] as follows:
[tex]v_0^2 = gR_{max} \Rightarrow v_0 = \sqrt{gR_{max}}[/tex]
or
[tex]v_0 = \sqrt{(9.8\:\text{m/s}^2)(9.5×10^6\:\text{m})}[/tex]
[tex]\:\:\:\:\:\:\:=9.6×10^3\:\text{m/s}[/tex]
To find the maximum altitude H reached by the missile, we can use the equation
[tex]v_y^2 = v_{0y}^2 - 2gy = (v_0\sin{45°})^2 - 2gy[/tex]
At its maximum height H, [tex]v_y = 0[/tex] so we can write
[tex]0 = (v_0\sin{45°})^2 - 2gH[/tex]
or
[tex]H = \dfrac{(v_0\sin{45°})^2}{2g}[/tex]
[tex]\:\:\:\:\:\:= \dfrac{[(9.6×10^3\:\text{m/s})\sin{45°}]^2}{2(9.8\:\text{m/s}^2)}[/tex]
[tex]\:\:\:\:\:\:= 2.4×10^6\:\text{m}[/tex]
A rollercoaster car passes the hill which is 5.5m above the ground at speed 9.3m/s, and rolls over the second hill which is 2.5m above the ground, and heads toward the third hill which is 4.0 m higher than the first one. If the track is frictionless,
a. What maximum height will the car climb on the third hill? [h max = 9.9m, so car will climb the entire 9.5m hill]
b. Will the speed of the car on top of the hill 3 be lower or higher than its speed on the top of the hill one? [lower]
c. Calculate the speed of the car when it is 1m lower than the top of the third hill. [5.3m/s]
Would somebody kindly go over the questions :D
Answer:
Explanation:
Without friction, a roller coaster continuously converts potential energy to kinetic energy and back again. Total energy will be constant.
Let m be the mass of the car and ground level is the origin.
on the 5.5 m hill, total energy is
E = PE + KE
E = mgh + ½mv²
E = m(9.8)(5.5) + ½m(9.3)² = 97m J
a) The maximum height will occur when the total energy is all potential energy.
E = mgh
h = E/mg
h = 97m/m(9.8) = 9.9 m
As this value is greater than the height of the third hill at 5.5 + 4.0 = 9.5 m The car will cross the last hill with some remaining velocity in kinetic energy.
b) As 9.5 m is greater than 9.3 m, the 9.5 m hill will have more of the total energy of the system as potential energy, This mean there is less kinetic energy and therefore less velocity (and speed) on top of the 9.5 m hill.
c) KE = E - PE
KE = 97m - m(9.8)(9.5 - 1.0)
KE = 97m = 83.3m
KE = 13.7m = ½mv²
v² = √(2(13.7)
v = 5.2345...
v = 5.2 m/s
Which region of electromagnetic spectrum will provide photons of the least energy
Answer:
Explanation:
Radio waves
Radio waves have photons with the lowest energies. Microwaves have a little more energy than radio waves. Infrared has still more, followed by visible, ultraviolet, X-rays and gamma rays.
The linear distance traveled by a wheel of radius 50cm after 99 complete revolutions is?
1)99m
2)210m
3)311
4)433
Answer:
3) 311 m
Explanation:
Circumference = 2πR = π m/rev
99 rev(π m/rev) = 99π m or about 311 meters
A 64 kg student is standing atop a spring in an
elevator that is accelerating upward at 3.0 m/s2
The spring constant is 3000 N/m.
A) by how much is the spring compressed?
Answer:
192
Explanation:
A solid sphere rolls without slipping down an incline, starting from rest. At the same time, a box starts from rest at the same altitude and slides down the same incline, with negligible friction. Which object arrives at the bottom first
Answer:
The box arrives first.
Explanation:
Hope this helps!! :))
Learn more at :
https://brainly.com/question/20164917
According to the information, a solid sphere is an object that arrives at the bottom first. This is because it occupies less friction as compared to the box.
What is Friction?Friction may be defined as the resistance that is offered by the surfaces that are in contact when they move past each other. It is a type of force that opposes the motion of a solid object over another.
There are mainly four types of friction: static friction, sliding friction, rolling friction, and fluid friction. According to the context of this question, the sphere possesses less friction as compared to the box. This is because the box has an irregular surface that possesses high friction over the inclined surface.
Therefore, according to the information, a solid sphere is an object that arrives at the bottom first. This is because it occupies less friction as compared to the box.
To learn more about Friction, refer to the link:
https://brainly.com/question/24338873
#SPJ6
A car with an initial position of 10.0 m
and an initial velocity of 16.0 m/s accelerates at an average rate of 0.50 m/s2 for 4.0 s. What is the car’s position after 4.0 s?
Answer:
78
Explanation:
x=xi+vi(t)+1/2a(t)^2
x=10+16(4)+1/2(0.50)(4)^2
x=74+4
x=78 m
give with an example a cause where the velocity of an object is zero but its acceleration is not zero .
Answer:
At the highest point when you toss a ball into the air.
Explanation:
At the higest point of a trajectory of a ball, the velocity is zero for a split second and there is no speed and direction. However, there still is acceleration of -10 m/s^2 because the force of gravity is still acting upon it at that point.
Hi there!
An example of this could be when a ball is thrown vertically into the air and reaches the TOP of its trajectory.
When an object is thrown with a vertical velocity, the acceleration due to gravity results in a decrease in its positive (upward) velocity until it reaches its highest point, where the instantaneous velocity = 0 m/s and the object begins to fall back down (negative velocity).
Additionally, throughout its entire trajectory, the ball experiences an acceleration due to gravity of g = 9.8 m/s², even at its highest point where there is a velocity = 0 m/s.
What is sixth state of matter?
A football is kicked with an initial velocity of 50.0 m/s, 60° above the horizontal line. Find the following: The time it takes to reach the maximum height; The maximum height reached by the projectile; The time of flight; and The range of projectile.
Answer:
Explanation:
Initial vertical velocity
vy₀ = 50.0sin60 = 43.3 m/s
This initial velocity is reduced to zero by gravity in a time of
t = v/a = 43.3/9.81 = 4.41 s
h(max) = ½gt² = ½(9.81)4.41² = 95.6 m
The ball will return to earth in the same amount of time
t(max) = 2(4.41) = 8.82 s
The horizontal velocity is
vx = 50.0cos60 = 25.0 m/s
d = vt = 25.0(8.82) = 221 m
That 's one heck of a kick! No air resistance of course.